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Abstract—Emerging cloud computing applications place a grow-
ing demand on resources, leading to increasingly large data centers
with significant energy consumption and carbon emissions. Various
research conduct optimization methods to improve the energy effi-
ciency of the server in the cloud data center. However, most existing
optimization methods are designed for specific applications, thus
making it difficult to handle complex cloud environments. In this
paper, we propose a general parameter optimization method called
MPOD to improve the energy efficiency of cloud servers in real
time. MPOD considers issues in the cloud environment, such as SLA
guarantee, user privacy, and dynamic workloads. We introduce en-
ergy efficiency curves to DVFS, implementing a low-overhead, fast
response, and general frequency optimization strategy. Moreover,
we design a workload classification framework and three prediction
models based on machine learning algorithms to achieve accurate
and adaptive Linux kernel parameters optimization. According to
the experiment, MPOD can improve the energy efficiency of the
server by an average of 30.5%, 20.1%, 10.8% in BenchSEE, SERT
and TPC-H, respectively.

Index Terms—Cloud data center, DVFS, energy-efficiency
modeling, energy-efficiency optimization.

I. INTRODUCTION

C LOUD data center is a new type of data center built on
cloud computing technologies, which accomplishes a high

degree of integration of various resources through virtualizing
IT equipment. It provides users with safe, reliable, efficient, and
flexible services in the form of IaaS, PaaS, and SaaS. With the
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development of technologies such as artificial intelligence, the
Internet of things, and blockchain, emerging applications not
only have greater demand in terms of the number of resources but
also place greater demands on the efficiency of resource usage.
Cloud data centers are scaling further to meet these increasingly
complex business needs, which brings a significant increase
in cluster deployment and maintenance costs [1]. With the
continuously decreasing PUE of the data center, infrastructure
accounts for an increasingly smaller share of data center energy
consumption. Improving data center energy efficiency requires
a greater focus on IT equipment [2]. Servers account for 70-80%
of the energy consumption of major IT equipment [3]. Improving
the energy efficiency of servers is an important measure to
achieve energy savings and emission reduction in cloud data
centers.

An important method to improve server energy efficiency is to
tune various parameter configurations. Due to its flexibility and
efficiency, parameter optimization is widely used in a variety of
scenarios such as Big Data applications [4], machine learning
hyperparameter adjustment [5], and distributed database query
acceleration [6]. Servers and applications have numerous param-
eters with wide value ranges and suitable scenarios. The optimal
values for parameters are difficult to obtain by manual adjust-
ment. Consequently, many researchers have designed parameter
optimization methods for different applications and usage sce-
narios. However, existing parameter optimization methods are
accompanied by the following problems when applied to cloud
servers:
� Servers and applications have a large number of param-

eters with wide value range space and complex inter-
actions, which make parameter optimization much more
difficult.

� In online optimization scenarios, improper parameter con-
figurations may bring certain fluctuations in server perfor-
mance, affect the quality of cloud services and even lead
to SLA violations.

� Different parameters have different associations with ap-
plication performance and energy consumption. Most ex-
isting research only targets optimization for a single ap-
plication with specified parameters. Without the ability
to perform targeted tuning measures based on different
workloads, the optimization methods are unable to achieve
good effects in a complex cloud environment.
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� Many optimization methods require access to application
performance metrics to evaluate tuning effects. However,
cloud service providers can not directly collect user data for
performance evaluation due to data security concerns. How
to accurately capture application performance is a critical
issue to address in cloud server parameter optimization.

� Existing optimization methods mainly focus on optimiza-
tion effects while neglecting speed. In the highly dynamic
cloud environment, lagging optimization may also lead to
server performance degradation, thus affecting user ser-
vices and even violating SLA.

To solve the above problems, we propose a multi-model
prediction-based parameter optimization method with DVFS
(MPOD). With the basic guarantee of SLA and privacy security,
this method can identify the type of workload on which the
server is running in real time and perform targeted optimiza-
tion for the specific application, thus enabling it to adapt to
the complex cloud environment. Moreover, for applications
in the virtualization layer, the actual workload still needs to
be executed by physical machines. Capturing the performance
metrics of the physical machines and optimizing for the physical
machines, it is still possible to capture the characteristics of the
applications and improve the energy efficiency of the workload
in the virtualization layer. Therefore, the above approach can
also be adapted to the virtualized server environment.The main
contributions of this paper are as follows:
� We propose a DVFS algorithm based on energy efficiency

curves, which achieves low overhead and fast response to
cope with the complex scenario of highly dynamic changes
in cloud servers.

� We design a two-tier workload classification framework
based on KNN to identify the type of application carried
by the server, enabling MPOD to perform targeted opti-
mization measures according to the recognized application
type.

� We build multiple models to accommodate the parameter
optimization in the cloud environment. Performance mod-
els based on system-level performance metrics can evaluate
application throughput while protecting user privacy. Max
performance models and energy efficiency models can
minimize performance disruptions in real-time parameter
optimization.

� We implement our proposed method based on BenchSEE
data and show the effectiveness of MPOD on BenchSEE,
SERT and TPC-H. In addition, we also demonstrate the
low overhead of MPOD during optimization.

The rest of this paper is organized as follows. Section II re-
views related work in parameter optimization for cloud servers.
Section III details the design of MPOD. Section IV shows the
experiments of MPOD in a real server environment. Section V
summarizes this paper.

II. RELATED WORK

Over the past few years, parameter optimization methods for
cloud applications have been a critical research topic. Scholars
have proposed various optimization methods depending on the

application scenario and optimization objective. Big data appli-
cations (such as Hadoop, Spark, and Storm.) are mainstream
scenarios in cloud computing, which contain many configu-
rations related to component interaction, process parallelism,
and I/O throughput. Improper parameter settings often lead
to reduced application throughput, so many researchers have
proposed application parameter optimization strategies for Big
Data scenarios such as collaborative scheduling [7], dynamic
cluster environment [8], and performance prediction [9]. Pa-
rameter optimization is also widely used in high-performance
computing [10], distributed file system [11] and database [12].

In addition to application parameters, the operating system
also contains numerous parameters that affect hardware perfor-
mance, power consumption, and application interaction. With
the appropriate configuring of such parameters, a server can
run user workload optimally to improve energy efficiency. In
addition, the operating system parameters do not require ma-
nipulation of user applications, making it more suitable for the
cloud environment.

Sánchez et al. [13] explore the performance impact of NUMA
policies and prefetchers on various benchmarks. In order to
resolve the high optimization overhead caused by large search
space, the authors use an unsupervised clustering algorithm
to cluster applications with similar behavior based on 19 per-
formance counters. Furthermore, they use machine learning
algorithms such as ANN and SVM to determine the optimal
NUMA policy and prefetcher setting for each type of workload.
Luan et al. [14] discover that the number of CPU cores and
core layout significantly affect parallel program performance,
so they propose Otter tune CPU core configurations. Otter
first determines the primary performance trend of a parallel
program using a few samples, then applies interpolation to
fit a function between the number of CPU cores, the CPU
core distribution, and the program throughput. Finally, they
use the golden section method for parameter optimization to
maximize parallel program throughput. Qi et al. [15] conduct
BIOS parameter optimization for the TaiShan2280 server with
Kunpeng 920 processor. Due to the large search space and
complex relationship, the authors develop a Markov model to
guide the control decision of BIOS parameters and combine
deep Q-networks to find the optimal BIOS configurations for
various workloads. However, these methods require a reboot of
the application or server to take effect, which results in long
response times and business interruptions. Consequently, such
optimization methods are challenging to apply in the cloud
environment that has to ensure the stability of the user services.

Dynamic voltage frequency scaling (DVFS) is a common
technique for real-time server optimization, which reduces
wasted computing resources and improves server energy effi-
ciency by adjusting the processor chip voltage and frequency
to match the running workloads. The EEDTSA proposed by
Mishra et al. [16] establishes the energy consumption correspon-
dence matrix between frequency-voltage pairs and workloads
by considering the number of instructions, execution order,
and deadline requirements of each workload. EEDTSA selects
the optimal voltage and frequency of CPU cores based on the
energy consumption correspondence matrix to reduce the overall
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energy usage. The MDQ-CR algorithm proposed by Asghari
et al. [17] extends DVFS from a single-task optimization to
long-term multi-task optimization. MDQ-CR uses coral reefs
optimization (CRO) to determine the optimal DVFS state for
the initial workload assignment. Then, the deep Q-network is
applied for DVFS state assignments of subsequent workloads.
The deep Q-network can converge to the optimal global solution
as it considers the long-term energy consumption varies with the
help of a Markov game model. Nevertheless, the overhead of
MDQ-CR is an issue that cannot be ignored. We experimentally
demonstrate that using complex DVFS algorithms in a dynamic
environment may lead to delays in tuning, thus reducing the
throughput of user applications. Therefore, many researchers
have also used low-overhead DVFS techniques for scenario-
specific optimization. Lee et al. [18] extend the ondemand
frequency governor for polling-based IO services. The proposed
PollO governor can improve energy efficiency by 26.93% for
IO-intensive services. However, we discover that simple DVFS
techniques have uneven optimization effects and may only work
for some applications in the cloud environment.

Linux kernel parameters are also well suited for optimization
in cloud servers due to their real-time effect. To maximize net-
work throughput, Gembala et al. [19] apply a genetic algorithm
to optimize 27 Linux kernel network parameters which affect
various aspects such as TCP transfer queue size, connection con-
trol, and window tuning. Junqing et al. [20] use Linux memory
kernel parameters to optimize Redis performance. The authors
classify Redis applications into three scenarios and use the eBPF
technique for gathering memory performance metrics to identify
the different scenarios. The authors consider a combination of
multiple decision tree models constructed from random forests
to filter out the essential kernel parameters for each scenario to
optimize separately.

Parameter optimization has been applied to many application
scenarios. However, as mentioned above, many studies do not
consider factors such as SLA, user privacy, complex and dy-
namic applications in the cloud environment. As a result, it is
not easy to apply existing parameter optimization methods to a
real cloud environment.

III. MPOD DESIGN

Processor frequency is a crucial factor affecting server energy
efficiency, and operating system kernel parameters are ideal for
energy efficiency optimization in a cloud environment. There-
fore, we propose an energy efficiency optimization method for
cloud servers based on these two parameters called MPOD
(multi-model prediction-based parameter optimization method
with DVFS). In this section, we will introduce the design and
workflow of MPOD.

As Section II mentions, parameter optimization requires fit-
ting complex functional relationships between multiple parame-
ters and finding the best result in a large search space. Therefore,
many studies have applied techniques such as evolutionary
algorithms and deep neural networks to parameter optimization.
Although such algorithms can accurately evaluate the impact of
parameters in a high-dimensional space and have good optimiza-
tion effects, they are not suitable for some parameters because

Fig. 1. Comparison of Compress average throughput with different optimiza-
tion latency.

of their long tuning time and high resource usage. Frequency
is a typical example. To evaluate the impact of lagging tuning
on application performance due to excessive overhead of the
optimization algorithm, we run a benchmark named Compress
using the same frequency optimization strategy with different
latency. Fig. 1 shows the average throughput of the server at
different optimized latency, where the Compress workload runs
for 200 s at 100%, 75%, 50% and 25% load levels respectively.
As we can see, higher latency brings more performance loss,
with a maximum of 14.8% throughput degradation in this ex-
periment. This means that different parameters require different
optimization methods according to their characteristics. As a
result, we develop different granularity optimization strategies
for frequency and Linux kernel parameters:
� Fine granularity frequency optimization: frequency vari-

ations greatly affect server performance and need to be
tuned in a fine granularity manner to ensure basic server
performance during optimization.

� Coarse granularity Linux kernel parameter optimization:
Linux kernel parameters do not need to be changed fre-
quently to adapt the short-term load fluctuations. In addi-
tion, the relationship between Linux kernel parameters on
energy efficiency is more complex. Thus this parameter
optimization requires less real-time and is more concerned
with workload identification as well as accurate evaluation.

The overall architecture of MPOD is shown in Fig. 2. In the
following contents of Section III, we will describe the design of
each element in MPOD in more details.

A. Frequency Optimization

For current mainstream processor architectures, each core can
be individually set to a frequency that ranges from high to low
with several discrete values (1). Higher frequency has higher
performance and power consumption. Matching the frequency
to the load level can improve server energy efficiency.

F = {f1, f2, . . . , fn| fi > fj if i < j} (1)

The main reasons for the high overhead of current DVFS are
accurate identification of the relationship between frequency,
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Fig. 2. Basic architecture of MPOD.

load level, and energy efficiency, coupled with complex opti-
mization based on an objective function. We simplify the perfor-
mance and power consumption evaluation process using several
simple constraints and combine them with the CPU energy
efficiency curve to determine the best frequency configuration.
Moreover, we design a fast scaling mechanism to accelerate
frequency optimization. By applying the above approach, we
achieve a simple and effective frequency optimization strategy
for the cloud server.

1) Relative Evaluation: In order to determine the optimal
CPU frequency for energy efficiency in a cloud environment,
the DVFS algorithm needs to evaluate not only the CPU per-
formance requirements of user applications to prevent SLA
violations but also the variation in CPU power consumption due
to different frequencies. In frequency optimization, we divide the
server energy efficiency evaluation into performance evaluation
and power evaluation, then combine the two parts to derive the
energy efficiency evaluation of the server.

In terms of performance evaluation, it is common practice to
use metrics such as performance counters to predict the exact
throughput of an application. However, accurate prediction in-
evitably brings high overhead. To reduce overhead, we evaluate
relative load levels directly using CPU utilization (without iowait
utilization). This approach does not accurately capture applica-
tion throughput, but identifies whether the current frequency
is meeting the CPU performance requirement of the application
and thus evaluates the likely application throughput change after
the frequency adjustment. The detailed evaluations are as follow:

If the CPU frequency is set from fi to fj , the CPU utilization
will change fromui touj . The application throughputT changes
in one of three ways. As (2) shows, if the CPU utilization before
and after the adjustment is less than 1, both frequency settings
meet the maximum performance required by the application,
so the throughput will not change. As shown in (3), if the CPU
utilization before tuning is 1, the application can fully exhaust the
computing resources provided by the server. Unless fi just meets
the maximum performance requirement, any frequency increase
will improve the application’s throughput. (4) is similar to (3), if
the CPU utilization becomes 1 after a frequency reduction, the

application throughput is more likely to decrease.

T (fj , uj) = T (fi, ui), if ui < 1 and uj < 1 (2)

T (fj , uj) ≥ T (fi, ui), if fj > fi and ui = 1 (3)

T (fj , uj) ≤ T (fi, ui), if fj < fi and uj = 1 (4)

Similar to the performance evaluation, we still use relative
evaluation to reduce the overhead of power evaluation by con-
verting the exact power calculation into a relative power compar-
ison. The CPU power Pcpu not only depends on the frequency
setting but is also affected by the load level of the application. As
shown in (5) and (6), running at a lower frequency for the same
application throughput will reduce CPU power consumption.
At the same frequency setting, the heavier load carried by the
server, the more energy will be consumed.

Pcpu(fi, T0) > Pcpu(fj , T0), if fi > fj (5)

Pcpu(f0, Ti) > Pcpu(f0, Tj), if Ti > Tj (6)

Based on the above simplification, we obtain the primary
performance and power optimization strategies, respectively. We
assume that the CPU performance required, i.e., the maximum
application throughput Tmax, is constant for a short-term work-
load (e.g. about 5 seconds). Thus the load demand provided by
users before and after tuning is consistent and the change in
server energy efficiency level is comparable.

When the CPU utilization is less than 1, the real-time appli-
cation throughput T can reach the maximum throughput Tmax.
If the CPU utilization is still less than 1 after reducing the
frequency, it will reduce the CPU power consumption while
maintaining the same application throughput, thus improving the
energy efficiency of the server. However, if the CPU utilization
is 1 after reducing the frequency, the CPU power consumption
is reduced, but the application throughput is also likely to be
reduced. Since we do not calculate actual performance and
power values, it is difficult to determine the energy efficiency
of the server in this case through relative performance and
power evaluation strategy. In order to combine the simplified
strategies for overall server energy efficiency optimization, we
introduce the CPU energy efficiency curves to determine the
optimal frequency configuration.

2) CPU Energy Efficiency Curves: Since MPOD uses CPU
utilization to assess application load level, the CPU energy effi-
ciency curves discussed in this section refer to the trend between
different frequencies, CPU utilization, and energy efficiency.

Introducing CPU energy efficiency curves can improve the
accuracy of CPU efficiency evaluation. First, different CPUs
perform different energy efficiency trends, and not all servers
are at their best energy efficiency when CPU utilization reaches
100% [21]. Moreover, the performance and power consumption
do not change in equal proportion at different frequency levels,
even for the same CPU. Fig. 3 shows the maximum throughput
and server power consumption variation of the Compress bench-
mark at each frequency level for the Intel(R) Xeon(R) Gold 6248
CPU @ 2.50 GHz. When the CPU frequency increases from
2.4 GHz to 2.5 GHz, the application throughput increases by
962 while the power consumption increases by 65 W. When the
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Fig. 3. Comparison of performance, power consumption and energy efficiency
of each frequency level at full load.

Fig. 4. CPU energy efficiency and utilization curves evaluated using Bench-
SEE Compress with load levels of 60%, 70% and 80%.

CPU frequency increases from 2.3 GHz to 2.4 GHz, the applica-
tion throughput increases by 760 while the power consumption
increases by only 13 W. Such difference in energy efficiency
between the frequency levels is more pronounced when the Intel
turbo boost technology [22] is enabled.

We can gather the energy efficiency of each frequency level
under different utilization by pressurizing the server using
benchmarks with different load levels. This is the most common
way to get the CPU energy efficiency curves. Then, we can
determine the optimal utilization interval for each frequency
according to the CPU energy efficiency curves. Fig. 4 will be
used as an example to introduce how to obtain the optimal
utilization interval. Fig. 4 shows the CPU energy efficiency and
utilization curves when running three different load levels of the
Compress benchmark. For 2.1 GHz frequency, it can achieve
optimal energy efficiency at 70% load level. However, at an 80%
load level, increasing the frequency can achieve higher energy
efficiency. While decreasing the frequency can achieve higher
energy efficiency at a 60% load level. For the 60% and 80% load
levels, the CPU utilization is 75.8% and 100%, respectively;

therefore [0.758, 1] is a possible optimal utilization interval for
2.1 GHz.

Using multiple sets of experiments similar to Fig. 4, we
evaluate multiple sets of possible optimal utilization intervals
for each frequency level. Taking the intersection of all possible
optimal utilization intervals is the final optimal energy efficiency
interval for that frequency class. For example, if there are
three possible optimal utilization intervals for 2.1 GHz [0.7,
1.0], [0.75, 0.95], [0.72, 0.88], then the final optimal utilization
interval for 2.1 GHz is [0.75, 0.88]. Although it is true that the
frequency should be decreased at a utilization rate of 0.7, this
value is not a critical value and the frequency should also be
reduced when the utilization rate is 0.72. The reason for this
situation is that the load level we set during the experiment
is not continuous, and it is possible that 0.75 is not the real
lower bound of the optimal utilization of 2.1 GHz. We can only
keep approaching the real optimal utilization interval through
the experiment. In general, the smaller the interval between the
load levels set in the experiment, the more accurate the evaluated
optimal energy efficiency utilization interval is.

For a specified application, the server energy efficiency is
optimized by keeping the CPU utilization within the optimal
interval. The optimal frequency can be set through the relative
performance and power evaluations in Section III-A1 together
with the optimal CPU utilization interval determined based on
the energy efficiency curve. The optimization process does not
need to obtain actual application throughput and server power
consumption data.

3) Fast Frequency Scaling Mechanism: The tuning strategy
of MPOD is to compare the current energy efficiency state
with the previous energy efficiency state and gradually adjust
it to the theoretically optimal frequency. Therefore, multiple
energy efficiency evaluations are required from the initial to
optimal frequency. During the optimization process, the energy
efficiency of the server is not ideal. Level-by-level tuning may
lead to a long optimization time, especially when the load level
changes dramatically (for example, from an idle state to a full
load state). Even if we can significantly improve the server
energy efficiency under the optimal frequency configuration,
long-term optimization will still decline the overall server energy
efficiency. To solve this problem, we introduce a fast frequency
scaling mechanism to reduce the frequency optimization time.
This mechanism dynamically adjusts the optimization step ac-
cording to the tuning behavior, so the server can be quickly
configured to the frequency with the best energy efficiency.

Algorithm 1 is the pseudo-code of DVFS in MPOD. Accord-
ing to the optimal utilization interval, the status of the core
can be divided into three categories. The current frequency
configuration can achieve optimal energy efficiency if the core
utilization is within the interval. When the utilization is excep-
tionally high, and the frequency is increased twice continuously,
it is most probable that the frequency will need to be increased
significantly to achieve optimal energy efficiency. Otherwise,
searching around the current frequency step by step is enough.
When the CPU utilization is significantly below the lower bound,
it indicates that the frequency configuration is improper and
should be dramatically decreased. When the CPU utilization is
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Algorithm 1: Energy Efficiency Based DVFS With Fast
Frequency Scaling Mechanism.

Input: Optimal utilization interval with upper bound Uup

and lower bound Ulow

Output: The optimal frequency of each core
1: while not interrupt program do
2: for each core in CPU do
3: get real time utilization u and frequency f
4: if Ulow(f) < u < Uup(f) then
5: maintain current frequency configuration
6: end if
7: if u > Uup(f) then
8: if the core has increased frequency at least twice

continuously then
9: increase 4 frequency levels

10: else
11: increase 1 frequency level
12: end if
13: end if
14: if u < Ulow(f) then
15: decrease frequency by Ulow(f)/u levels
16: end if
17: end for
18: end while

slightly below the lower bound, the frequency should be reduced
only slightly. As a result, the frequency reduction will be scaled
down based on the real-time utilization and the lower bound of
the optimal utilization interval.

The reason we classify the increasing frequency behavior into
two types is that, when CPU utilization reaches the upper bound,
we can not determine how much performance boost is needed to
meet the workload. There is no such problem when the frequency
decreases. For example, it is clear that the server need to reduce
the frequency more when the utilization is 10% than 30%. We use
two successive frequency increases as an indication that perfor-
mance needs to be significantly improved. The consideration for
not using three or more values is that, we believe an early entry
into the fast frequency scaling phase is preferable, thus avoiding
SLA violations due to low performance. Moreover, the algorithm
specifies the fast scaling phase increases 4 frequency levels at
once. This is a reasonable value for our experiment platform
with 16 different frequency levels. This value can be changed
depending on the platform characteristics and we recommend
trying to be as close as possible to the root of the number
of frequency levels, e.g. a platform with 32 frequency levels
could set it to 6. This balances the fast search overhead with the
fine-tuning search overhead, thus minimizing the overall search
overhead.

B. Linux Kernel Parameter Optimization

Fig. 5 shows the multi-model prediction-based parameter
optimization method for tuning Linux kernel parameters. First,
this method will collect the server data in real time to evaluate the
load status. If the load fluctuation is significant, it is not easy to

Fig. 5. Execution process of parameter optimization method based on multi-
model prediction.

accurately evaluate the status and apply an optimal combination
of Linux parameters. When the load is relatively stable, the clas-
sification framework will judge the workload type carried by the
server. The performance model, max performance model, and
energy efficiency model are used to predict the energy efficiency
data of the server. If the server has low energy efficiency, MPOD
will launch the Linux kernel parameter optimization based on
workload classification and energy efficiency evaluation results.
After completing the parameter optimization, it will sleep and
wait for a while, then repeat the above steps to achieve real-time
optimization.

1) Workload Classification: To ensure the accuracy of en-
ergy efficiency prediction and the effectiveness of optimization,
it is necessary to identify the type of application running on the
server. Performance metrics such as server resource utilization
and performance counters can be used to portray cloud appli-
cation behavior and to classify cloud applications based on the
distribution of these metrics [23].

We design a two-layer classification framework based on the
KNN algorithm (shown in Fig. 6). The bottom layer is the KNN
model for the specific application, and each KNN model stores
the performance metric distribution data for the corresponding
workload type. The upper layer KNN model is obtained by
combining the performance metric distribution data stored in
the same class of bottom KNN models. When classifying an
unknown data point, each KNN model will output a distance
sum between the unknown data point and the nearest K known
data points. The smaller the distance sum is, the more similar
the unknown data point is to the data distribution recorded in the
current KNN model. Based on the distance sum, the two-layer
KNN-based classification framework will first discriminate the
most similar intensive type in the upper layer. Then the cor-
responding lower layer KNN models will discriminate which
specific application type it belongs to.

The framework uses performance metrics recorded in the
KNN model to evaluate workload similarity. Consequently,
the selection of performance metrics dramatically affects the
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Fig. 6. Two-layer workload classification framework based on KNN.

TABLE I
PERFORMANCE METRICS USED FOR EACH LAYER OF KNN IN THE WORKLOAD

CLASSIFICATION FRAMEWORK

accuracy of classification. The operating system can capture
various performance metrics, but only a few reflect the char-
acteristics of a given workload, while most are irrelevant. For
instance, network read and write metrics are primarily worthless
for CPU-intensive applications. If the KNN model contains
many irrelevant features, the differences in the distance sums
calculated by the significant feature metrics will be diluted. As
a result, the distance sum of each KNN model will be similar,
which may lead to worse classification results.

To address this problem, we use the lightgbm [24] to calculate
the gain entropy of each feature in predicting energy efficiency
and select the features with high gain entropy for each workload
as the significant features (Table I). In creating the KNN models,
the data points for each workload will only record the values of
the significant features. Therefore, we can use a smaller number
of features to distinguish the performance behavior of different
applications, reducing the framework overhead while improving
classification accuracy. Meanwhile, to prevent the huge amount
of data from causing excessive overhead in KNN, the framework
does not keep saving additional data online for the load behavior
patterns already identified. If a new workload is encountered
while running online that differs significantly from the known
load behavior pattern, for example, the distance to the most
similar workload is identified to exceed a certain threshold, data

needs to be collected to train a new KNN model and add the
model to the workload classification framework.

2) Energy Efficiency Modeling: The parameter optimization
process needs to evaluate the energy efficiency of different
parameter combinations, which contains parameter configura-
tions that lead to server performance degradation. Setting these
parameters on the server may reduce the application throughput
or even violate SLA for cloud subscribers. Energy efficiency
modeling is a common technique to solve the above problem.
Building models to predict the server’s performance, power
consumption, and energy efficiency, we can directly output the
energy efficiency data under different parameter combinations,
thus avoiding improper parameter configurations from affecting
the user service during optimization [25].

Due to randomization, system optimization, and other rea-
sons, an application may produce different behavior patterns
under the same parameter configuration, leading to the failure
of the machine learning based black box mode in predicting the
performance and energy efficiency of the server [26]. Moreover,
some performance models take application parameters as input
which is not available in the cloud environment. In contrast to
static parameter configurations, metrics such as resource utiliza-
tion and performance counters can reflect server performance in
real time while protecting user privacy. Therefore we use these
system-level performance metrics as input to the performance
model. We assume that the application performance demand is
constant over a short period. For the energy efficiency model, we
can use the server performance derived from the performance
model as input to eliminate the accuracy degradation caused by
changes in application behavior. In addition, considering server
parameter configurations as inputs allows the energy efficiency
model to evaluate the energy efficiency of different combinations
of parameters without actually setting the parameters on the
server.

The energy efficiency model is insufficient to guarantee that
the performance of the server meets the application requirement
after optimization. Although the optimization goal of MPOD is
to maximize energy efficiency, it is also necessary to ensure the
server performance to prevent SLA violations.So we also built a
max performance model to assess the maximum performance
the server can achieve for specific parameter configurations.
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Fig. 7. Design of performance model, max performance model and energy
efficiency model.

The load fluctuations mentioned above do not affect maximum
performance with server parameter configurations. Even if the
application behavior pattern changes for various reasons, the
maximum performance that a server can achieve in a given
configuration remains constant.

In summary, MPOD builds three prediction models to guide
the optimization of Linux kernel parameters (Fig. 7). The perfor-
mance model uses system-level performance metrics to assess
the performance requirement of cloud applications over a short
period. The max performance model uses Linux parameter
values to assess the maximum performance that the server can
deliver. The energy efficiency model uses predicted performance
and Linux parameter values to assess the energy efficiency of
the server.

3) Parameter Optimization Algorithm: The Linux kernel has
many parameters with a wide range of values and interactions,
resulting in the optimization function characterized by multiple
peaks, non-convexity, and high dimension. The automated pa-
rameter optimization algorithm has difficulty learning the impact
of different parameter combinations on server energy efficiency.
In order to cope with the optimization difficulty caused by overly
complex optimization functions, we decrease the complexity
of optimization by reducing the parameter search space. We
classify different Linux kernel parameters according to their
operating principle (Table II) and select the corresponding par-
tial parameters to optimize for different workload types. This
approach allows the algorithm to learn the patterns of server
energy efficiency for a different combination of parameters.

The Algorithm 2 is the pseudo-code of Linux kernel parameter
optimization in MPOD. After inputting the workload type, initial
performance, and energy efficiency, the algorithm will perform
an iterative optimization for a period of time. Each iteration
generates a set of parameter values based on the workload type
and the optimization history. Then it evaluates the server’s max-
imum performance and energy efficiency for specific parameter
settings. If the maximum performance is significantly lower
than the performance requirement (we allow a 5% performance
degradation), the algorithm will reduce the weight of this set of
parameters. The optimization record stores the results of each
iteration corresponding to the workload type and the initial per-
formance. After completing a period of iteration, if the optimal
parameter configuration in the optimization record is higher than

TABLE II
SIGNIFICANT LINUX KERNEL PARAMETERS CORRESPONDING TO EACH

INTENSIVE WORKLOAD

Algorithm 2: Linux Kernel Parameter Optimization Algo-
rithm in MPOD.

Input: Workload type L, initial performance Pinit, initial
energy efficiency Einit

Output: Optimal parameter configuration C
1: while iterate for a certain time do
2: generate a dictionary of parameter combination values

D according to L and history record R
3: use models to predict max performance Pmax and

energy efficiency E in D
4: if Pmax < 0.95Pinit then
5: E = E/2
6: end if
7: append evaluation result E and D to R
8: end while
9: search the maximum energy efficiency Emax in R

10: if Emax > Einit then
11: set the corresponding parameter configuration Cmax

on server
12: else
13: maintain the original parameter configuration Cinit

14: end if

the initial energy efficiency, the optimal parameter values are set
to the server. Otherwise, the original parameter configuration is
maintained.

IV. EXPERIMENT

The server experimented with is HUAWEI 2288H V5,
equipped with two Intel(R) Xeon(R) Gold 6248 CPU @
2.50 GHz processors and eight Samsung DDR4 2933MT/s 32 G
RAMs. We first perform data collection based on the energy
efficiency benchmark BenchSEE [27]. Then we determine the
optimal energy efficiency utilization interval of each frequency
and train the KNN classification models, performance models,
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max performance models, and energy efficiency models. Finally,
we use BenchSEE again to verify the optimization effect of
MPOD and use the energy efficiency benchmark SERT [28] and
decision support benchmark TPC-H [29] to verify the general-
ization ability of MPOD under different workloads. Moreover,
we also record the optimization overhead of MPOD.

MPOD targets physical servers rather than clusters, so it does
not address job distribution, queuing, and other scheduling-
related aspects. As a result, instead of considering SLA metrics
such as workload latency when calculating server performance,
we directly use average benchmark throughput (BenchSEE and
SERT) and the time required to complete the same workload
(TPC-H) for evaluation. As illustrated in Fig. 1, these metrics
also reflect the response latency of the server to a certain ex-
tent, which are more comprehensive and effective evaluation
metrics.

A. MPOD Implementation

In terms of data collection, we collect resource utiliza-
tion, performance counters, server power consumption, and
benchmark throughput while running seven CPU-intensive, two
memory-intensive, and two IO-intensive workloads in Bench-
SEE. Each workload is run at ten different load levels ranging
from 100% to 10%, and each load level runs for 60 seconds.
We set different frequency and Linux kernel parameter values
before the workload runs to evaluate the energy efficiency of
the server under different parameter configurations. To reduce
data collection overhead, we use Latin hypercube sampling
to determine the values of each parameter used in Bench-
SEE, covering most of the feature space with as little data as
possible.

In terms of model training, we determine the optimal energy
efficiency utilization interval in Section III-A2 and train the
KNN models in Section III-B1 based on the collected BenchSEE
data. For the performance models, max performance models,
and energy efficiency models in Section III-B2, we choose nine
machine learning algorithms (including xgboost, linear, svr, and
etc.) that are widely used in the areas of energy efficiency
modeling to fit. The performance of each algorithm varies for
different workload types and prediction objectives (see Sec-
tion IV-B for details). So we combine the best three algorithms
for each workload to establish the final performance models,
max performance models, and energy efficiency models. The
above process is done offline. In this way, we do not need to
apply all the algorithms to predict in online usage, but only need
to select the best three algorithms to use based on the results of
workload classification.

In terms of optimization algorithm, we implement the logic in
Algorithm 2 based on the hyperparameter optimization frame-
work Optuna [30]. The parameter values for each iteration are
decided by the CmaEs sampler in Optuna.

B. Model Accuracy

To test the accuracy of the models built in MPOD, we divide
the dataset into training and test sets in the ratio of 7:3. The accu-
racy of different machine learning algorithms varies depending
on the workload type and the prediction objective. As shown in

Tables III, IV, and V, no single algorithm perform best in all
scenarios. Random forest and linear work well in performance
models, xgboost works well in max performance models, and
all the four ensemble learning algorithms work well in energy
efficiency models. Only a few specific scenarios are suitable
for modeling with lasso, ridge, elasticnet, and SVR. We select
the best three algorithms of each workload to generate the final
performance, max performance, and energy efficiency models
in MPOD.

MPOD identifies the BenchSEE workload with an average of
99.5% accuracy. It shows that variation in selected performance
metrics between benchmarks is significant. In addition, we found
that all the classification error samples have a load level of 10%,
i.e., scenarios with extremely low application throughput. Be-
side load fluctuations, there are no significant numerical differ-
ences in the performance metrics for each workload at this time.
As a result, it is difficult to completely distinguish load behavior
patterns, which leads to wrong classification. However, such
wrong classification has almost no impact on MPOD tuning.
At this point, there is redundancy in server performance, and
the optimization goal is reducing wasted resources. Therefore
MPOD will take similar measures to reduce the idle power
consumption of the server regardless of the identified workload.

On a comprehensive view, both the workload classification
framework and the three prediction models can achieve at least
98% prediction accuracy, which is sufficient to provide MPOD
with an accurate evaluation of real-time server status.

C. MPOD BenchSEE Optimization Effects

In this section, we will use BenchSEE to test the optimization
effect of MPOD. Each workload is run for ten load levels
from 100% to 10% to simulate the dynamic changes in the
cloud environment, and each load level lasts for 60 seconds.
Since MPOD requires iterative optimization to learn the optimal
parameter configuration, we run the above workloads three times
for MPOD before evaluating the optimization effect.

We compare MPOD with the other four methods:
� Default: server has default DVFS strategy and Linux kernel

parameter values. The default configuration will be set as
general values to satisfy the wide range of applications,
representing the universal case rather than the worst case.
Therefore, we select Default as the baseline in comparison.

� Ondemand/Conservative: both are DVFS policies avail-
able in the acpi_cpufreq module [31]. Since integrated into
the Linux kernel, they are widely used in server optimiza-
tion practice and research.

� Efficient Policy: a power management policy in BIOS
configuration that aims to maximize the energy efficiency
of the server. It includes energy efficiency optimization
technologies provided by the server manufacturer. In our
experiment platform, the efficiency policy consists of fre-
quency modulation, hibernation, energy loss reduction
technologies (MPC-PID), etc [32].

The effect of optimization is measured by the energy effi-
ciency of the server shown in (7), where Em, Tm and Pm

are the energy efficiency, benchmark throughput and average
power of the server using the optimization method m, m can be
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TABLE III
MAE VALUES OF DIFFERENT ALGORITHMS FOR BUILDING PERFORMANCE MODELS

TABLE IV
MAE VALUES OF DIFFERENT ALGORITHMS FOR BUILDING MAX PERFORMANCE MODELS

TABLE V
MAE VALUES OF DIFFERENT ALGORITHMS FOR BUILDING ENERGY EFFICIENCY MODELS

default, ondemand, conservative, efficient policy and MPOD.
The energy consumption of the server should be the average
power multiplied by the time, but the same type of benchmark
runs for the same amount of time, so we simply use the average
power here. Large differences in the order of magnitude of
throughput for different workload types (e.g. Compress maxes
out at around 20000 while Stream can reach 10 million). In order
to more clearly compare the energy efficiency of servers under
different optimization methods, the energy efficiency of each

workload is normalized by the energy efficiency value of the
server under the default optimization method.

Em =
Tm

PmEdefault
=

TmPdefault

PmTdefault
(7)

Table VI shows the experiment result. Workloads between
Compress and Sort are CPU-intensive, Stream and Cache are
memory-intensive, Random and Sequential are IO-intensive.
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TABLE VI
ENERGY EFFICIENCY COMPARISON OF SERVER RUNNING BENCHSEE WORKLOADS WITH DIFFERENT OPTIMIZATION METHODS

As the result shows, simple optimization methods can not han-
dle all workloads well, Ondemand, Conservative and Efficient
Policy perform even less efficiently than the Default for some
situations. In contrast, MPOD can achieve the best energy effi-
ciency at all benchmarks. Moreover, different workloads have
different optimization effects. The IO-intensive has the most
significant optimization effect with an average of 127.5% while
the memory-intensive has the least with an average of 9.5%.
Compared to the best optimization method in each workload,
MPOD still shows an average energy efficiency improvement of
30.5%.

D. MPOD SERT and TPC-H Optimization Effects

The variety of applications in a cloud environment makes it
difficult to model all and develop corresponding optimization
strategies. Our solution is that we use an existing workload
classification model to identify unknown workloads. If they have
similar load behavior (close performance metrics), we believe
that the tuning strategy for the most similar known workload can
also be applied to that unknown workload, thus reuse existing
prediction models and optimization strategies.

In this section, to test the generalization capability of the
MPOD, we use the models trained on BenchSEE data in Sec-
tion IV-B to identify SERT and TPC-H workloads, then perform
forecasting as well as optimization. Due to different imple-
mentations, SERT has a different behavior even with the same
benchmark name as BenchSEE. We select seven CPU-intensive
workloads (Compress-Sort), two memory-intensive workloads
(Flood3, Capacity3), and two IO-intensive workloads (Random,
Sequential) in SERT. Similar to Section IV-C, each workload is
run for ten load levels from 100% to 10%, and each load level
lasts 60 seconds. The energy efficiency of server is also evaluated
by (7).

TPC-H is a benchmark closer to real application, which
defines 22 query tasks and performs computational work based
on the request data. Since a single TPC-H task pressurizes only
a few cores, to make the experimental effect more obvious,
we start one TPC-H task every 10 s, for a total of 30 starts.
Different from BenchSEE and SERT, the load amount of each
TPC-H task is fixed, i.e., the throughput is fixed, we directly use
the energy consumption required to complete these 30 TPC-H
tasks to evaluate the energy efficiency of the server. As shown
in (8), where Em, Pm and tm are the energy efficiency, average
power and total running time of the server using the optimization
method m to complete the TPC-H tasks, m can be default,
ondemand, conservative, efficient policy and MPOD. Similar
to the BenchSEE and SERT experiments, we also use Default’s

energy efficiency for scaling.

Em =
1

PmtmEdefault
=

Pdefaulttdefault
Pmtm

(8)

Tables VII and VIII shows the optimization effects of Default,
Ondemand, Conservative, Efficient Policy, and MPOD in SERT
and TPC-H, respectively.

In SERT, Ondemand and Conservative perform better in
CPU-intensive workloads, while Efficient Policy performs better
in IO-intensive workloads. Memory-intensive workloads still
have the most minor optimization effects. Similar to BenchSEE,
MPOD can also achieve optimal energy efficiency with an
average of 20.1% improvement compared to the best method of
each workload, which shows the excellent generalization ability
of MPOD.

For the more complex TPC-H, ondemand and conservative are
apparently unable to handle it, and both appear to be negatively
optimized at only 96% and 99% of the default energy efficiency,
respectively. Although the efficient policy has significantly im-
proved server performance, the power consumption has also
increased to a certain extent, so the optimization effect of energy
efficiency is not obvious, only a 2% improvement. In contrast,
MPOD uses the opposite optimization strategy. Since our ulti-
mate optimization objective is energy efficiency, the algorithm
considers both server performance and power consumption in
the process of the optimization search. From the results, there
is a significant performance degradation of MPOD compared to
other methods (around 18% compared to default), but the power
consumption degrades more significantly (saves approximately
23% compared to default). Compared to the efficient policy,
MPOD improves server energy efficiency by 10.8% which is
considerably lower than the results of BenchSEE and SERT.

This amount of performance degradation does not generally
result in SLA violations. As the load level decreases, the per-
formance degradation caused by MPOD will gradually reduce.
According to BenchSEE and SERT experiment result, when the
load of benchmarks is 80% of the maximum performance and
below, the throughput of MPOD is almost the same as other
optimization policies.

E. MPOD Overhead

As mentioned before, high optimization overhead may cause
server performance degradation. In this section, we record the
overhead of the entire MPOD workflow. Since the overhead of
frequency optimization is extremely low (occupy single CPU
core less than 0.1%), we mainly evaluate the resource over-
head of the Linux kernel parameter optimization process, which
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TABLE VII
ENERGY EFFICIENCY COMPARISON OF SERVER RUNNING SERT WORKLOADS WITH DIFFERENT OPTIMIZATION METHODS

TABLE VIII
RUNNING TIME, AVERAGE POWER AND ENERGY EFFICIENCY OF SERVER

RUNNING TPC-H WORKLOADS WITH DIFFERENT OPTIMIZATION METHODS

TABLE IX
AVERAGE OVERHEAD FOR EACH STAGE OF MPOD

consists of four stages data collection, prediction, optimization,
and sleep. We respectively specify the time of data collection,
optimization, and one MPOD iteration as 10 s, 20 s, and 40 s.

Table IX shows each stage’s time, CPU usage, and memory
usage in one MPOD iteration. The result is generated based on
the average of all BenchSEE workload optimizations. Due to the
slight variation in memory usage, we only collect the average
memory occupied during the MPOD execution. Although the
prediction stage occupies the highest computing resource, it
will complete quickly thus having little impact on server per-
formance. Most of the overhead comes from the optimization
stage. On average, MPOD occupies 26.8% of a single core and
268.6 MB of memory. Since our experimental platform has a
total of 80 cores, it uses only 0.34% of the computing resource
and 0.1% of the memory capacity for the entire server. Therefore,
the low overhead of MPOD is sufficient for energy-efficient
optimization of the server without affecting user services.

V. CONCLUSION

This paper presents an optimization method called MPOD,
combining frequency and Linux kernel parameters based on
the characteristics of cloud applications with high complexity
and dynamic changes. We design a low overhead and fast
response DVFS strategy based on CPU energy efficiency curves,
a KNN-based workload classification framework, and a param-
eter optimization algorithm with multiple models to improve

the server energy efficiency without accessing user data and
violating SLA. In the experiment, we implement MPOD based
on BenchSEE and demonstrate the effectiveness of the models
along with optimization. We also use SERT and TPC-H to
verify the generalization ability of MPOD in handling unknown
workloads. Last, we demonstrate the low overhead of MPOD.

In the experiment, although MPOD provides some energy
efficiency gains for various workloads, the energy efficiency
optimization of MPOD decreases as the complexity of the
workload increases. Further optimization of MPOD is needed to
cope with more complex scenarios. Moreover, Heterogeneous
CPUs (e.g. Intel Alder Lake architecture) are attracting more and
more attention. Although the frequency optimization algorithm
of MPOD is implemented for homogeneous CPUs, it can also
be easily migrated to servers with heterogeneous CPUs if the
energy efficiency curves are evaluated separately for different
types of cores. Exploring the effect of applying MPOD to more
servers of different architectures is also one of the topics that
can be studied in the future.
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