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A B S T R A C T

With the rapid advancement of the internet, there has been a dramatic increase in short-text data. Due to the
brevity of short texts, sparse features, and limited contextual information, short-text classification has become
a challenging task in natural language processing. However, current methods primarily capture semantic
information from locally-sequenced words in short text, which ignores the intricate feature relationships that
pervade both the intra-text and inter-text. Therefore, this paper proposes a novel Edge-Enhanced Minimum-
Margin Graph Attention Network (EMGAN) for short text classification to address this issue. Specifically,
we construct a Heterogeneous Information Graph (HIG) to represent complex relationships among short text
features. HIG mainly considers the relationship between document features and three attribute features, such as
entities, topics, and keywords, and can represent short text features from multiple dimensions and levels. Then,
to enhance the connectivity and expressiveness of the HIG for more effective propagation of feature information
within it, we present a novel X-shaped structure edge-enhancement method. It enriches their relationships
by reconstructing the edge structures. Furthermore, we design a Minimum Margin Graph Attention Network
(MMGAN) for short text classification. Specifically, this method aims to explore the minimum margin between
high-order neighbors and central nodes at the minimum cost, efficiently extracting and aggregating feature
information. Extensive experimental results demonstrate that our proposed EMGAN model outperforms existing
methods on five datasets, validating its effectiveness in short-text classification. Our code is submitted at
https://github.com/w123yy/EMGAN.
1. Introduction

During the era of information proliferation, natural language pro-
cessing (NLP) subtasks have undergone extensive scrutiny and found
practical utility across many real-world predicaments (Hirschberg &
Manning, 2015). Among these tasks, the challenge of text classifica-
tion emerges as both a timeless quandary and an arduous undertak-
ing (Chakraborty & Singh, 2022). As individuals increasingly acquire
and disseminate information through diverse applications and websites,
the succinct format of short texts, such as news tags, application
reviews, instant messages, and tweets, has become an inseparable part
of our daily lives. Its pervasive influence extends to various domains,
including news categorization, social media (Kateb & Kalita, 2015),
sentiment analysis (Balomenos et al., 2005), e-commerce, and spam
filtering. Consequently, the role of short text classification proves in-
dispensable in information retrieval. In light of its exceptionally high
practical value, scholars diligently devote their efforts to exploring
diverse methodologies (Yu, Ho, Arunachalam, Somaiya, & Lin, 2012).
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Recently, deep neural networks have been proposed by researchers
and widely utilized in the task of short text classification, such as
convolutional neural networks (CNN) (Zhou, Li, Chi, Tang, & Zheng,
2022) and recurrent neural networks (RNN) (Graves & Graves, 2012;
Zhou, Xu, Xu, Yang, & Li, 2016). Compared with traditional classifica-
tion models, these models have achieved significant progress in short
text classification (Pham, Nguyen, Pedrycz, & Vo, 2023). However,
these models mainly focus on modeling sequential structural features,
which significantly limits their ability to handle heterogeneous rela-
tionships among features. Graph neural networks (GNN) can solve the
limitations of sequence models by explicitly modeling and utilizing
the inherent graph structure of the data, and show excellent perfor-
mance in processing complex semantic and topological information.
Therefore, transforming text into graph structures (Wang et al., 2022;
Wu et al., 2020) has become an increasingly popular approach in text
classification tasks. As shown in Fig. 1, in such studies, it is customary
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Fig. 1. A comparison of sequence and graph structures for modeling short text
representations. In the sequence structure, the relationship between features is relatively
simple, generally related to the context where the feature is located. In the graph
structure, the relationship between features is more complex, and it is not limited
to the context where the features are located and can represent the deep semantic
relationship between features.

to construct a graph structure (Ragesh, Sellamanickam, Iyer, Bairi, &
Lingam, 2021; Wang, Liu, Yang, Liu, & Wang, 2021) by treating text
features (e.g., keywords, entities.) and their corresponding relationships
as nodes and edges. This method can handle unstructured data, capture
correlations among different features, and effectively address issues
such as sparse features and data imbalance by leveraging the graph
structure. By applying this approach, researchers like Joachims (2005)
have achieved better classification results by exploring latent themes,
documents, and word-level graph operations in a corpus. This graph
structure can efficiently represent interactions and associations within
textual data, leading to improved semantic information capture and
enhanced classification performance.

However, due to the concise nature of short text sentences and
their sparse semantic features, as well as weak contextual associations,
the task of short text classification becomes increasingly challenging.
Firstly, short texts require incorporating additional information and
utilizing external knowledge bases to enhance feature representation.
For example, Chen, Yao, and Yang (2016) used a seed topic model to
expand the information to solve the problem of sparse feature infor-
mation. However, enriching the features solely through topic represen-
tation does not maximize the utilization of information, posing a key
concern regarding how to effectively augment feature information and
semantic associations. Secondly, existing short text classification meth-
ods based on graph convolutional neural networks (Pham et al., 2023)
often focus on aggregating first-order neighbor information within
each layer while overlooking the capture of long-distance higher-order
semantics. Dealing with distant information propagation often requires
multiple stacked layers, For example, Zhang, He, and Zhang (2022)
used multi-layer GCN to learn the features of the graph, leading to
convergence issues and the potential loss of feature information. Hence,
obtaining distant information is a worthy research challenge. Thirdly,
short texts need more training data in practical scenarios, and manual
annotation consumes time. In order to improve the classification effect,
many scholars adopt a semi-supervised method based on graph neural
network (GNN) to classify short texts with limited labeled data (Ai,
Wang, Shao, Meng, & Li, 2023; Linmei, Yang, Shi, Ji, & Li, 2019).
Among them, Wang, Wang, Yao, and Dou (2021) proposed a semi-
supervised method for classifying brief texts using a heterogeneous
graph neural network. This approach effectively utilizes limited la-
beled data and numerous unlabeled instances, propagating information
through auto-generated graphs. However, it lacks interconnections be-
tween nodes of the same type, limiting its ability to capture document
similarity and propagate labels. Thus, utilizing the limited labeled data
remains a significant challenge.

To address the problems above, we propose a novel Edge-Enhanced
Minimum-Margin Graph Attention Network (EMGAN) for short text
classification. This method cleverly combines the edge enhancement
2

technology and the minimum margin graph attention mechanism,
which can optimize the overall topology and accurately capture high-
order feature information, and is applied to heterogeneous information
graphs for short text classification. Specifically, we construct a novel
Heterogeneous Information Graph (HIG), which can well represent
short text features and their complex relationships. HIG simultaneously
considers entities, topics, and keywords as expanded features, address-
ing the inadequacy of short text features from multiple dimensions and
perspectives. Then, we incorporate an edge-enhancement technique
based on an 𝑋-shaped structure that reconstructs the edge structure
etween nodes, enriching relationships and forming a high-order HIG
ith dense and rich features. Furthermore, we also design the Minimum
argin Graph Attention Network (MMGAN) to address the feature

ggregation issue in short-text classification. It utilizes edge-based
igher-order attention, particularly focusing on exploring the minimal
argin between high-order neighbors and center nodes at the lowest

ost, facilitating feature extraction and aggregation, updating node
eatures, reducing noise interference, and addressing the issue of sparse
eatures in short texts. In short, EMGAN can effectively solve the sparse
roblem of short text features and significantly improve the model
erformance and classification accuracy.

The main contributions of this article can be summarized as follows:

• We introduce a novel Heterogeneous Information Graph (HIG),
which takes document features as central nodes and considers
three related attribute features: entities, topics, and keywords,
which expands features from multiple dimensions, effectively
addressing the limitations of short text features.

• Then, we incorporate an edge-enhancement technique based on
an 𝑋-shaped structure that forms an 𝑋-shaped high-order het-
erogeneous graph by reconstructing the edge connections be-
tween different central nodes. It enhances the connectivity of HIG,
thereby improving the propagation and interaction of feature
information between nodes.

• We design the Minimum Margin Graph Attention Network (MM-
GAN) for short text classification, which centers around the cen-
tral node and comprehensively explores the structure of the HIG
at the lowest cost. It effectively aggregates the content of distant
neighbor nodes to supplement the central node with rich feature
information, thus resolving the issue of feature sparsity.

• We perform comprehensive experiments on real-world datasets
encompassing news articles, concise comments, and search snip-
pets to assess the efficacy of our model in comparison to eleven
baseline approaches. The experimental findings unequivocally
establish that our model surpasses the current state-of-the-art
baseline methods on the benchmark datasets.

Due to the pervasive nature of short text across various domains but
he challenge of sparse feature information, we propose EMGAN, which
ntroduces a novel approach integrating Heterogeneous Information
raph (HIG), edge-enhancement technology, and Minimum Margin
raph Attention Network. The aim is to offer a richer understanding
f short text content, thereby significantly enhancing the accuracy
nd effectiveness of text classification. In summary, EMGAN repre-
ents innovation in this field and underscores the pressing need for
dvancements in short text classification techniques.

The remainder of the paper is structured as follows: Section 2
eviews previous work. Section 3 describes our proposed method and
odel, including building HIG for short texts, edge-enhanced methods,

nd graph attention network models. In Section 4, we perform compre-
ensive experiments on the datasets and analyze the outcomes. Lastly,
ection 5 concludes the paper, offering insights into the future research
irections.
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Fig. 2. The overall framework of the EMGAN model consists of heterogeneous information graph construction, graph edge augmentation, and minimum margin graph attention
etwork.
. Related work

This section presents an overview of pertinent literature concerning
lassifying concise textual content, encompassing both conventional
pproaches and deep neural network methodologies. Subsequently, we
elve into contemporary research that explores the utilization of graph
eural networks for short text classification, focusing on the current
tate of affairs.

.1. Traditional short text classification

Text classification refers to extracting features from raw textual
ata and predicting categories for text data. Over the past several
ecades, researchers have introduced a multitude of models (Flisar &
odgorelec, 2020), including traditional machine learning algorithms
uch as NB (Lu, Chiang, Keh, & Huang, 2010; Xia, Wang, Chen, Duan,
t al., 2018), Support Vector Machines (SVM) (Xia et al., 2020) and
-means (Joachims, 2005; Zhang, Yoshida, & Tang, 2008). However,

raditional methods encounter a significant challenge of feature spar-
ity when dealing with short texts. Recent studies (Rousseau, Kiagias,

Vazirgiannis, 2015; Wang, Song, Li, Zhang, & Han, 2016) have
mployed graphical representations of text and extracted path-based
eatures for text classification. Despite their initial success in formal
exts, these approaches often fail to deliver satisfactory performance
ue to the inadequacy of short text features. In order to address
his issue, many domestic and international researchers employ ex-
ernal corpora or leverage associated internal semantic information
o enhance the features of short texts. For instance, Phan, Nguyen,
nd Horiguchi (2008) harnessed external corpora to extract latent
hemes from short texts. Wang, Chen, Jia, and Zhou (2013) introduced
xternal entity information from the Wikipedia knowledge base to
epresent text. Yao, Bi, Huang, and Zhu (2015) enriched short text with
emantic similarity information. However, these model architectures
re relatively straightforward and have failed to fully unearth the
atent characteristics of short texts, hence yielding limited classification
fficacy.

.2. Deep neural networks for short text classification

In recent years, with the continuous advancement of deep learn-
ng, text classification based on deep learning techniques has gradu-
lly emerged as the prevailing trend in natural language processing
asks (Wang, Wang, Zhang, & Yan, 2017). The most prominent ad-
antage of deep learning methods over traditional text classification
pproaches lies in their efficient handling of text representation issues,
nabling a more precise capture of textual features and achieving end-
o-end problem resolution. The current explores various methodolo-
ies grounded in deep learning principles, including models based on
3

ong short-term memory networks (LSTM), recurrent neural networks
(RNN), and convolutional neural networks (CNN). For instance, Wang
et al. (2019) introduced a bidirectional RNN model enriched with an
attention mechanism for short text classification. This model finds ap-
plications in health monitoring and the automated filtration of health-
related tweets. RNN can effectively capture bidirectional information
in sequence data, but it is prone to disappearance and explosion of
gradients during the training process. LSTM can handle this problem
better. Li et al. (2022) have devised a versatile distributed LSTM net-
work that accommodates large-scale, high-velocity short text streams.
However, it may struggle to capture complex patterns in lengthy se-
quences. In addition, because CNN can effectively capture local features
and patterns, it also performs well in local feature extraction for
tasks such as text classification. Zhou et al. (2022) have ingeniously
devised a multichannel convolution framework based on CNN, thereby
generating feature maps of diverse scales and facilitating the capture
of semantic features spanning various dimensions. However, CNNs
struggle to effectively capture long-range dependencies in lengthy text
sequences due to their inherent local perception mechanism and fixed
window size. The introduction of the Transformer architecture has
effectively mitigated this issue. Bert, through its bidirectional encoding
mechanism, comprehensively parses input text, capturing both local
and global information, thus delving deeper into understanding the
contextual relationships within the text. Cui, Wang, and Yu (2023)
used a fusion model combining Bert and TextRNN. The Bert model
uses the deep bidirectional Transformer component to build the entire
model, thereby ultimately generating a deep bidirectional language
representation that can integrate the context of both parties. However,
the BERT model has certain restrictions on the length of the input
text, which usually requires truncation or padding, which may result in
the loss or redundancy of text information and affect the performance
of the model. Moreover, it cannot establish relationships across texts.
The multi-stage attention model can weighted average the importance
of different positions, effectively handle variable-length sequences and
capture long-distance dependencies. Meanwhile, Liu, Li, and Hu (2022)
introduced a multi-stage attention model, amalgamating TCN and CNN,
enhancing the model parallelism and overall efficiency. These innova-
tive approaches have yielded commendable results in a multitude of
NLP tasks. Nonetheless, there are still problems such as loss of useful
information, relative complexity, and high computational consumption.

2.3. Graph neural networks for short text classification

Short text classification involves categorizing concise content using
machine learning and data mining. Unlike extended text classification,
it is more challenging due to length constraints. Short texts lack signifi-
cant contextual details and strict syntactic structures, which are crucial
for comprehensive text understanding (Wang et al., 2017). Therefore,
methods customized for short text classification strive to integrate

various auxiliary information to enrich short text representation. The
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continuous development of graph neural networks (GNNs) has achieved
the latest performance on short text classification. Here, we introduce
the short text classification models in graph neural networks proposed
in recent years. First, Defferrard, Bresson, and Vandergheynst (2016)
proposed the usage of convolutional neural networks (CNNs) on graphs
by treating text data as graph structures and applying local spectral
filtering techniques. This approach significantly reduces computational
complexity and has achieved notable results in text classification tasks.
Subsequently, based on graph neural networks, Yao, Mao, and Luo
(2019) designed a short text classification method that models words
and texts as nodes in a graph, formulating text classification as a
node classification problem. This approach can comprehensively in-
tegrate global information among texts, enhancing the understanding
of text semantics and context. It adapts well to unstructured and
irregular text data and is one of the earliest papers to propose this
method. However, it only utilizes word semantic similarity information
to enrich document representation, which is not enough for sparse
short texts. Furthermore Ye, Jiang, Liu, Li, and Yuan (2020) found
that the semantic information of word node representation and word
order is very useful in short text classification. They developed a
short text graph convolution network (STGCN) based on words, doc-
ument relationships and text topic information, and combined the
nodes into The representation is merged with word embeddings ob-
tained by pre-training BERT. Yang et al. (2021) noticed the importance
of attention mechanisms and proposed HGAT based on the double-
layer attention mechanism, supplemented by additional relations and
external knowledge bases to classify short texts. External knowledge
bases are very helpful for short text classification because they can
provide more features and initial knowledge for short texts, thereby
elevating the precision of the model. However, it should be noted
that using external knowledge bases can also cause noise interference.
Recently, Jin, Sun, and Ma (2022) developed a concise method for
short text classification using a dual-channel hypergraph convolutional
network. This approach effectively learns two different representations
of short text features. It enhances text embedding through an attention
network, improving computational efficiency. Wu (2023) proposed a
new heterogeneous graph attention network based on HGAT. The prior
knowledge introduced in HIN enhances the semantic representation of
short texts. Hua et al. (2024) integrated heterogeneous graph convolu-
tional neural networks of text, entities and words, represented features
through word graphs, enhanced word features through BiLstm, and
predicted document categories. However, due to length constraints,
GNNs, when dealing with short texts, typically do not consider adding
additional information. Instead, they treat each short text as a single
node in the graph, resulting in insufficient information features and
poor performance. Despite most of these methods utilizing graphs to
model texts, they neglect the influence of graph structure on short
text attribute relationships. They also overlook the relevance of overall
content features when dealing with feature attributes and relationships
between texts, resulting in inadequate connections between nodes. To
address the challenges of short text classification, we employ multiple
features as nodes, enhance edges to enrich their relationships, and
finally utilize efficient exploration and aggregation mechanisms.

Unlike the above existing studies, in this article, we address the
issue of feature sparsity in short text classification by constructing a
heterogeneous graph for short text corpora and using edge enhance-
ment methods to rebuild relationships between nodes and enhance edge
structures, thereby obtaining higher-order relationships. We propose a
novel EMGAN model for classification that fully explores the structure
of the heterogeneous graphs, further aggregates the adequate infor-
mation of distant neighbor nodes into the attention mechanism, and
dynamically extracts the critical characteristics of short texts instead of
4

directly processing the entirety of the information.
3. Proposed method

3.1. The design of the EMGAN structure

In this section, we detail the design of the EMGAN structure. Fig. 2
visually shows the architecture of the EMGAN model proposed in
this paper. Our model includes three key stages: (1) Heterogeneous
information graph construction: In order to better represent the features
of short texts, we utilize a heterogeneous information graph. Specifi-
cally, we first use a part-of-speech tagger to mark the part-of-speech
(POS) of each word in the short text and then use different attributes
(document, entity, topic, keyword) to model the short text as nodes
and construct edge relationships to form heterogeneous information
graphs. (2) Graph edge enhancement: We propose an edge enhance-
ment method based on the 𝑋-shaped structure, which reconstructs the
edge structure between nodes, enriches edge relationships, enhances
the connectivity of the global topology of heterogeneous graphs, and
forms multi-dimensional complex network relationships. (3) Minimum
margin graph attention mechanism: We design a novel model (MM-
GAN) that uses a minimum margin graph attention mechanism to
embed heterogeneous information graphs for short text classification.
MMGAN can utilize information propagation along the graph to explore
the structure of heterogeneous graphs at the lowest cost, fully utilize the
characteristics of various types of nodes to integrate short text features,
address the issue of sparse features in short texts, and attain superior
outcomes in the classification of such texts.

3.2. Heterogeneous information graph for short texts

Due to the short text, there are problems such as short data and
sparse features. In the case of such discontinuous vocabulary, modeling
text as a graph structure is helpful for mutual learning of feature infor-
mation between nodes. It transforms text classification tasks into graph
classification tasks. Inspired by the model SHINE (Wang, Wang, et al.,
2021), but different from it, we also introduce document and topic fea-
tures to represent short texts. Specifically, our graph construction first
uses part-of-speech taggers to reduce errors caused by ambiguity, then
takes document features as central nodes, uses multiple attributes such
as topics, entities, and keywords as nodes to compensate for missing
features, and flexibly builds relationships between nodes. Specifically,
entities serve as the subjects of events and can encapsulate rich infor-
mation. The majority of entities possess information intrinsically tied
to their respective domains. For example, the entity ‘‘Microsoft’’ often
appears in the technology field. Topics represent the primary subjects
or themes of discussion, providing insights into the central focus of the
text. Keywords, important terms, or phrases highlight key information
and aid in summarization and indexing. These elements enrich the
representation of short text features, provide contextual understanding,
and improve the differentiation between texts with similar features,
thus compensating for feature deficiencies. They address the limitations
of short text features by capturing different aspects of content and
flexibly integrating rich relationships. The specific construction process
of the heterogeneous information graph is shown in Fig. 3.

Here, we consider constructing a heterogeneous information graph
𝐺 = (𝑉 , 𝐵) consisting of documents, entities, keywords, and topic
nodes, where 𝑉 = {𝑣1,… , 𝑣𝑛} and 𝐵 = {𝑏1,… , 𝑏𝑚} represent sets
of nodes and edges respectively, 𝑛 is the number of nodes, and 𝑚 is
the number of edges. In the node set of graph 𝐺, documents, entities,
keywords, and topic nodes are represented by 𝐷 = {𝑑1,… , 𝑑𝑎}, 𝐸 =
{𝑒1,… , 𝑒𝑦}, 𝑊 = {𝑤1,… , 𝑤𝑟} and 𝑇 = {𝑡1,… , 𝑡𝑔} respectively. In the
short text, entities, keywords, and topic nodes are all connected to the
document node (central node). The features of the central node are
obtained by encoding the short text through the RoBERTa model. The
construction of other nodes and edges is described in detail below.

First, in short texts, different parts of speech can create ambiguity.

For instance, ‘‘uniform’’ can be categorized as ‘‘clothing’’ if used as a
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oun. However, it does not belong to the ‘‘clothing’’ category if used
s a verb. In order to eliminate ambiguity, we use a POS tagger to
ssign POS tags to the words in short texts, which are syntactic affixes
uch as nouns and verbs that mark each word in the short text. In
articular, we utilize NLTK’s default part-of-speech tagging to obtain
he part-of-speech tags of each word in the document, resulting in a
et of part-of-speech tag nodes 𝑉 ′ = {𝑣′1,… , 𝑣′𝑛}. We splice entities,

keywords, and topics with corresponding parts of speech to eliminate
semantic ambiguity.

Second, entities 𝐸 in document 𝐷 need to be identified to establish
more prosperous edge relationships. Compared to the many keywords
and topics in the document, the quantity of entities is considerably
smaller, as most short documents encompass a single entity. We chose
the entity-linking tool TAGME, which performs well in short texts.
Using TAGME to link entities to Wikipedia, we obtain a set of entity
nodes 𝐸 = {𝑒1,… , 𝑒𝑦}. If a document contains entities, we establish
edges between the document and the entities. We then leverage the
classic text embedding model word2vec to learn entity embeddings and
measure the cosine similarity between each entity in all short texts. We
predefine a threshold 𝛿, and when the similarity is more remarkable
than 𝛿, we build edges between them and merge the two entity node
information.

Third, we employed the LDA (Blei, Ng, & Jordan, 2003) topic model
to extract latent topic 𝑇 , as shown in Eq. (1). Topic modeling is a sta-
tistical model that clusters data based on the latent semantic meaning.
This can help us enrich semantic relationships, especially by identi-
fying latent words within documents or finding connections between
similar documents without common words. The top 𝑡𝑖 =

{

𝜖1,… , 𝜖𝑧
}

(where 𝑧 represents the size of the lexicon) constitutes a conditional
probability distribution across a collection of words. In order to avoid
the interference of noise, We choose the foremost 𝐹 words with the
utmost probabilities as the topic words and allocate the document
to these words of elevated likelihood. When assigning documents to
topics, we establish edge relationships between documents and topics.
For document 𝑑, the class label 𝑡𝑑 can be predicted as the topic with
the highest probability:

𝑃 (𝑤|𝑑) =
∑

𝑑
𝑃 (𝑤|𝑡) ∗ 𝑃 (𝑡|𝑑), (1)

𝑡𝑑 = argmax
𝑖

𝑃 (𝑤𝑖|𝑑). (2)

Fourth, we extract keywords from the tagged short texts to form
a set of keyword nodes 𝑊 = {𝑤1,… , 𝑤𝑟}. We establish edges based
on the inclusion relationship between documents and keywords. To
extract keywords, We employ the term frequency-inverse document
frequency (TF-IDF) computation technique, wherein the term frequency
denotes the frequency of a word occurrence within a document. In con-
trast, inverse document frequency represents the logarithmically scaled
reciprocal fraction. To establish edges between keywords that have
co-occurrence relationships, We employ pointwise mutual information
5

(PMI) to compute the weighting factor between two keywords. When
PMI is positive, the keywords correlate more in the corpus, and edges
are created between keywords with positive PMI values. Formally, the
weight of the edge between node 𝑖 and node 𝑗 is defined as:

𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑖, 𝑗), 𝑖, 𝑗 are keywords;
𝑇𝐹 − 𝐼𝐷𝐹𝑖𝑗 , 𝑖 is document, 𝑗 is keyword;
1, 𝑖 = 𝑗;
0, otherwise.

(3)

he calculation method for the PMI value is as follows:

(𝑖, 𝑗) = 𝑙𝑜𝑔
(𝑖, 𝑗)

(𝑖)(𝑗)
(4)

(𝑖, 𝑗) =
𝛬(𝑖, 𝑗)
𝛬

(5)

(𝑖) =
𝛬(𝑖)
𝛬

(6)

where 𝛬(𝑖, 𝑗) represents the number of sliding windows that contain
oth word 𝑖 and word 𝑗, 𝛬(𝑖) signifies the count of sliding windows
ontaining word 𝑖, and 𝛬 denotes the total number of sliding windows
ontained in the entire corpus.

By using multiple attributes such as topic, entity, document, and
eyword as nodes and specific relationships as edges to construct
heterogeneous graph, more abundant feature information can be

btained, thereby compensating for the semantic shortcomings of short
exts and playing an important role in subsequent classification tasks
see Fig. 4).

.3. 𝑋-Shaped structure graph edge enhancement method

In the realm of heterogeneous graphs, we amalgamate a plethora of
ttributes as nodes to enrich the informational fabric of the graph. Nev-
rtheless, the brevity and sparsity of features in short textual data ren-
er such efforts insufficient. Furthermore, most heterogeneous graphs
xclusively contemplate the characteristics of low-level neighboring
odes, thus failing to augment higher-level information. Therefore, we
ropose an edge enhancement method for heterogeneous graphs based
n an 𝑋-shaped structure. The enhancement process is illustrated in
ig. 4. The core idea is as follows: Initially, within the constructed
eterogeneous graph, we provide the following definition: An 𝑋-shaped

structure is a substructure of a heterogeneous graph with a central
node that connects to at least three different types (topics, entities,
and keywords) of four nodes, forming a structure resembling the letter
‘‘𝑋’’. The purpose of the 𝑋-shaped structure is to establish edge rela-
tionships between two different 𝑋-shaped structures when they share
connections of the same node type. This maximizes the connectivity of
nodes with feature relevance between the two central nodes. At this
point, the information of the two central nodes can complement each
other as features, and the original set of edges is merged with the new
set to form a new total edge set. This structure facilitates the flow of
feature information from nodes of other 𝑋-shaped structures toward
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its central node, aiding in capturing the multiple associations between
short texts, topics, entities, and keywords. It enhances the connectivity
of the heterogeneous graph’s topological structure, enriching the fea-
ture information on the graph. This is vital for a better comprehension
of the contextual and feature aspects of the text in classification tasks,
ultimately leading to improved accuracy and effectiveness. This prepa-
ration sets the stage for capturing higher-order feature information
for the model to be introduced in the following section. We will now
explore how to employ edge enhancement techniques to enhance graph
construction.

We first perform high-order encoding connections by constructing
an 𝑋-shaped adjacency matrix 𝐴𝑋 , where (𝐴𝑋 )𝑖𝑗 is the number of

-shaped structure instances containing nodes 𝑖 and 𝑗. The network
iagram is represented as follows:
𝑋 =

{

𝑉 ′, 𝐵𝑋} , (7)

here 𝐺𝑋 represents a heterogeneous graph based on the 𝑋-shaped
tructure, 𝑉 ′ represents the same set of nodes as the original heteroge-
eous graph, and 𝐵𝑋 is the weighted edge set generated based on the
-shaped structure:
𝑋 =

{

(𝑘, 𝑙, 𝜂)𝑖|𝑖 ∈
{

1,… , 𝑚𝑥
}}

, (8)

here 𝑘, 𝑙 ∈ 𝑉 ′ are the two endpoints of the 𝑖-th (𝑖 ∈
{

1,… , 𝑚𝑥
}

) edge
and 𝜂 represents the weight.

Next, we will first identify the connected structures based on the
heterogeneous graph above, and any set of 𝑋-shaped connected struc-
tures are represented as follows:

𝛷 =
{

𝜙𝑖
}

, (9)

𝜙𝑖 =
{

𝑉 ′𝜙
𝑖 , 𝐵

𝑋
𝑖

}

, (10)

𝑉 ′𝜙
𝑖 =

{

𝑡𝑖, 𝑒𝑖, 𝑤𝑖
}

, (11)

where 𝛷 represents the total node-set, 𝜙𝑖 (𝑖 ∈
{

1,… , 𝑚𝛷
}

) represents
the set of nodes and edges for the 𝑖th structure, 𝑉 ′𝜙

𝑖 ⊆ 𝑉 ′ is the set of
nodes in the 𝑖th connected structure, which includes entities 𝑒𝑖, topics 𝑡𝑖,
and words 𝑤𝑖, and contains at least four nodes of three different types,
and 𝐵𝑋

𝑖 ⊆ 𝐵𝑋 is the weighted edge set of the 𝑖th connected component.
The nodes that make up the 𝑋-shaped connected component rep-

resent feature attributes in the document and are connected by edges.
6

This connected structure is a stable, 𝑋-shaped connected component
that can better supplement feature information and possess higher-
order structural capabilities.

Next, we shall refer to the set of nodes in the 𝑗th 𝑋-shaped structure
s 𝑉 ′𝜙

𝑗 =
{

𝑡𝑗 , 𝑒𝑗 , 𝑤𝑗
}

. If ∀(𝑡𝑖, 𝑒𝑖, 𝑤𝑖) ∈ 𝑉 ′𝜙
𝑖 , we establish an edge relation-

hip between the two structures, allowing the feature information of
he 𝑖th and 𝑗th structures to complement each other. We denote this
et of edges as follows:

𝑋′
=
{(

�̄�, 𝑙
)

|∀�̄�, 𝑙 ∈ 𝑋𝑗 ,∀𝑗 = 1,… , 𝑚𝛷
}

, (12)

here �̄�, 𝑙 ∈ 𝑉 ′ represent the two endpoints of an edge between the
th and 𝑗th

(

𝑗 ∈
{

1,… , 𝑚𝛷
})

central nodes in 𝑋-shaped structures.
We divide the 𝑋-shaped connected structure 𝜙𝑄 ∈ 𝛷 that has

reconstructed edge relationships into the same modules. We choose
Louvain (Blondel, Guillaume, Lambiotte, et al., 2008) as the module
division method, and the input is each 𝑋-shaped connected structure
𝑄. We represent the modularization 𝑆 (Newman & Girvan, 2004) as:

= 1
4𝜆

∑

𝑖𝑗
(𝐴𝑖𝑗 −

𝛾𝑖𝛾𝑗
2𝜆

)(𝜕 + 1)

= 1
4𝜆

∑

𝑖𝑗
𝜕(𝐴𝑖𝑗 −

𝛾𝑖𝛾𝑗
2𝜆

),
(13)

where 𝜆 = 1
2
∑

𝑖 represents the total number of edges in the network,
𝛾𝑖 and 𝛾𝑗 denote the degrees of the 𝑖th and 𝑗th structural hub nodes,
and 𝛾𝑖𝛾𝑗

2𝜆 signifies the expected number of connections between these
two structures. 𝜕 = ∀[(𝑒,𝑡,𝑤)∩(𝑒∪𝑡∪𝑤)]

∑

𝑉 ′>4(𝑒,𝑡,𝑤) represents the probability that two
𝑋-shaped structures share a common attribute, and if 𝜕 ≥ 1, the two
tructures can be linked and belong to the same module; if 𝜕 < 1,
hen they do not belong to the same module. 𝐴𝑖𝑗 is the element in
he adjacency matrix between central nodes 𝑖 and 𝑗 (the number of
onnecting edges between central nodes 𝑖 and 𝑗).

The output is a module 𝑆 composed of several connected structures
𝑄 ∈ 𝛷, put all modules together to obtain a module set, which we
enote as

{

𝑆1,… , 𝑆�̄�
}

, �̄� is the number of all modules obtained by the
fusion of 𝑋-shaped connected components.

Finally, we perform a reconstruction of the relationships between
nodes by strengthening the connectivity structure of each module in
the set

{

𝑆1,… , 𝑆�̄�
}

, thereby enhancing the edge relationships and sup-
plementing high-order structures with low-order structures to reinforce
the topological structure of the graph. We use an 𝑋-shaped structure
with better transitivity for connectivity. For nodes in the same module
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Fig. 5. Illustration of the minimum margin graph attention mechanism. (a) Computes the minimum margins from higher-order neighbor nodes (entity, keyword, and topic nodes)
to other central nodes. (b) Calculate the attention coefficient from the high-order neighbor node to the central node according to the minimum margin.
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𝑆𝑖 ∈
{

𝑆1,… , 𝑆�̄�
}

(𝑖 ∈ {1,… , �̄�}), we allow feature information to com-
plement each other, thus constructing a new set of edges, represented
as:

𝐵∗
𝑚𝑜𝑑 = 𝐵𝑋 ∪ 𝐵𝑋′

, (14)

Based on the new edge set 𝐵∗
𝑚𝑜𝑑 , the edge relationships of the

riginal graph structure are strengthened to form a new network con-
ectivity graph, and the documents with high feature correlation are
aximally connected, expressed as:
∗
𝑚𝑜𝑑 =

{

𝑉 ′, 𝐵∗
𝑚𝑜𝑑

}

, (15)

.4. Minimum margin graph attention network

By performing edge enhancement on heterogeneous graphs, the
onnections between topological nodes in the graph are made com-
lete, which provides a supplement for the problem of sparse feature
epresentation in short texts. However, it is worth considering how to
xplore this high-order feature information. Most classification models
nly consider low-order feature information in the network, which
annot capture the high-order features in the graph. Although the
raph has rich information, it cannot be captured at a high-order level,
esulting in a significant performance loss. For example, in traditional
odels (Kipf & Welling, 2016), only the information of low-order nodes
ithin a single layer is examined. The most common approach to

apturing features of high-order neighbors is to stack multiple layers
o expand the field of view. However, experimental results have shown
hat stacking multiple layers in the GAT model fails to expand the field
f view and leads to performance degradation.

Therefore, this paper proposes a minimum margin graph atten-
ion network model that captures high-order topological features. The
odel can perform complete walks and exploration in heterogeneous

raphs with high-order topological structures, finding the minimum
istance between the central node and other attribute nodes, even for
istant nodes, with the minimum cost. Then, the attention coefficients
f the node distance and features are calculated for updating. By
pplying the minimum margin graph attention network, we can explore
ther nodes in the graph structure to obtain feature information and
ffectively aggregate this information into the central node, supple-
enting the short text content and improving the accuracy of short text

lassification tasks.
The overall process of the minimum margin attention mechanism

s shown in Fig. 5. Firstly, we select the document node 𝐷 in the
eterogeneous graph as the center node. For each center node, we com-
ute the minimum margin 𝑅 of the high-order neighbors (keywords,
opics, entities) of other center nodes to the center node with different
engths and extract their connection features as margin features. Then,
e utilize the minimum margin attention mechanism to calculate the
ttention coefficients of these high-order neighbors to the center node.
7

inally, we iteratively update the features of each document using
argin features and attention coefficients, aggregating information

rom other nodes to the center node.
In addition, the features of each node in our model are only related

o the graph of topological structure. They are independent of the
rder of the node embedding features and neighboring nodes. During
ggregation, the model relies on nodes and explores the minimum
istance from the document node. Next, we will provide a detailed
xplanation of the model.

.4.1. Minimum margin search and sampling
First, our input consists of the minimum margin 𝑅 and node features

. In the initial stage, the minimum margin is 𝑅 with uniform edge
eights. This is done to minimize the loss of specialized tasks, such
s cross-entropy loss in classification tasks. After training, the attention
unction generates edge weights based on learned attention coefficients.

Then, the minimum margin is calculated using Dijkstra’s algo-
ithm (Dijkstra, 2022), where the edge weights are first inverted and
hen transformed into positive values using the Suurballe method
Sidhu, Nair, & Abdallah, 1991). After computation, different attention
oefficients have varying impacts on the edges. To ensure the stability
f edge weights, we choose the attention coefficients of the network’s
ast layer and take the average of all attention coefficients.

𝑖𝑗 =
1
𝑃

𝑃
∑

𝑝=1
𝑓𝛼(𝑝)𝑖𝑗 (16)

where 𝑃 represents the number of attention heads in a layer, 𝑓 denotes
the final layer, 𝛼(𝑝)𝑖𝑗 refers to the attention coefficient from node 𝑖 to
node 𝑗 in the 𝑝th attention head, and 𝜂𝑖𝑗 represents the edge weight
rom node 𝑖 to node 𝑗.

Let 𝑅𝑐
𝑖𝑗 represent the minimum edge distance of length 𝑐 between

nodes 𝑖 and 𝑗, where 𝑐 is the length of an arbitrary edge, and let ℜ
represent the set of such distances. The document nodes themselves
are added to the set ℜ. Within an edge distance of length 𝑐, we allow
the document nodes to access nodes up to 𝑐 hops away so that the
maximum value of 𝑐 can be used to control the size of the single-layer
visual field.

For edges with the same minimum edge distance, those with higher
costs in heuristics are less correlated with the document’s features. In
comparison, those with lower costs are more correlated. We sample
the first 𝑝 edges for a given central node and use the minimum cost,
reducing computational pressure and highlighting the importance of
more relevant edge distances. We represent the set of all sample edge
distances as:

ℑ𝑐
𝑖 = 𝑡𝑜𝑝𝑝 (ℜ𝑐 ) , (17)
𝑝 = 𝜑𝑖 ∗ 𝜇, (18)
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where ℑ𝑐
𝑖 represents the set of all sample distances with a length

𝑐 centered around node 𝑖, 𝜑𝑖 denotes the degree of node 𝑖, and 𝑝
is determined by the degrees of the document nodes, ensuring the
comparability of embedded features from distances of varying lengths.
ℜ𝑐 signifies a subset of 𝑅, encompassing all the shortest distances of
length 𝑐. 𝜇 is a hyperparameter, representing the ratio between the
number of sample distances and the degree of document nodes.

3.4.2. Aggregation of margin information
Margin aggregation is the cornerstone of our model. By meticulously

exploring minimal margins, we select feature nodes that exhibit the
lowest cost in proximity to document nodes while maintaining a high
degree of feature relevance. Subsequently, we aggregate the feature
information from these diverse nodes into the document nodes. This
process enables capturing more intricate topological information by
accommodating varying lengths of the shortest margins. Consequently,
it augments the features of short texts. To this end, we have de-
vised a dual-layer attention-based margin aggregation mechanism that
addresses attention to identical and disparate edge distances. With
attention to the same margin, for each document node 𝑖 and the set of
shortest margins ℑ𝑐

𝑖 , we aggregate the features of each shortest margin
of length 𝑐 and represent the aggregated features as:

𝜁 𝑐𝑖 = 𝛩𝑃
𝑝=1

⎧

⎪

⎨

⎪

⎩

∑

𝑅𝑐
𝑖𝑗∈ℑ

𝑐
𝑖

𝛼(𝑝)𝑖𝑗 ∫

(

𝑅(𝑝)
𝑖𝑗

)

⎫

⎪

⎬

⎪

⎭

, (19)

𝜁 𝑐𝑖 is the aggregated feature of node 𝑖 concerning ℑ𝑐
𝑖 , where ℑ𝑐

𝑖 is the
hortest edge distance of length 𝑐 centered at node 𝑖. The operator 𝛩
epresents the concatenation of all intermediate layer connections and
he final layer averaging operation, which calculates the mean feature
f all nodes in the edge distance. 𝑃 is the number of attention heads
or all edge distances of the same length 𝑐, and ∫ maps edge distances
f different lengths to a fixed length. 𝛼(𝑝)𝑖𝑗 is the attention coefficient
etween node 𝑖 and edge distance 𝑅𝑐

𝑖𝑗 , which can be expressed as:

(𝑝)
𝑖𝑗 =𝜏

(

ℎ⃗′𝑖 ,∫

((

𝑅𝑐
𝑖𝑗

)

|𝜃𝛼
)

)

=
𝑒𝑥𝑝

(

𝜎
[

𝜃𝛼 , ℎ⃗′𝑖 ∥ ∫
(

𝑅𝑐
𝑖𝑗

)])

∑

ℎ⃗′𝑖∈ℑ𝜃𝛼
𝑒𝑥𝑝

(

𝜎
[

𝜃𝛼 , ℎ⃗′𝑖 ∥ ∫
(

𝑅𝑐
𝑖𝑗

)]) ,
(20)

where 𝜏 represents the attention function, which outputs the attention
between node feature ℎ and the minimum edge margin 𝑅. ℎ⃗′𝑖 refers to
the linearly transformed features of sample node 𝑖, while 𝜃𝛼 denotes
he parameters of the defined attention function 𝜏. When we set 𝑐 = 2,

the generated attention coefficients are equivalent to the node attention
that can be used to update edge weights. 𝜎 denotes any non-linear op-
eration, and ∥ represents concatenation. In the first level, ℑ𝜃 represents
he set ℑ𝑐

𝑖 . The above is an aggregation of the same margins from the
irst layer.

The second layer focuses on variations in margin features of dif-
erent lengths, utilizing an attention mechanism to capture embedded
eatures of document nodes:

�⃗� = 𝜎

{ 𝐶
∑

𝑐=2
𝛽𝑐𝜁

𝑐
𝑖

}

, (21)

here we set 𝑐 = 2, the attention coefficient generated at this time is
qual to the node attention that can be used to update the edge weight,

is the maximum allowed edge distance, and 𝜁 𝑐𝑖 is the aggregation
feature of node 𝑖 with edge distance 𝑐. 𝛽𝑐 is the attention coefficient of
𝜁 𝑐𝑖 , which we express as:

𝛽𝑐 = 𝜏
(

ℎ⃗𝑖, 𝜁
𝑐
𝑖 |𝜃𝛽

)

, (22)

it can be derived from the identical attention mechanism at document
node 𝑖 by the attention function 𝜃𝛽 in this layer, where ℑ𝜃 represents

𝑐 𝑐
8

the collection of aggregate features ℑ𝑖 for all nodes 𝑖 regarding 𝜁𝑖 .
At the initial stage, the entire network is updated iteratively based
on ℎ and 𝑅, with 𝑅 generated using equal edge weights. As the network
converges, 𝑅 is regenerated based on the attention of the final layer,
which is used for the next iteration.

After going through an 𝑓 -layer EMGAN, We feed the obtained
final embedding 𝐽 of short text into a softmax layer for classification.
Formally,

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐽 (𝑓 )), (23)

During the model training process, we minimize the model’s loss
using the cross-entropy loss function while employing L2 regularization
to prevent model overfitting:

𝐿 = −
∑

𝑖∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑂
∑

𝑗=1
𝑌𝑖𝑗 ⋅ 𝑙𝑜𝑔𝑍𝑖𝑗 + 𝛶 ‖𝛹‖2 , (24)

where 𝑂 is the number of classes, 𝐷𝑡𝑟𝑎𝑖𝑛 corresponds to the training
dataset, 𝑌𝑖𝑗 denotes the corresponding label matrix, 𝛹 stands for model
parameters, and 𝛶 represents the regularization factor.

4. Experiments

To validate the availability and accuracy of our classification met-
hod, we conducted experiments on five real-world datasets and eleven
baselines. This section describes the experimental setup, including the
benchmark datasets, baseline algorithms, and parameter settings. Then,
we compare methods and analyze the results.

4.1. Experimental setup

4.1.1. Datasets
In order to thoroughly assess the efficacy of our approach, we jux-

tapose it against cutting-edge methods in diverse scenarios. The evalu-
ation encompasses five datasets: TagMyNews, Snippets, Ohsumed, MR,
and Twitter. Table 1 provides a detailed depiction of these datasets.

• TagMyNews: This dataset contains 32,600 news articles collected
from RSS feeds in English (Vitale, Ferragina, & Scaiella, 2012).
The dataset has been filtered to exclude all titles. It includes ar-
ticles from seven categories: sports, business, US, entertainment,
world, health, and Sci.

• Snippets1: This dataset is published by Phan et al. (2008) search
fragments returned by Web search engines, consisting of 12,340
short texts, divided into business, computer, health, sports, cul-
ture and arts, education and science, engineering, politics and
society eight categories.

• Ohsumed2: This dataset is a medical dataset mixed with 7400
single-label samples and 6529 multi-label samples (Yao et al.,
2019). We only used titles for short text classification, and doc-
uments with multiple labels were removed, including 23 cardio-
vascular disease categories.

• MR3: This dataset constitutes an English movie review corpus
employed for binary sentiment classification (Pang & Lee, 2005).
It encompasses two distinct categories: positive and negative sen-
timents, comprising 5,331 affirmative reviews and an equivalent
number of pessimistic reviews, with an average sentence length
of 20.

• Twitter4: It is a dataset of English tweets designed for binary
sentiment classification. It consists of 5,000 positive and 5,000
negative tweets, allowing for the evaluation of our model’s clas-
sification capability on social media.

1 SnippetsandTagMyNewsaredownloadedfromhttp://acube.di.unipi.it:
0/tmn-dataset/

2 http://disi.unitn.it/moschitti/corpora.htm
3 http://www.cs.cornell.edu/people/pabo/movie-review-data/
4
 http://www.nltk.org/howto/twitter.html#corpus_reader

http://acube.di.unipi.it:80/tmn-dataset/
http://acube.di.unipi.it:80/tmn-dataset/
http://disi.unitn.it/moschitti/corpora.htm
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.nltk.org/howto/twitter.html#corpus_reader
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Table 1
Summary statistics of datasets.

#Docs #Classes #Avg.Length #Words #Docs with entities #nodes #edges #X-structures

TagMyNews 32,549 7 5.1 38,629 86% 64,557 425,391 26,853
Snippets 12,340 8 14.5 29,040 94% 57,105 371,538 10,389
Ohsumed 7,400 23 6.8 11,764 96% 33,992 214,165 6,864
MR 10,662 2 7.6 18,764 76% 35,853 264,754 8,683
Twitter 10,000 2 3.5 21,065 65% 49,547 325,186 7,129
Table 2
Test accuracy (ACC) and Macro-F1(F1) of different models on five standard datasets. The best results are highlighted in bold.
Model Metrics TagMyNews Snippets Ohsumed MR Twitter

CNN-rand ACC 28.76 48.34 35.25 54.85 52.58
F1 15.82 42.12 13.95 51.23 51.91

CNN-pretrain ACC 57.12 77.09 32.92 58.32 56.34
F1 45.37 69.28 12.06 57.99 55.86

LSTM-rand ACC 25.89 30.74 23.30 53.13 54.81
F1 17.01 25.04 5.20 52.98 53.85

LSTM-pretrain ACC 53.96 75.07 29.05 59.73 58.20
F1 42.14 67.31 5.09 59.19 58.16

TextGCN ACC 54.28 77.82 41.56 59.12 60.15
F1 46.01 71.95 27.43 58.98 59.82

HGAT ACC 61.72 82.36 42.68 62.75 63.21
F1 53.81 74.44 24.82 62.36 62.48

STGCN ACC 34.74 70.01 33.91 58.18 64.33
F1 34.01 69.93 27.22 58.11 64.29

SHINE ACC 62.50 82.39 45.57 64.58 72.54
F1 56.21 81.62 30.98 63.89 72.19

STHCN ACC 63.44 83.45 46.07 64.81 73.24
F1 56.28 78.17 31.28 64.44 73.01

ST-Text-GCN ACC 65.43 85.78 46.42 68.44 75.23
F1 58.72 80.63 32.14 66.54 74.36

Bert+ TextRNN ACC 69.08 87.54 40.69 61.73 68.44
F1 61.53 84.31 19.37 60.42 66.95

WC-HGCN ACC 67.26 86.33 47.72 68.93 75.63
F1 60.19 82.20 35.59 67.35 75.81

EMGAN(ours) ACC 70.13 88.06 50.85 71.04 77.82
F1 65.68 84.52 37.79 70.38 76.64
In our experiment, we preprocess all datasets, encompassing the
iltration of special characters, segmentation, elimination of stop words,
nd removal of low-frequency words occurring less than five times.
able 1 presents comprehensive information about the dataset, encom-
assing document count, category quantity, average sentence length,
ord count, and the proportion of documents containing entities. In our
ataset, most text (approximately 80%) incorporates entities. Regard-
ng the MR dataset, we refrained from word deletion after performing
ata cleansing due to the brevity of sentences.

Regarding dataset allocation, we randomly sampled 40 labeled
hort-text documents per class. Half were used for training, and the
ther half for parameter tuning validation. In addition, we randomly
ampled 1,000 unlabeled documents for training, in which HIG is
enerated in the training set. In addition, we selected 1,000 unlabeled
ocuments for training. Most texts contained entity attributes and two
re-trained word embedding models, Word2vec and TF-IDF. We then
erformed part-of-speech tagging on the short text words, extracted
ntity, topic, and keyword attributes from the corpus, and established
dge relationships based on rules to form a short text heterogeneous
raph.

.1.2. Baselines
To comprehensively evaluate the performance of our proposed short

ext classification method, we compared it with eleven baseline meth-
ds, as detailed below:

• CNN: Kim (2014) proposed the renowned convolutional neural
network (CNN) in deep learning. Our experiments utilized two
CNN variations: CNN-rand with random word embeddings and
CNN-pre with pre-trained embeddings.
9

• LSTM (Liu, Qiu, & Huang, 2016): The model excels at handling
sequential data and utilizes the last hidden state to represent the
entire text, making it widely applicable for tasks involving textual
data processing.

• TextGCN5: TextGCN (Yao et al., 2019) applies graph convolu-
tional networks to represent a text corpus as a graph, capturing
informative features by treating words as nodes. This method
transforms text classification into node classification.

• HGAT6 (Yang et al., 2021): The Heterogeneous Graph Attention
Network is used to model entities, topics, and document corpora
by embedding HIN. It is employed for short text classification
based on a dual attention mechanism.

• STGCN7 (Ye et al., 2020): The model represents words, topics,
and documents in a corpus as a graph, combines the node repre-
sentations obtained through Bi-LSTM and Bert word embeddings,
and is directly fed into a softmax layer for classification.

• SHINE8 (Wang, Wang, et al., 2021): SHINE models the corpus as
a layered heterogeneous graph composed of word-level compo-
nents, incorporates rich feature information, dynamically learns
graph representations of short documents, and facilitates effective
propagation of similar short text labels.

• STHCN (Jin et al., 2022): STHCN devised a short text classifica-
tion method utilizing a dual-channel hypergraph convolutional
network. This approach learns two distinct representations of
short text features. It combines them using an attention network
to enhance the embedding of short text.

5 https://github.com/yao8839836/text_gcn
6 https://github.com/ytc272098215/HGAT
7 https://github.com/yzhihao/STGCN
8
 https://github.com/tata1661/SHINE-EMNLP21

https://github.com/yao8839836/text_gcn
https://github.com/ytc272098215/HGAT
https://github.com/yzhihao/STGCN
https://github.com/tata1661/SHINE-EMNLP21
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Table 3
Test the accuracy and F1 scores of different models of the 𝑋-shpaed structure edge enhancement method.

Model Metrics TagMyNews Snippets Ohsumed MR Twitter

HGAT-X ACC 62.45(+0.73) 83.11(+0.75) 43.35(+0.67) 63.47(+0.72) 63.88(+0.67)
F1 54.42(+0.61) 75.08(+0.64) 25.40(+0.58) 63.05(+0.69) 63.09(+0.73)

STGCN-X ACC 35.15(+0.41) 70.50(+0.49) 34.28(+0.37) 58.54(+0.36) 64.75(+0.42)
F1 34.39(+0.38) 70.28(+0.35) 27.51(+0.29) 58.45(+0.34) 64.67(+0.38)

SHINE-X ACC 62.71(+0.21) 82.63(+0.24) 45.74(+0.17) 64.81(+0.23) 72.79(+0.25)
F1 56.36(+0.15) 81.79(+0.17) 30.87(+0.11) 64.08(+0.19) 72.40(+0.21)

ST-Text-GCN-X ACC 65.84(+0.41) 86.21(+0.43) 46.76(+0.34) 68.74(+0.30) 75.68(+0.45)
F1 59.03(+0.31) 81.02(+0.39) 32.43(+0.29) 66.82(+0.28) 74.78(+0.42)

WC-HGCN-X ACC 67.89(+0.63) 87.00(+0.67) 48.30(+0.58) 69.54(+0.61) 76.22(+0.59)
F1 60.78(+0.59) 82.81(+0.61) 36.11(+0.52) 67.92(+0.57) 75.35(+0.54)

EMGAN(ours) ACC 70.13 88.06 50.85 71.04 77.82
F1 65.68 84.52 37.79 70.38 76.64
• ST-Text-GCN9 (Cui, Wang, Li, & Welsch, 2022): The model uti-
lizes self-training on text data, incorporating keywords into the
training dataset. The tagged information propagates along the
structure of the manifold to the target samples.

• Bert+ TextRNN (Cui et al., 2023): This method uses a fusion
model that combines Bert and TextRNN to finally generate a
deep bidirectional language representation that can integrate the
context of both parties.

• WC-HGCN (Yang, Liu, Zhang, & Zhu, 2023): It Introduces the con-
cept of word information to enhance the feature representation
of short texts and construct a text-level heterogeneous graph for
each sentence by using words and relevant concepts as nodes and
updating the nodes through the designed strategy.

For all the baseline methods mentioned above, we first preprocess
ur dataset and run the source code provided by the authors. Some may
hoose to present the results reported in previous research papers (The
esults are directly displayed, including some baseline data from HGAT
nd SHINE, while the remaining data is acquired by running the source
ode.). Entity information is obtained from Wikipedia. For example,
NN and LSTM deep neural networks use entity embeddings trained on
he same Wikipedia corpus. TextGCN, HGAT, STGCN, SHINE, STHCN,
T-Text-GCN, and WC-HGCN choose to capture feature information
y constructing graphs for better classification performance. We select
hese baseline methods to perform better comparisons.

.1.3. Parameter settings
Our approach has been validated by selecting optimal parameter

alues for 𝑔, 𝑇 , and 𝛿 to achieve the best performance. For constructing
he heterogeneous graph, we set the similarity threshold 𝛿 between

entities to 0.5 for all datasets, select the top 𝐹 = 2 words with the
highest probabilities as the topic words, and assign documents to these
high-probability words. In the LDA topic model, we set the number of
topics to 𝑔 = 20 for the Snippets dataset, 𝑔 = 15 for the TagMyNews,
MR, and Twitter datasets, and 𝑔 = 40 for the Ohsumed dataset. We im-
plement EMGAN in PyTorch and use the Louvain partitioning method.
For all datasets, we set 𝜇 to 1.0, signifying that the number of sampled
margins equals the degree of each node. By defining the maximum
value of 𝑐, we can control the size of the single-layer receptive field.
We set the maximum value of 𝑐 to 3 in the first layer and 2 in the
second layer. The learning rate is established at 0.005, the dropout
rate is set to 0.5, and the number of iteration steps is fixed at 8. We
employ the Adam optimizer for training, and if the validation cross-
entropy loss does not decrease continuously for 10 consecutive epochs,
the training process is halted. The experiment utilized two evaluation
metrics, namely accuracy and F1 score, to measure the performance of
short text classification. All methods were executed on a computer with
an i7-9700kF CPU and an RTX3090 GPU.

9 https://github.com/wanggangkun/ST-Text-GCN
10
4.2. Experimental results and analysis

In the comparative experiments, to verify the excellent classification
performance of the proposed short text classification method, we com-
pared it with CNN, LSTM, Text GCN, HGAT, STHCN, STGCN, SHINE,
ST-Text-GCN, and WC-HGCN. Table 2 demonstrates the classification
outcomes of various techniques across five benchmark datasets. Our
approach surpasses all baseline methods across all datasets, showcasing
the effectiveness and superiority of our proposed method in the domain
of short text classification with sparse features.

Upon careful analysis, we observed varied performance among
CNN-Rand, CNN-pretrain, LSTM-Rand, and LSTM-pretrain. While both
CNN and LSTM utilize pre-trained word embeddings, CNN excels
in capturing contiguous and close-range semantics. Therefore, pre-
training on the Snippets dataset is more effective for CNN. TextGCN and
STGCN models, based on graph neural networks, have achieved results
comparable to the deep models CNN-Pretrain and LSTM-Pretrain. ST-
Text-GCN is an enhancement of the TextGCN model. It augments
the training set with self-training, thereby incorporating keywords
and leading to significantly higher accuracy. This is attributed to the
ability of the text graph to capture both document-word relation-
ships and global word-word relationships. However, when we compare
TextGCN with HGAT, the overall accuracy is relatively lower. This
is because HGAT incorporates heterogeneous information network
structure (HIN) and attention mechanisms, allowing it to learn the
weights of neighboring nodes adaptively. This highlights the superiority
of heterogeneous graphs and attention mechanisms. Consequently,
the accuracy of STHCN, which combines attention networks, also
performs well. SHINE has demonstrated strong performance on nu-
merous datasets, and the analysis suggests that its dynamic learning
of short document graphs can facilitate effective label propagation.
Bert+ TextRNN achieves remarkable performance by leveraging Bert
pre-training and TextRNN model to capture temporal information and
long-distance dependencies in the text. Especially on the Snippets
dataset, it achieves an accuracy of 87.54%, second only to our model.
In contrast, WC-HGCN introduces conceptual information about words
to enrich the feature representation of short texts, constructing a text-
level heterogeneous graph for each sentence. Compared to the models
above, it has achieved superior results. Furthermore, by comparing
TextGCN, STGCN, and SHINE, we observe that models based on graph
neural networks can achieve excellent results in short texts, indicating
that graph structures can extract advanced semantic features from
sentences. Meanwhile, a comparison of the performance between HGAT
and WC-HGCN demonstrates that incorporating external knowledge
can bolster the semantic richness of sentences, effectively addressing
the issue of sparsity in short-text features. As a result, our EMGAN
model outperforms other state-of-the-art models in terms of perfor-
mance on five different datasets, with improvements in accuracy of
2.24%, 1.73%, 3.13%, 2.11%, and 2.19%, underscoring the efficacy
of our approach. This can be attributed to several factors: (1) We
utilize a variety of crucial pieces of information to construct a het-

erogeneous graph, incorporating external knowledge bases to enrich

https://github.com/wanggangkun/ST-Text-GCN
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Table 4
Test accuracy and F1 score for different models of Min-margin graph attention network.

Model Metrics TagMyNews Snippets Ohsumed MR Twitter

HGAT-MM ACC 62.17(+0.45) 82.83(+0.47) 43.00(+0.32) 63.16(+0.41) 63.65(+0.44)
F1 54.22(+0.41) 74.88(+0.44) 25.10(+0.28) 62.72(+0.36) 62.86(+0.38)

STGCN-MM ACC 35.37(+0.63) 70.69(+0.68) 34.48(+0.57) 58.79(+0.61) 64.97(+0.64)
F1 34.60(+0.59) 70.53(+0.60) 27.73(+0.51) 58.67(+0.56) 65.17(+0.58)

STHCN-MM ACC 64.18(+0.74) 84.23(+0.78) 46.72(+0.65) 65.50(+0.69) 73.96(+0.72)
F1 56.95(+0.67) 78.70(+0.73) 31.87(+0.59) 65.06(+0,62) 73.66(+0.65)

ST-Text-GCN-MM ACC 66.00(+0.57) 86.42(+0.64) 46.91(+0.49) 68.99(+0.55) 75.79(+0.56)
F1 59.20(+0.48) 81.24(+0.61) 32.56(+0.42) 67.01(+0.47) 75.87(+0.48)

EMGAN(ours) ACC 70.13 88.06 50.85 71.04 77.82
F1 65.68 84.52 37.79 70.38 76.64
Table 5
Ablation experiment of EMGAN.

TextGCN HIG X-shaped MMGAN ACC F1

✓ 77.82 71.95
✓ ✓ 79.13 73.58
✓ ✓ 78.95 72.34
✓ ✓ 80.42 75.15
✓ ✓ ✓ 84.91 78.38
✓ ✓ ✓ ✓ 88.06 84.52

semantics. (2) We employ an edge enhancement approach based on
heterogeneous graphs, enriching inter-node connectivity by restruc-
turing edge structures. This procedure facilitated the acquisition of
higher-order relationships within the heterogeneous graph. (3) We
introduce a network model based on the Minimum Margin Graph
Attention Network. This model employs an attention mechanism to
comprehensively explore the structure of a heterogeneous graph at
minimal cost. It aggregates feature information from distant, high-order
neighbors, effectively addressing the issue of sparse features in short
texts.

4.3. Ablation study

To verify the impact of the proposed 𝑋-shaped structure Edge
Enhancement approach on our method, we conducted the following
experiments by applying the 𝑋-shaped structure Edge Enhancement
approach to the HGAT, STGCN, SHINE, ST-Text-GCN, and WC-HGCN
methods. The experimental outcomes are illustrated in Table 3, and
based on these results, we can observe the following performances:

The 𝑋-shaped structure edge enhancement approach can restruc-
ture the edge relationships between nodes, thereby enriching the edge
connections. This approach has significantly optimized HGAT, STGCN,
SHINE, ST-Text-GCN and WC-HGCN. Both STGCN and ST-Text-GCN do
not take into account the heterogeneity of nodes. To address this, we
consider their nodes homogeneous, although this approach may result
in the loss of some feature information. However, our 𝑋-shaped struc-
ture edge enhancement method can establish rich edge relationships,
preserving core node features and their interrelationships, such as enti-
ties, topics, keywords, and other essential characteristics. However, the
performance improvement on SHINE was not significant. Our analysis
suggests that this is due to the use of hierarchical graph construction
in SHINE, where nodes of the same class are present in each layer and
have already formed close relationships. Our proposed method for edge
enhancement shows significant improvements in HGAT and WC-HGCN,
especially with HGAT-𝑋 achieving a classification accuracy of 83.11%
on Snippets. The experimental results demonstrate that our 𝑋-shaped
structure edge enhancement method effectively addresses the issue of
sparse edge relationships in a short text, significantly improving model
performance and validating the effectiveness of our approach.

To demonstrate the effectiveness of our proposed minimum margin
graph attention network, we compared our EMGAN model with four
variant models, namely HGAT, STGCN, STHCN and ST-Text-GCN. The
11

comparison results are presented in Table 4.
In the model for the short text classification task, we designed a
minimum margin graph attention network to achieve the purpose of
enriching feature information. This model was used for the first time in
short text tasks, and the model improves well in HGAT, STGCN, STHCN,
and ST-Text-GCN. Firstly, Our model excels in STGCN, STHCN, and ST-
Text-GCN, mainly because ST-Text-GCN builds a text graph based on
word co-occurrence and document-word relationships. However, this
graph only includes word and document nodes, limiting the available
information. In the STGCN method, a topic model extracts the short
text graph of topic words. The node information in this graph only
has topic information, the node type is missing, and the word node
representation of the short text plays a vital role. STHCN employs dual
channel hypergraph learning to extract two distinct representations of
short-text features. Subsequently, we enhance short-text embeddings
by utilizing our minimal margin attention network. This integration
with our proposed model allows for more effective exploration within
the graph, facilitating the capture of additional node information and
the enrichment of feature data. Furthermore, HGAT itself incorpo-
rates an attention mechanism, resulting in no significant performance
improvements. In summary, our proposed minimum margin graph at-
tention network can thoroughly explore the structure of heterogeneous
graphs at minimal cost and aggregate feature information from distant
neighbors.

The above two ablation experiments demonstrate that EMGAN not
only incorporates the idea of 𝑋-shaped structure edge enhancement
but also proposes a minimum margin graph attention network, which
further enriches the feature information of short texts and effectively
addresses the problem of sparse feature information in short texts,
thus improving classification performance. However, we noticed that
the F1 value is still relatively low on the Ohsumed dataset, which
may be because the original Ohsumed dataset may contain multiple
labels for each data, and the text information is complex. Nevertheless,
our method still has room for improvement, indicating that EMGAN
significantly outperforms all variants.

With respect to the effects of the three mechanisms involved by
EMGAN, i.e., the heterogeneous information graph, 𝑋-shaped struc-
ture enhancement, and minimum margin graph attention network,
and some combinations of them, we take TextGCN as the baseline
of performance, and the experimental results are shown in Table 5.
To facilitate a systematic comparison, we enumerate the results one
by one. The table reveals that all mechanisms contribute to the en-
hancement of TextGCN, with the EMGAN fusion mechanism showing
the most pronounced effect, boosting the classification accuracy from
77.82% to 88.06%. The individual application of each mechanism on
TextGCN results in respective improvements of 1.31%, 1.13%, and
2.60%. We discover that using the 𝑋-shaped enhancement in isolation
yields minimal improvements. This can be attributed to TextGCN graph
construction being based on word co-occurrence. While we have in-
troduced the 𝑋-shaped enhancement in TextGCN to strengthen edge
structures, the information type in its graph construction remains sin-
gular. This has a certain impact, albeit relatively minor. However,
when combined with the other two mechanisms, it can significantly
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Fig. 6. The test accuracy with different numbers of labeled documents.
Fig. 7. The average accuracy with different numbers of entities, keywords, topics, top F relevant topics and similarity threshold 𝛿 between entities on TagMyNews and Twitter
datasets.
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enhance performance. Subsequently, we incrementally introduce mech-
anisms on an individual basis, achieving 84.91% effectiveness when
simultaneously employing HIG and the 𝑋-shaped method. This is be-
cause HIG extracts three types of feature information, enriching the
information on the graph. Subsequently, the 𝑋-shaped method en-
ances the graph structure by establishing higher-order connections.
he EMGAN, utilizing all three mechanisms simultaneously, demon-
trates the best performance. This underscores the effectiveness of
MGAN, built upon the foundations of HIG and the 𝑋-shaped struc-

ure. By employing attention to minimize edge distances on high-order
eterogeneous graphs, it comprehensively explores their structure. Fur-
hermore, it aggregates feature information from distant high-order
eighbors, effectively addressing the issue of sparse features in short
exts.

.4. Labeled data

In order to evaluate the impact of labeled data size, we selected
our relevant algorithms for testing, including CNN-Pretrain, TextGCN,
GAT, and EMGAN. We systematically manipulated the proportion
f annotated documents across different datasets. We assessed their
espective test accuracies on the TagMyNews, Snippets, MR, Ohsumed,
nd Twitter datasets. Each method was executed ten times, and the
verage performance was computed to yield the results. As shown in
ig. 6, all algorithms performed well on these datasets, with accu-
acy increasing as the proportion of labeled data increased. TextGCN,
GAT, and EMGAN based on graph convolutional networks achieved
ccuracy. This indicates that methods based on graph convolutional
etworks can effectively enhance information propagation through 𝑋-
haped structure edge augmentation and the minimum margin graph
ttention network model, enabling better utilization of limited labeled
ata. When the proportion of labeled documents provided is relatively
mall, the performance of baseline methods decreases significantly. In
12

ontrast, our method still achieves relatively high accuracy. There is a
oticeable improvement when the proportion of labeled documents is
elatively large. This is attributed to our EMGAN method, which con-
ects more nodes to obtain more node feature information, effectively
ropagating the labeled data and maximizing its utilization to achieve
ccurate short text classification performance.

.5. Parameter analysis

This section examines the parameter impact on our method through
nalysis. Selecting topics, entities, and keywords is crucial for our
omposition method, as it determines semantic capture and algorithm
untime. To verify our hypothesis, we experimented and visualized the
esults for reference. Fig. 7 shows the test accuracy on the TagMyNews
nd Twitter datasets for different numbers of topics, top-related topics,
ntities, and keywords. For the number of topics as the number of topics
ncreases, the accuracy also improves. However, this trend continues
ntil 15, after which the accuracy decreases as the number of topics
ncreases. The top 𝐹 related topics assigned to a specified document
ork best when 𝐹 = 2 and show a downward trend when 𝐹 exceeds 2.

We have also experimented with the performance of different numbers
of entities and keywords. We have noticed that as the number of
selected entities and keywords grows, the testing accuracy initially
improves. However, once the count exceeds 5, the accuracy starts
to decline. We hypothesize that this may be because the number of
entities in the document is inherently much smaller than the number
of topics and keywords, and selecting too many keywords can increase
the complexity of the heterogeneous information network. This may
cause redundant edge relationships between unrelated nodes, making
model classification more challenging. We set these four parameters in
our experiments based on each dataset’s validation set. For the three
hyperparameters within our model: the sampling rate for margins 𝜇,
the depth of margins 𝐶, and the number of iterations 𝐼𝑡𝑒𝑟, we vary each
to analyze our model’s sensitivity to these factors. As shown in Fig. 8,

all these outcomes are derived from the Snippets dataset. Regarding
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Fig. 8. In the context of the MMGAN model, a sensitivity analysis is conducted regarding the three hyperparameters: margin length 𝐶, number of iterations 𝐼𝑡𝑒𝑟, and sampling
ratio 𝜇.
the sampling rate, we held the Iter constant at 8 and 𝐶 at 2, achieving
optimal performance at 1.0. This signifies that we employed the same
number of paths as the degree of each node. Subsequently, we fixed
the sampling ratio at 1.0 and varied the number of iterations. The
outcome reveals that achieving satisfactory performance requires only
eight iterations. Furthermore, we have adjusted the maximum distance
of the path from 2 to 5, resulting in an optimal performance of 2.

4.6. Computing complexity

Many real-world sparse graphs can be represented with values
and indices within an 𝑂(𝐵) space complexity, where 𝐵 represents the
number of edges in the graph. The computed edge distance matrix 𝑅 is
truncated by 𝐶 and further simplified through sampling. In the exper-
iment, the spatial complexity of the attention layer is approximately
2 to 3 times that of a first-order attention layer. Taking the Snippets
dataset as an example, the GAT model requires about 800 megabytes
of GPU memory, whereas our EMGAN model only incurs approximately
300 megabytes of GPU memory. Regarding running time, the running
time complexity of the shortest path algorithm Dijkstra we adopted is
𝑂(𝑉 ′𝐵𝑙𝑜𝑔𝐵), where 𝑉 ′ is the number of nodes in the graph. Accord-
ing to the index and value of 𝑅, the sparse operator (Fey, Lenssen,
Weichert, & Müller, 2018) is used to implement the path attention
mechanism, making full use of the computing power of the GPU. On
the RTX3090 GPU, the runtime for epochs with margin attention on
the Snippets dataset is 0.3 s.

5. Conclusion

This paper proposes a novel Edge-Enhanced Minimum-Margin Graph
Attention Network (EMGAN) for short text classification. This method
optimizes the global topological structure to capture high-order feature
information accurately. Specifically, we introduce a novel heteroge-
neous information graph (HIG) methodology to address the limitations
of external knowledge by extracting themes, entities, and keywords
as feature extensions. Subsequently, we incorporate an edge enhance-
ment method based on an 𝑋-shaped structure, which reconstructs
the edge structure between nodes, thus reinforcing edge relationships
and obtaining a high-order heterogeneous graph with an 𝑋-shaped
structure. Furthermore, we devise a Minimum-Margin Graph Attention
Network (MMGAN) for short text classification. This model aggregates
feature information from high-order neighbors and captures their rich
relationships to mitigate the issue of sparse short text features. Ex-
tensive experimental results demonstrate the superiority of our model
across various short text datasets compared to existing methods. It
effectively overcomes the sparsity of short text data and the inadequacy
of semantic features, yielding significant improvements in short text
classification tasks.

First, we would like to highlight that the Heterogeneous Informa-
tion Graph (HIG) technology integrates entities, topics, and keywords,
enhancing search results in information retrieval and providing deeper
13

insights in network analysis. Edge Enhancement enriches relationships
between nodes, benefiting network analysis and financial modeling.
MMGAN improves tasks like text summarization and sentiment anal-
ysis and enhances personalized recommendations in recommendation
systems.

Therefore, EMGAN, combining HIG, Edge Enhancement, and MM-
GAN, offers a comprehensive understanding of short text content and
finds applications in various domains beyond classification, including
information retrieval, recommendation systems, social media analysis,
and customer feedback. However, although our scheme achieves good
results in short text classification, there are still areas for optimization.
In future work, we plan to optimize from three perspectives: further
enriching short text HIG, reducing information redundancy problems,
and improving algorithm performance.
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