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Abstract—Today’s Industrial Internet of Things (IIoT)
have achieved excellent manufacturing efficiency and au-
tomation results by leveraging machine learning (ML) and
deep learning (DL). However, trustworthiness of ML/DL
brings significant challenges to IIoT. This article proposes
an evolving deep multiple kernel learning network through
genetic algorithm (KNGA). Our KNGA method uses genetic
algorithm (GA) to find the best deep multiple kernel learn-
ing structure, including the weights and the topology of
the model. Compared with the current well-known models,
KNGA has advantages in three aspects: 1) It can achieve
good results without using many samples during model
training; 2) the model can evolve in the process of training,
including self-growth, and self-pruning; and 3) its trustwor-
thiness and reliability can be guaranteed. Moreover, the
whole model ensures excellent performance and requires
manual adjustment of only a few parameters. Extensive
experiments on the UCI, KEEL, Caltech256, and MNIST
datasets demonstrate the effectiveness and trustworthi-
ness of the proposed method.

Index Terms—AutoML, evolution algorithm, kernel learn-
ing, neural networks, trustworthiness.
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I. INTRODUCTION

R ECENTLY, our society has developed and deployed a wide
range of Internet of Things (IoT) applications, because

it can provide automation systems and services not only for
people but also for industrial sectors [1], [2]. The success of
automation in IoT has facilitated the formation and vigorous
development of the current Industrial IoT (IIoT). However,
compared with IoT applications, today’s IIoT focuses more on
connecting machines and equipment in industries, such as oil
and gas, electric utilities, and healthcare. As a result, IIoT is
exposed to more life-threatening or high-risk situations due to
system failures and outages, and faces more system security
and model trustworthiness issues [3], [4]. IIoT technologies are
supported by artificial intelligence (AI) approaches and machine
learning/deep learning (ML/DL) models. Although many AI ap-
proaches and ML/DL models, such as recurrent neural networks
(RNN) [5], convolutional neural networks (CNN) [6], and other
neural networks show an excellent performance in many specific
application scenarios, they still encounter several problems that
need to be addressed urgentlyas follows.

1) This kind of feed-forward neural networks based on back-
propagation (BP) algorithms belongs to black-box mod-
els. Therefore, its trustworthiness and reliability cannot
be guaranteed.

2) Network models cannot recover from attacks, such as data
poisoning, data collusion, security violation, and indis-
criminate attacks due to the inexplicability of network
models.

3) Most of these models rely on parameters tuning based on
trial and error, which requires tremendous workforce and
computing power.

4) The training of models requires a large number of sam-
ples.

In terms of the interpretability of the model, support vector
machines (SVM) has been proved mathematically [7], and the
multiple kernel learning (MKL) based on it has also shown
good performance in classification and regression problems [8].
Nevertheless, MKL receives less attention as deep neural net-
works (DNN) become more powerful in the era of Big Data [9].
Interestingly, with the rapid development of DNN, many studies,
such as [10] introduced the idea of DNN into MKL to form
the deep multiple kernel learning (DMKL) structure. DMKL
transforms the input data through multiple nonlinear processing
layers to construct new features which can make a dramatic
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improvement in pattern recognition. Meanwhile, each kernel
function in DMKL can be regarded as a dimensional change
of the current sample and can also form a single classifier,
which makes the whole training process of DMKL observable
and makes DMKL more trustworthy compared with the current
neural network models [11].

Automation is also a crucial indicator in IIoT. Automatic
algorithm tuning is essential for any models, including DMKL.
In the course of network topology formation and kernel function
parameters autotuning research, Ren et al. [12] used Rademacher
chaos complexity to evaluate each kernel function in the DMKL
network and remove the bad ones. Meanwhile, a grid search
method was used to optimize the parameters of the kernel
function. Thus, a self-adaptive deep multiple kernel learn-
ing (SA-DMKL) method was built. Liu et al. [13] presented
a group-based local adaptive deep multiple kernel learning
(GLDMKL) method with lp norm, and divided samples into
multiple groups using the multiple kernel k-means clustering
algorithm. However, there are also some limitations of DMKL
models. For example, parameter adjustment of the main models
is not flexible enough, and the structure of some models is not
elastic enough.

Network equipment used in IIoT applications has various
limitations related to energy, processing, and communication,
making it hard to have full-scale AI/ML/DL approaches running
on tiny devices. This is also why many excellent AI models need
to be carefully deployed in IIoT.

To address the above issues, in this article we use ideas from
the studies that optimize networks through evolutionary algo-
rithms [14], [15], and develop DMKL with a genetic algorithm
(GA) algorithm, hence the kernel learning network through GA
(KNGA) model is proposed. By comparing with one traditional
ML model and three advanced automatic ML models, it is
shown that the training of KNGA model only needs very few
hyperparameters. At the same time, after many times of GA
optimization, the model can automatically reach the optimal
network topology and weights.

In summary, we make the following key contributions.
1) A new KNGA model and its training methods are pro-

posed, which can automatically adjust network parame-
ters and topology adaptively.

2) A comparison of the proposed KNGA with some recent
autotuning neural network models in terms of the number
of hyperparameters is summarized. It is proved that the
proposed model can achieve a good classification result
only by manually adjusting a few hyperparameters.

3) An evaluation of KNGA is carried out in terms of the con-
vergence time, classification ability, and the sensitivity to
parameter settings. Compared with the state of the art and
classical models, KNGA proves its excellent performance
and trustworthiness.

The rest of this article is organized as follows. DMKL is
introduced in Sections II and III as background, Sections IV and
V present the proposed model. Section VI analyzes the model
theoretically, and Section VII carries out performance analysis.
Finally, Section VIII concludes this article.

Fig. 1. Datasets that were previously linearly indivisible become lin-
early separable in higher dimensions.

Fig. 2. Depiction of a deep multiple kernel architecture. Lines repre-
sent the weights for each connection.

II. BACKGROUND

As the most crucial computing tool of SVM, its kernel func-
tion is to calculate the inner product distance between the input
samples in higher dimensions, which can be expressed as

K(x, y) = φ(x) · φ(y)
where K(1)(x, y) represents a kernel function, and different
kernel functions like RBF, sigmoid, or Poly have different cal-
culation formulas. Sometimes the sample is linearly indivisible
in lower dimensions, but it may be linearly separable in higher
dimensions, as shown in Fig. 1. Moreover, the kernel is used
to simplify this process, and the theoretical proof and research
on kernel function can be found in [16] and [17]. Then the
DMKL model is a network formed by combining multiple
kernel functions with weights at different layers shown in Fig. 2.
From [11], DMKL can be defined as follows.

Definition 1: A deep multiple kernel architecture is an l-level
multiple kernel architecture with h sets of m kernels at each
layer

K(l)=
{
θ
(l)
1,1K

(l)
1,1

(
θ
(l−1)
1,1 K

(l−1)
1,1 + · · ·

)
+· · · θ(l)h,mK

(l)
h,m(. . . )

}
where K(l)

h,m represents the mth kernel function in set h at layer

l with an connected weight θ(l)h,m, and K(l) means the combined

kernel at layer l. κ(l) represents all kernels in layer l. In general,
compared with the previous single kernel learning, the purpose
of DMKL is to combine the advantages of each kernel function
and make the performance of the model better.
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III. RELATED WORK

After introducing the theoretical background of DMKL, this
section will show the availability of kernel learning through
investigating the adoption of MKL in the broad industry ap-
plications.

Kernel learning has been an active research topic in ML since
its widespread use in 2004 [18]. These kernel methods have
been successfully applied to various real-world applications and
generally showed auspicious performance. Even now, kernel
learning can perform very well in small data scenarios [19],
[20], [21]. However, with the emergence of DNN algorithms
that rely on mighty computing power and Big Data environ-
ment, the dominant position of kernel learning is gradually
replaced. In recent years, as scholars began to combine multi-
kernel learning with a deep learning framework and achieved
excellent research results in some scenarios, even exceeding
the performance of a DNN, kernel learning received attention
again [22].

With the successful combination of kernel learning and deep
learning, many people have applied kernel learning technol-
ogy in practical applications in recent years. For example,
Zhang et al. [23] proposed a multikernel ELM (MKELM)-based
method to classify EEG images based on DMKL. In [24], the
authors also proposed an DMKL method named MK-FSVM-
SVDD for predicting DNA-binding proteins. Singh et al. [25]
proposed an MKL model named SAMKL for lung cancer
prediction. Guo et al. [26] and Shi et al. [27] assessed dry
weight of hemodialysis patients and classified pre-microRNA
using MKL.

Next, we briefly introduce the DMKL model proposed in this
article.

IV. STRUCTURE OVERVIEW

This section introduces the constituent units of the proposed
model, the way of coding, and how the model structure grows.

A. Basic Unit

The proposed model comprises L basic units or layers, and
each layer contains n kernel functions. The output of each
kernel function is connected with an activation function, such
as the tanh, sigmoid, and ELU activation functions. In addition,
the option of no activation function is also considered. Fig. 3
presents the basic unit’s composition rules that combine multiple
kernels and activation functions in each layer.

B. Genetic Encoding

This model’s gene coding mimics the human gene cod-
ing. Each kernel function like the base pairs of A (adenine),
T (thymine),C(cytosine),G(guanine), andU (uracil) in our gene
sequence.

DMKL’s network structure can be encoded by mimicking
how DNA is compiled, where each layer corresponds to a base
pair composed of n kernel functions like a base pair in a DNA
strand. For example, assume the primary network structure of
the proposed model is made up of L layers and its genetic

Fig. 3. Base unit contains n kernel functions.

Fig. 4. Primary network structure of the proposed model is compiled
in a four-digit two-level system.

code composed by L base-pair, as shown in Fig. 4. Then, the
corresponding base pairs can be compiled in a n-digit two-level
system, where 1 denotes the corresponding kernel function is
active, and 0 represents the corresponding kernel function is
deactivated.

In the early stages of model formation, m nonidentical candi-
dates are randomly generated, namely, M = G1, G2, . . . , Gm,
where G represents a candidate. Each candidate represents a
topology model of the DMKL network.

After generating m networks, model weighting is needed.
In this model, each active kernel function needs to establish
a weighted connection with others (the kernel functions at
each layer are disconnected from each other). At the same
time, W.ij means the weight connection between the cur-
rent kernel function and the jth kernel function at the ith
layer after the current layer. Therefore, the model results in
m weighted networks MW . After that, the model adopts the
optimization algorithm to optimizeMW to findM bestW of every
network.

C. Find the Optimal Topology

When the model forms m weighted networks, the topology
structure is optimized. After that, the model adopts the opti-
mization algorithm to optimize the network topology structured
among m weighted networks to evolve to the best topology
structure MbestC , as shown in Fig. 5. Finally, the model gets
an optimal solution of the model M bestW

bestC .
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Fig. 5. Selecting candidate model topologies using GA.

Fig. 6. Model layers growing.

D. Model Layers Growing

When the optimal network M bestW
bestC obtained by the model

that is trained following the above steps still fails to meet the
required indicators, x2 weighted networks with x+ x1 layers
are generated based on the current network M . The above steps
continue to process until the required indicators are met, as
shown in Fig. 6. x represents the number of layers in M , and x1

and x2 are random integers greater than 0.

V. OPTIMIZATION ALGORITHM

This section introduces how the proposed model KNGA can
optimize its model parameters by GA.

A. Model Weighting of Networks With Different
Topologies Through GA

Each deep network structure from M randomly gener-
ates k initial weighted populations, and the random gener-
ation method uses the traditional artificial neural network
(ANN) method to initialize the network weight. Then, the
initial connection weight population W corresponding to
m deep network structures can be represented as W =
P1, P2, P3, P4, . . . , Pi, . . . , Pm, where Pi represents the initial
connection weight population corresponding to the ith deep

network and Pi = ω1, ω2, ω3, ω4, . . . , ωj , . . . , ωk, where ωj de-
notes the jth individual in the population of k initial weights
generated randomly.

1) Gene Coding: Assuming that each generated network has
L layers, each of which consists of n essential kernel functions.
The set of connection weights corresponding to the network
topology can be expressed as a (L · n)× (L · n) 2-D matrix ω,
as shown in Fig. 7. A matrix ω corresponds to a genetic code of
connection weights. The number of weighted connections N in
the network is shown in the following formula:

N =
((L− 1) · L)

2
× n2. (1)

If the deactivated kernel function is at the ith kernel function
of layer j, the position (j − 1 − k) · n+ i in the connection
array of the k layers’ every kernel function (a column in matrix
ω) at the previous layer will be set to 0, where n is the number
of essential kernel function.

2) Objective Function: The minimum value of network error
E(ω) in the current evolution band is taken as the objective
function for the fitness function. Then, the fitness function is
proposed while a coefficient of positive number δ is added. Fi-
nally, the objective function of the genetic algorithm is obtained,
as

F (ω) =
δ

E(ωi)
, i = 1, 2, 3 . . . , k. (2)

3) Selection: According to the fitness of the contemporary
gene group, the gene with the highest fitness level is directly
entered into the next generation, and the gene with the lowest
fitness level is directly eliminated. The remaining genes are
selected into the next generation according to the order of
fitness. The target is to retain 80% of the genes into the next
generation for selection, and the remaining 20% of individuals
are generated through crossover and mutation operation. Thus,
Pselect represents the probability that the individual I is selected
after the state changes

Pselect =

{
1, f(ω′) ≥ f(ω)
0, f(ω′) < f(ω).

(3)

4) Mutation: In the mutation step, P(ω1→v1) represents the
probability of individual ω1 mutation, and it is calculated by the
following formula:

P(ω1→v1) =

{
k1(fmax−f)
fmax−favg

, f ≥ favg

k2, f < favg
(4)

where fmax represents the maximum fitness value in the pop-
ulation; f denotes the individual fitness value that requires
variation; favg is the average fitness value in the population;
k1 and k2 are two constants, both of which are set to 0.5.

There are two specific steps in the process of individual ω1

mutation. First, the q-dimension of an individualω1 must mutate.
In the second step, p ∈ (1, (L·(L−1))

2 · n2) except for q would
have a 50% chance to mutate, and the individualω1 would mutate
between 0.01 and 0.1 plus or minus.
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Fig. 7. (L · n)× (L · n) 2-D matrix ω (the kernel functions at each layer are disconnected from each other).

5) Crossover: In the cross step, P((ω1,ω3)→v2) represents the
crossover probability, and it is calculated by the following for-
mula:

P((ω1,ω3)→v2) =

(L·(L−1))
2 ·n2∏
i=1

K(i) (5)

where K(i) represents the probability of each dimension cross-
ing which is calculated by the following formula:

K(i) =

⎧⎨
⎩

1, (ω1 == v2) or (i == q)
(1 − Pcross) · Sel (rand(i) > Pcross)
+Pcross · Sel (rand(i) ≤ Pcross) , otherwise

(6)

where q denotes that the q-dimension of the two populations
must crossover; Pcross represents preset crossover probability;

Sel(x) =

{
1, x is true
0, x is false

; rand(i) is a random floating-point

number from 0 to 1. The heuristic crossover is adopted. If A in
father A and father B has good fitness, the generation of child
individual C can be expressed by the following formula:

Cchild = Pbetter + λ(Pbetter − Pless) (7)

where Pbetter represents fathers with better fitness and Pless fa-
thers with poor fitness. λ is a default parameter that specifies how
far the children are from the parent with better fitness, usually
set to 1.5.

B. Find the Optimal Topology Through GA

After Section V-A, m DMKL network M bestW with optimal
connection weight is obtained. Then, the network topology
optimization of M bestW is carried out again through the genetic
algorithm to find out the optimal network topology MbestC .
When two networks with different layers need to crossover,
the extra dimensions are filled up with 0. Finally, we obtain
the optimal solution of the model M bestW

bestC . The process can be
represented by Algorithm 1.

VI. THEORETICAL ANALYSIS

A. Analysis of Model Convergence

The whole model M contains m topological struc-
tures of deep kernel learning networks expressed as M =
{P1, P2, P3, P4, . . . , Pi, . . . , Pm}, where Pi denotes the initial
connection weight population corresponding to the ith topo-
logical structure of deep kernel learning networks, and Pi =
{ω1, ω2, ω3, ω4, . . . , ωj , . . . , ωk}, where ωj denotes randomly
generating the jth individual in k initial weighted population.

This article designs a set of optimization algorithms suitable
for DMKL. The optimization algorithms mainly include two
layers of genetic algorithms. The first layer of the genetic al-
gorithm is to optimize Pi, and the second layer of the genetic
algorithm is to optimize M .

Lemma 1: In the current genetic algorithm, the state of
individual I transforms from It to It+1, and the probability
of It → It+1 is P(It→It+1) = P(ω1→v1) · P((ω1,ω2)→v2) · Pselect,
where It represents the state of individual I at time t, P(ω1→v1)

denotes the probability of mutation, andP((ω1,ω2)→v2) represents
the probability of crossover.

Lemma 2: In the iterative process of genetic algorithm of this
model, the probability of population state Si and one-step jump
to state Sj is P(Si→Sj) =

∏k
x=1 P(Ixi→Ixj).

It can be concluded from Lemmas 1 and 2 that the nested two-
layer genetic algorithm in the algorithm belong to the differential
evolution algorithm (DEA). Therefore, according to [28], the
algorithm of this article must converge. However, the genetic
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TABLE I
HYPERPARAMETERS COMPARISON OF FOUR MODELS

algorithm of the model cannot guarantee that global convergence
can be achieved by training on each generated population.

Although the optimization algorithm of the model cannot
guarantee global convergence, the experiments and the actual
application show that the optimization algorithm has a robust
global search ability like the BP algorithm and particle swarm
optimization (PSO) algorithm. Essentially, these methods can-
not guarantee global convergence. They may easily fall into a
local optimum, but the search capability still has strong stability
and other advantages in industrial applications and experiments.
Meanwhile, in model training, the maximum number of network
layers of the whole network’s population is constantly increas-
ing, and new networks are constantly added, which can avoid
the model falling into local optimum.

B. Hyperparameters Analysis

In this section, KNGA is compared with some cutting-edge
models, an automatic CNN architecture [29], CIFAR-CNN [30],
and BNAS-CCE [31], to show and analyze the number of
hyperparameters of these models, as shown in Table I.

As we all know that traditional neural network models CNN
have a large number of hyperparameters. In addition, almost
every hyperparameter of the traditional neural network has a
significant impact on the model’s performance, which increases
the complexity of artificial parameter adjustment. To solve this
problem, the authors in [29] proposed an automatic optimization
architecture of CNN based on genetic algorithms designed for
image recognition. Furthermore, in [30], four kinds of regression
models were used to optimize the network hyperparameters, and
the authors in [31] proposed a broad neural architecture search
called BNAS which can not only save time but also automatically
optimize the hyperparameters.

This article proposes the model KNGA adopted two layers of
genetic algorithms to optimize topology and hyperparameters.
Compared with the recent representative neural architecture
search (NAS) methods, KNGA has fewer hyperparameters and

TABLE II
CLASSIFICATION RESULTS ON UCI

can essentially optimize network topology. At the same time,
the subsequent experiments prove that KNGA also has good
performance.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Settings

In this section, we select four base kernel functions, i.e.,
Linear, RBF, Poly, and Sigmoid, and their initial parameter
settings are autoset by the sklearn package.

In order to simplify the experiments, the number of initial
DMKL topology network structures is m = 10. The number
of initial connection weight populations corresponding to each
network is k = 10. The number of initial topology network
structure’s layer is x = 4. The parameters are set to x1 = 1,
x2 = 5, x3 = 4, and Vtarget = 1.0.

B. Datasets

1) UCI Datasets: This article selects six datasets from the
UCI database, such as breast cancer [32] to evaluate the perfor-
mance of the KNGA method for classification tasks that have
samples and dimensions with small sizes.

In this article we present an exhaustive comparative study
using the following algorithms: SKSVM (SVM algorithm with a
single RBF kernel), L2MKL [33], SM1MKL [34], DMKL [11],
and MLMKL [10], SA-DMKL [12], and an ANN method.
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Fig. 8. The change of sample space mapped by the kernel function.
(a) The original. (b) First layer. (c) Second layer.

TABLE III
FOUR SETS OF KERNEL FUNCTION PARAMETERS

Table II shows the accuracy results of the classification with
the above algorithms.

To show how DMKL works and how to enhance the model
generalization ability through the continuous increase of layers,
this article chooses the breast cancer dataset, which is one
of the most famous datasets in ML, to conduct experiments.
Furthermore, to better show the mapping of the sample space
image and the space reasons, we present the sample space by
the PCA method to draw dimension reduction to 2-D data. Thus,
the three breast cancer datasets’ sample space includes the
original sample space, sample space after the first layer of kernel
function mapping, and sample space after the second layer of
kernel function mapping, as shown in Fig. 8.

2) KEEL Datasets: To further evaluate the generalization
and self-evolution capability of the proposed model KNGA,
we select six datasets Appendicitis (106), Balance (625), Heart
(270), Haberman (306), Titanic (2201), Twonorm (7400) from
the KEEL [35]. The number in parentheses represents the num-
ber of samples in its dataset [35].

In this article, the results obtained after automatic training of
these six datasets in KEEL through KNGA are shown in Fig. 9.
Each polyline represents the evolution of each initial population.
The solid green line represents the final optimized candidate
evolved from the ten initial populations, while the dotted green
line denotes the optimal fitness of the current model.

To show recognition ability in the process of evolution more
intuitively, the fitness recorded in Fig. 9 and the figures after that
is denoted as: Fitness = Accuracy + 0.0001 × layers(added),
rather than the value of the objective function, so that we can
better observe the evolution of the model.

At the same time, an experiment is set to verify if the KNGA
model is sensitive to the initial parameter setting of kernel
functions, which is shown in Table III. We set up the four
sets of different orders of magnitude of kernel function pa-
rameters on Appendicitis, Balance, Heart, and Haberman in the
KEEL dataset and carry on the comparison experiment shown in
Table IV.

3) Caltech 256 Datasets: The Caltech 256 dataset is a Cal-
tech collated dataset from the Google Image dataset, and the
images that do not fit its category are manually removed. In this

TABLE IV
CLASSIFICATION RESULTS WITH FOUR SETS OF KERNEL FUNCTION

PARAMETERS ON KEEL

TABLE V
CLASSIFICATION RESULTS ON CALTECH 256

TABLE VI
CLASSIFICATION RESULTS UNDER ADVERSARIAL ATTACKS

dataset, images are divided into 256 categories, with more than
80 images in each category.

To verify whether the KNGA model is effective in the image
dataset, we select Backpack, Butterfly, Knife, and Treadmill
from this dataset. In addition, these four datasets are classified
among each other, and the accuracy is shown in Table V.

4) MNIST: The DNN is well known because of its superior
recognition performance (often better than humans). However,
as DNN is getting thorough research, it has been found that DNN
achieves excellent performance by finding many subtle features
in some samples and then expanding these features by mapping
the multilayer network structure. In other words, we can easily
make the neural network’s recognition result remarkably dif-
ferent by slightly modifying some parts of the sample without
destroying the characteristics of the sample itself [36], which
puts a big question mark on the trustworthiness of DNN. The
methods described above can be collectively referred to as adver-
sarial attacks, which can be roughly divided into two categories,
i.e., white-box attacks and black-box attacks, which are essential
criteria for verifying the trustworthiness of AI models [37]. This
article applies five typical white-box attacks and one black-box
attack on CNN, KNGA, two advanced defense models wBT [38]
and RN [39] and some models based on a single kernel on
the MNIST dataset, respectively, to test the trustworthiness of
these models, as shown in Table VI. Since most current attacks
are aimed at the network design of DNN, samples generated
by the attacks will all be based on an independent CNN and are
saved as test samples in the experimental design; some examples,
as shown in Fig. 10.
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Fig. 9. Experiments on KEEL. (a) Appendicitis. (b) Balance. (c) Heart. (d) Haberman. (e) Tianic. (f) Twonorm.

Fig. 10. Adversarial examples on MNIST.

In contrast, training samples remain unchanged and then
trained with the above models (a different CNN model from
the one being attacked) to ensure the fairness of experiments.

The hyperparameters of the CNN set above are: two convolu-
tional layers, two pooling layers, one full connection layer, and
two residual blocks [3 kernels (3*3)] added to the RN model.
Moreover, the implementation code of the attack algorithm
mentioned above can be found in CleverHans [45], which has
been updated to version 4.0 on GitHub.

C. Results and Analysis

1) Convergence and Performance Analysis of the Model:
According to the results in Fig. 9, it is evident that after the evolu-
tion of the model, the recognition performance has been signifi-
cantly improved compared to the original single kernel function
and shallow multiple kernel learning networks. In particular, it
can be seen from the results in Fig. 9(d) that the evolution of the
topology structure of the model by the second genetic algorithm
has a massive impact on the model recognition performance. It
can be seen from Table II that, compared with MKL, DMKL,
and the neural network model, which are currently popular
in the industry, KNGA shows excellent performance in such
small sample sets as UCI. The main reason is that compared
with most other kernel learning models, as long as KNGA’s
training lasts sufficiently long, it can always have the same or
even exceed the performance of kernel learning models through

self-optimization of model parameters and topology structure.
As for the neural network, the UCI sample size is not large
enough to give full play to its maximum potential, so the neural
network’s performance on a small sample set is worse than that
of the MKL. At the same time, we can see that in the Monk
dataset in Table II, the performance of the SA-DMKL model
exceeds KNGA. The main reason for this experimental result
may be caused by the insufficient training time of our model
or the local optimum. Theoretically, as long as we train it for
a sufficiently long time, we can always get a model that is as
good as or even better than the model generated by SA-DMKL.
It can be seen from Table VI that in the MNIST dataset with less
complex images, KNGA can also show as good performance as
the current well-trained CNN model.

2) Influence of Different Parameter Settings of Kernel Func-
tions: It can be seen from Tables III and IV that when the
parameter setting of the kernel function is relatively small,
it does have a significant impact on the performance of the
model. In contrast, the model is tough to evolve when the order
of magnitude of parameter setting is large. This phenomenon
maybe because of the kernel function’s performance degradation
by parameters setting is too large. When the performance of each
network unit is reduced, the performance of the whole network
is also degraded.

3) Influence of the Size of the Dataset: From the compari-
son between Fig. 9(a)–(d) and (e)–(f), it can be seen that the
optimization ability of the model on the dataset with a small
order of magnitude is more significant than that on the dataset
with a large order of magnitude. The model can improve the
recognition ability by 10–12 percentage points in the training
process on a small dataset. The model can only improve the
recognition ability by 2–4 percentage points on a large dataset.
This result does not exclude the fact that the dataset itself is
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Fig. 11. Two initial populations’ Gene Sequence of the primary net-
work structure tested on the breast cancer dataset.

Fig. 12. Two model’s fitness change figures tested on the breast can-
cer dataset. (a) First model’s fitness change figure. (b) Second model’s
fitness change figure.

indivisible. Given this situation, the optimization ability of the
model can be improved to a large extent only by adding several
essential kernel functions.

4) Influence of Initial Population on Experimental Results:
To understand this problem, a comparative experiment was set
up in this article. Two experiments were conducted on the breast
cancer dataset, each of which generates an initial group of
populations and contains ten different topological structures.
Then, the models were trained separately. The whole process
is shown in Figs. 11 and 12.

From the above comparative experiments, we can see two
points: 1) the difference in the initial population has a specific
influence on the final recognition rate of the model, but it is not
very significant. This difference can be eliminated by increasing
the number of the initial population. 2) No matter whether every
essential kernel function is activated in the first layer of the
model, the final recognition rate of the model will slowly cluster
in a small interval. Finally, the small interval can be cluster to
one point by relaxing the termination conditions and variation
range of the model evolution.

5) Ability of the Model to Recognize Different Types of
Datasets: All the experiments from the above show that the
recognition ability of KNGA in various fields is superior com-
pared with the current neural networks and new DMKL mod-
els. However, the recognition rate of various models for these
datasets has been relatively high. It seems that the recognition
of image data is not as effective as it is on other types of
datasets. The first reason for this phenomenon is that images,
such as Caltech 256 have extensive sample feature information,
which puts a significant burden on computing the inner product
distance between samples by the kernel function and leads to the
nonrepresentative features extracted by calculation. However, in
the case of some single-channel image datasets with relatively
few samples, the KNGA model can achieve excellent results,
as shown in Table VI. Generally, recognizing complex image
datasets using kernel functions requires some image processing
and feature extraction methods to achieve outstanding results.
However, in the experiment of Caltech 256, we expect to know
more about the effect of performance improvement of KNGA
on traditional DMKL in pure image data. Second, the high per-
formance of the KNGA model is mainly based on the ability of
each kernel function itself, and several kernel functions adopted
in this experiment may be not good for the corresponding dataset,
resulting in such results. Finally, these experiments conducted
are intended to prove that the recognition and generalization
ability of the model is as good as those AI models in their
respective fields, with almost no need for manually adjusting
parameters.

6) Trustworthiness Analysis of the Model: First of all, the
following points can be seen from the experimental results:
1) From Table VI, we can see that the current model attack algo-
rithm has a powerful influence on the AI model. Moreover, the
sample’s formation shown in Fig. 10 has not changed its original
core characteristics. 2) The black-box attack has a similar impact
on the neural network and kernel learning model compared with
a white-box attack. In contrast, the white-box attack has a much
more significant impact on neural networks than the KNGA
model and some individual single kernel learning models.
3) The cutting-edge defense algorithm based on the neural net-
work has a specific defense ability for the current attack. Mean-
while, it has a better effect than KNGA in the face of an attack
that seriously damages the image’s overall structure (sparse and
noise).

The above three phenomena illustrate that most current white-
box attack algorithms change some subtle features along the
opposite direction of the neural network’s optimization gradient
to cause model lying, so the effect of attacks on the neural
network is significant. However, the negative effect of the same
attack algorithm on the kernel learning model is mainly due
to the different classification mechanisms between the neural
network model and the kernel learning model. The neural net-
work is mainly based on taking good features and expanding
their influence to obtain good classification results. The kernel
learning calculates the inner product distance between samples
and extracts the most representative samples from the training
set to form the classification hyperplane. With only a tiny change
of some eigenvalues of the samples, the inner product distance
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between the samples will not have a significant deviation, lead-
ing to the classification failure of the kernel learning model.
For example, a neural network is through a person’s specific
characteristics, such as eyes, nose, and so on, to distinguish the
difference between people. However, kernel learning is to judge
the differences between people by comparing the similarity
between persons, which is the main reason why most white-box
attacks are not adequate for the kernel learning model. The
sparse and noise algorithms still have a considerable influence
on KNGA. The reason is mainly due to its kernel learning
algorithm because its image recognition performance is not good
without any image preprocessing. At the same time, the above
two algorithms generate tremendous noise for samples, which is
not available in the training set. This is one of the main reasons
for low performance of kernel learning and CNN, and can be
solved by adding noise samples in the training set, but this has
nothing to do with the model’s trustworthiness.

If we suppose there is an attack algorithm, there must be a
defense method for the model. As summarized in [37], existing
defense methods can be divided into three main directions:
1) modifying training samples or the input form of test samples.
2) Modifying the structure of the networks, such as adding
more layers/sub networks, changing loss/activation functions,
etc. 3) Using external models as network add-on when classify-
ing unseen examples. For example, Wang et al. [38] studied
the binary threshold value of the input image preprocessing
to defend against attack, PGD. The authors [46] modified the
dynamic change model parameters and input data to increase
the model’s toughness. Zhang et al. [39] put forward a network
of image reconstruction to reconstruct an example of the input
to defend against attacks.

It can be seen from the results shown in Table VI that the
defense model designed in wBT [38] and RN [39] has a good
effect in the face of multiple attacks, especially the defense
ability in the face of brutal attacks is even better than KNGA.
The reason is that these two methods carry out image opti-
mization and image reconstruction for the attacked samples,
thus improving the recognition ability of CNN. However, while
these methods improve the model’s defense, they significantly
increase the network structure’s complexity and computation
and are vulnerable to design-specific attacks. In particular, al-
though the model proposed in [39] improves the defense ability
of the model, it also dramatically increases the complexity of
network structure, which is more challenging to implement and
also becomes very difficult to tune the model. In addition, it can
be seen from Table VI that the generalization performance of
the image correction method by binarization proposed in [38]
drops. In the face of a large number of discrete noises generated
by the noise [44], the recognition effect is not good.

Thus, these defenses do not prove the trustworthiness of
neural networks, but only that they are techniques to enhance
some aspects of their performance. From the perspective of
trustworthiness, these methods do not fundamentally solve the
credibility problem of the neural network, and they are more like
a remedial way to make up for the temporary deficiency of neural
networks in the arms race with attack algorithms. In contrast,
this article shows kernel learning has higher interpretability and

related security mechanisms, as proved by the experiments and
shown in Fig. 8 and Table VI. Furthermore, this article argues
that kernel learning is more reliable than neural networks.

VIII. CONCLUSION

In this article, a new multilayer multiple kernel learning
method named KNGA was proposed. It adopted GA to find the
best DMKL structures, including the weights and the model’s
topology. Although the optimization algorithm of the model
cannot guarantee global convergence, the experiments and the
actual application showed that the optimization algorithm has ro-
bust global searchability. Through continuous self-optimization
through training, KNGA has shown excellent recognition ability
and generalization ability on small-scale datasets. The accuracy
rate can be increased by 10% to 20%. In future work, we plan
to continue the investigation from two aspects: 1) apply the
KNGA model in more complex industrial scenes, including
model training in cloud-edge integration environment and more
complex image recognition. 2) More techniques related to model
parameter initialization will be applied in this model, making the
model more elastic and less likely to fall into the optimal local
situation.

APPENDIX

Proof of Lemma 1: It is known that the mutation, crossover,
and selection operations of the genetic algorithm are all inde-
pendent of each other, and the selection process of the three
random individuals in the mutation operation is also independent
of each other. Thus, in the current genetic algorithm, the state
of individual I transforms from It to It+1, and the probability
of It → It+1 is P(It→It+1) = P(ω1→v1) · P((ω1,ω2)→v2) · Pselect,
where It represents the state of individual I at time t, P(ω1→v1)

represents the probability of mutation, and P((ω1,ω2)→v2)

represents the probability of crossover. Thus Lemma 1 is
proved. �

Proof of Lemma 2: Si → Sj represents the population state
that all the individual states in Si simultaneously transfer to
the corresponding individual states in the population state in
Sj , as Ixi → Ixj , x = 1, 2, 3, . . . , k, and all individual state
transition is mutually independent events, so the probability of
population state Si and one-step jump to state Sj is P(Si→Sj) =∏k

x=1 P(Ixi→Ixj). Thus, Lemma 2 is proved. �
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