
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023 3479

Loader: A Log Anomaly Detector
Based on Transformer

Tong Xiao , Zhe Quan , Zhi-Jie Wang , Member, IEEE, Yuquan Le , Yunfei Du , Xiangke Liao ,
Kenli Li , Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Detecting anomalies in logs is crucial for service and
system management, since logs are widely used to record the run-
time status, and are often the only data available for postmortem
analysis. Since anomalies are usually rare in real-world services
and systems, a common and feasible practice is to mine or learn
normal patterns from logs, and deem those violating the normal
patterns as anomalies. As log sequences are a kind of time series
data, RNN (Recurrent Neural Network) and its variants have been
extensively employed to capture the normal patterns. Nevertheless,
the sequential nature of RNN and its variants makes them hard to
parallelize and capture long-term dependencies, which may hinder
their performance. To address this issue, in this paper we propose
Loader, a novel semi-supervised log anomaly detector based on
Transformer, because the Transformer architecture eschews recur-
rence and is able to draw global dependencies. Loader leverages the
Transformer encoder to capture normal patterns from normal log
sequences. When detecting, it gives a set of candidate log templates,
that may appear after the input log substring under normal condi-
tions. If the template of the actual next log message is not within the
candidate set, this implies an anomaly. Previous similar methods
select the most possible k log templates as candidates in any case,
so the performance is sensitive to k, and it is nontrivial to pick
a proper k. To alleviate this, we design a more flexible and robust
‘top-p’ algorithm, which determines the candidate set based on the
cumulative probability of the most possible log templates. Extensive
experiments are conducted based on three public log datasets, the
experimental results validate the effectiveness and competitiveness
of our approach.

Index Terms—Log anomaly detection, log analysis, service and
system management, Transformer.

I. INTRODUCTION

W ITH the rapid development of cloud computing and
Big Data, more and more traditional applications and

Manuscript received 2 September 2022; revised 19 March 2023; accepted
22 May 2023. Date of publication 29 May 2023; date of current version 8
October 2023. This work was supported in part by the National Key R&D
Program of China under Grant 2018YFB0204302, and in part by the NSFC
under Grants 61972425 and U1811264. Recommended for acceptance by K.
Joshi. (Corresponding author: Zhe Quan.)

Tong Xiao, Zhe Quan, Yuquan Le, Xiangke Liao, and Kenli Li are
with the College of Computer Science and Electronic Engineering, Hu-
nan University, Changsha, Hunan 410082, China (e-mail: xiaotong18@
hnu.edu.cn; quanzhe@hnu.edu.cn; leyuquan@hnu.edu.cn; xkliao@hnu.edu.cn;
lkl@hnu.edu.cn).

Zhi-Jie Wang is with the College of Computer Science, Chongqing University,
Chongqing 400044, China (e-mail: cszjwang@cqu.edu.cn).

Yunfei Du is with the Huawei Technologies Company, Ltd., Shenzhen,
Guangdong 518129, China (e-mail: duyunfei5@huawei.com).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TSC.2023.3280575

systems are migrated to cloud platforms and accessed via the
Internet as web services. As the services and systems are be-
coming increasingly complex and large-scale, they are more
vulnerable to various bugs and malicious attacks, making ser-
vice and system management a challenging task. Especially for
giant cloud service providers like Amazon, Microsoft, Google,
Alibaba, and Huawei, who often provide services for millions
of users all around the world on a 24 × 7 basis, high RAS
(Reliability, Availability, and Serviceability) is critical, since a
subtle issue may lead to serious consequences and tremendous
economic losses [1], [2], [3], [4].

Logs have always played an important role in service and
system management [5], [6], since they are widely used by
programs to record significant events and runtime information.
When an exception or error occurs, support engineers and oper-
ators tend to dive into the logs to look for clues, as logs are often
the only data at hand for postmortem analysis. Unfortunately,
complex and large-scale services and systems often consist of
numerous components, and produce tons of logs every day.
This makes it cumbersome, error-prone, and even infeasible to
analyze the logs manually in time. As a result, automated log
analysis is imperative and has drawn extensive attention from
both academia and industry [7], [8], [9], [10]. And one of the
critical tasks is to detect anomalies in logs automatically and
timely, i.e., automated log anomaly detection.

There have been a lot of efforts devoted to automated log
anomaly detection, employing various techniques from tradi-
tional machine learning [7], [9] to deep learning [11], [12].
For most of them, a prerequisite is log parsing, which aims to
transform raw textual logs into a structured format, as illustrated
in Fig. 1. With the help of log parsing, we can map massive logs
to a small set of log templates. Then a sequence of log messages
(i.e., a log sequence) can be represented by a list of templates
(template IDs), as shown in the bottom part of Fig. 1. The aim
of log anomaly detection is to uncover anomalous patterns or
behaviors in log sequences, the input is log sequences, rather
than individual log messages. Note: For simplicity, in the rest
of this paper, when it is about log anomaly detection, if we
say a log message, we mean its template (template ID); and
a log sequencerefers to the list of templates (template IDs) of a
sequence of log messages.

Generally, we can classify automated log anomaly detection
methods into three categories: supervised, unsupervised, and
semi-supervised methods. Supervised methods need both posi-
tive (anomalous) and negative (normal) samples (log sequences),

1939-1374 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6096-1450
https://orcid.org/0000-0003-2669-9190
https://orcid.org/0000-0002-6865-7899
https://orcid.org/0000-0001-6283-9037
https://orcid.org/0000-0002-6541-2511
https://orcid.org/0000-0002-6125-3330
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
mailto:xiaotong18@penalty -@M hnu.edu.cn
mailto:xiaotong18@penalty -@M hnu.edu.cn
mailto:quanzhe@hnu.edu.cn
mailto:leyuquan@hnu.edu.cn
mailto:xkliao@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:cszjwang@cqu.edu.cn
mailto:duyunfei5@huawei.com
mailto:lik@newpaltz.edu

3480 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 1. Illustration of log parsing.

together with their labels to train a model, e.g., decision tree [13],
support vector machine (SVM) [14], logistic regression [15], and
Long Short-Term Memory (LSTM) [16]. Since anomalies are
usually rare in real-world environments, there often exists an
extreme imbalance between positive and negative samples, and
it is not easy to collect enough positive (anomalous) samples
for training. These would limit the application of supervised
methods. On the contrary, unsupervised methods do not need
labeled samples. They directly process all samples to figure
out outliers, through techniques such as principal component
analysis (PCA) [7] and invariants mining [17]. But they suffer
lower performance than supervised ones [9]. Semi-supervised
methods try to incorporate the merits of both supervised and
unsupervised methods, by only requiring partial samples to be
labeled. A common practice is to learn normal patterns from nor-
mal log sequences, then make judgments according to whether
the given log sequences obey the patterns or not. For example,
DeepLog [11] and LogAnomaly [12] employ LSTM to capture
latent patterns from normal log sequences, and try to predict the
most possible log templates that could appear after the input log
substring under normal conditions. If the template of the actual
next log message is not among the most possible templates, then
it is anomalous.

Considering that a service or system would work in normal
state most of the time, an overwhelming majority of its logs
would be normal, it is relatively easy to obtain abundant log
sequences that can be labeled as normal. This makes it more
practical and appealing to adopt a semi-supervised method in
log anomaly detection.

As logs are generated over time, log sequences, which consist
of log messages in time order, are essentially a kind of time
series data. Therefore, it can be easily understood that, RNN

Fig. 2. A simple illustration of (a) RNN versus (b) the Transformer encoder.
(x1, x2, . . . , xn) is the input sequence, (y1, y2, . . . , yn) is the output sequence.

(Recurrent Neural Network) and its variants, including LSTM
(Long Short-Term Memory) and GRU (Gated Recurrent Unit),
have been widely applied to log anomaly detection [11], [12],
[16], [18], [19]. However, in an RNN model, each step relies on
its previous step, which makes the model hard to parallelize and
capture long-term dependencies, as illustrated in Fig. 2(a).

To alleviate the above issue, in this paper, we put forward a
novel semi-supervised log anomaly detection approach, which
leverages the Transformer encoder to replace RNN and its vari-
ants. Since the Transformer architecture eschews recurrence by
self-attention and positional encoding, and is able to draw global
dependencies [20], as illustrated in Fig. 2(b). In recent years, we
have witnessed the great success of the Transformer architecture

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: LOADER: A LOG ANOMALY DETECTOR BASED ON TRANSFORMER 3481

in various fields, where RNN and its variants had played impor-
tant roles, including natural language processing (NLP) [21],
computer vision (CV) [22], speech applications [23], etc. We
dub our approach as Loader (Log anomaly detector based on
Transformer).

Specifically, we borrow the general idea behind DeepLog
and LogAnomaly which utilize LSTM, i.e., we train Loader
only using normal log sequences to capture normal patterns;
and when detecting, Loader provides a set of candidate log
templates, that are most likely to appear after the input log
substring under normal conditions. If the template of the actual
next log message is not within the candidate set, then we say
there is an anomaly. Take the log sequence in Fig. 1 as an
instance, and suppose we have a substring of the first three
log messages (L1 → L2 → L3), which can be represented by
T1 → T1 → T2. After inputting this log substring into Loader,
it will give a set of candidate log templates C, that are most likely
to appear after the input log substring under normal conditions.
Here we assume C = {T3, T4}, then in this case, because the
actual next log message is L4 (T2) and T2 �∈ C, we assert it
to be anomalous. But unlike DeepLog or LogAnomaly, we do
not identify the set of candidate log templates via a simple
yet coarse-grained ‘top-k’ algorithm, which selects the most
possible k (e.g., 5) log templates in any case. We design a more
flexible and robust algorithm, which selects a minimal set of log
templates, whose probabilities are larger than the others, and the
cumulative probability is large enough, i.e., exceeds a threshold
(e.g., 0.9). We call this algorithm ‘top-p’, where p stands for
“probability”.

To summarize, this paper makes the following contributions:
� We propose a novel semi-supervised log anomaly detection

approach, Loader, which leverages the Transformer en-
coder instead of the commonly used RNN and its variants,
to detect anomalies in logs.

� We design a more flexible and robust algorithm, ‘top-p’,
to determine the set of candidate log templates, that are
most likely to appear after the input log substring under
normal conditions, instead of selecting a fixed number of
templates.

� Extensive experiments are conducted based on three public
log datasets to validate our approach. The results show
that, our approach Loader is better than or competitive
with other unsupervised and semi-supervised log anomaly
detection methods.

The rest of this paper is organized as follows. In Section II,
we introduce the related work, including log parsing and log
anomaly detection. Section III covers our approach Loader,
including the overall workflow and design details. The exper-
imental settings, results, and analyses are given in Section IV.
Finally, we conclude our paper in Section V.

II. RELATED WORK

A. Log Parsing

Log parsing is the basis of various automated log analysis
tasks, including log anomaly detection, failure diagnosis, failure
prediction, etc., and has attracted a lot of interest.

Since logs are printed by logging statements in the source
code, there is an attempt to parsing logs via source code anal-
ysis [7]. It is not trivial to analyze the source code of a large
program. What is worse, a great number of programs are not
open-source. These would hinder the application of such log
parsing methods. Thus, data-driven log parsing methods are
predominant. The key idea behind this kind of methods is that,
the more frequent a part (e.g., a word, a token, a substring, or
an n-gram) appears in historical logs, the more likely it is to be
a constant part. The main techniques adopted include frequent
pattern mining [24], [25], [26], clustering [27], [28], longest
common subsequence [29], [30], iterative partitioning [31],
[32], and parse tree [33], [34]. In [35], the authors presented
a comprehensive study on log parsing, by implementing and
evaluating 13 log parsers on 16 benchmark datasets.

B. Log Anomaly Detection

As mentioned earlier, there are three types of log
anomaly detection methods according to the data needed for
training, i.e., supervised, unsupervised, and semi-supervised
methods.

1) Supervised Methods: In [9], the authors explored three su-
pervised methods employing traditional machine learning tech-
niques, i.e., logistic regression, decision tree, and support vector
machine (SVM). In [16], the authors proposed LogRobust,
which adopts an attention-based Bidirectional Long Short-Term
Memory (Bi-LSTM) network to detect anomalies in unstable
log data. HitAnomaly [36] claims to be the first one that utilizes
the Transformer model in log anomaly detection. It encodes log
sequences and parameter values via a hierarchical Transformer
structure. All these methods directly treat log anomaly detection
as a binary classification task, and need labeled positive (anoma-
lous) and negative (normal) samples (log sequences) to train the
model.

2) Unsupervised Methods: In [7], the authors applied prin-
cipal component analysis (PCA) to detecting anomalies in con-
sole logs. They create a message count vector from each log
sequence, and utilize PCA to generate a normal subspace and an
abnormal one from the matrix composed of these message count
vectors. Then they treat those far away from the normal subspace
as anomalies. Reference [17] tried to mine program invariants
from log message groups, which reflect the inherent linear rela-
tionships in program workflows. If a log sequence violates any
of the invariants, it is regarded as anomalous. This method also
manipulates the matrix composed of the message count vectors,
and utilizes singular value decomposition (SVD) to estimate the
invariants. These two methods are also investigated in [9].

3) Semi-Supervised Methods: DeepLog [11] is the first one
to treat log anomaly detection as a sequence prediction problem,
and the general ideas behind DeepLog and our approach Loader
are similar. The main differences are that, DeepLog utilizes
LSTM to capture normal execution patterns, and adopts the
‘top-k’ algorithm to determine the candidate set. Similar to
DeepLog, LogAnomaly [12] also utilizes LSTM to learn normal
patterns. But it leverages a template2Vec method to represent
each log template with a vector which captures the semantic

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

3482 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 3. Overall workflow of Loader.

and syntactic information of the log template, instead of an
integer index widely used by prior works, including DeepLog. In
addition, LogAnomaly also uses LSTM to capture the quantita-
tive relationships of logs. LogBERT [37] borrows ideas from
BERT [21], and leverages the Transformer encoder instead
of RNN to capture patterns from normal log sequences, to
resolve the drawbacks of RNN-based models. Unlike DeepLog,
LogAnomaly, or our approach Loader, which try to predict the
next log message of the input log substring under normal condi-
tions, LogBERT randomly masks some log messages within the
whole log sequence, and tries to predict them using the rest log
messages. PLELog [19] is another semi-supervised method, but
it is quite different from the aforementioned three methods as
well as our approach Loader. It still treats log anomaly detection
as a binary classification problem, so it needs both positive
(anomalous) and negative (normal) samples (log sequences)
for training. But it only requires partial normal samples to be
labeled, and estimates the labels of the rest through clustering.
If a cluster contains a known normal log sequence, then all
log sequences in this cluster would be labeled as normal. Log
sequences in other clusters are labeled as anomalous. These
labeled samples are then used to train an attention-based GRU
network for anomaly detection. In [38], a clustering-based
method named LogCluster is proposed to identify problems in
online service systems. It first clusters normal log sequences
which come from lab environment, and chooses the centroid
of each cluster as a representative log sequence. Then, for an
incoming log sequence, LogCluster identifies its state (normal
or anomalous) by computing its distances to all representative

log sequences. If the minimum distance exceeds a threshold,
then this log sequence would be reported as anomalous.

III. OUR APPROACH

A. Overview

Fig. 3 shows the overall workflow of training Loader and
using it to detect anomalies in logs. First of all, we need to parse
raw log messages and separate them into log sequences. Then,
for each log sequence, we apply a sliding window with step
size 1 to it for substring processing. At each sliding step, with
the substring of log messages falling into the sliding window
(i.e., the input log substring), we first encode them through an
embedding layer to get their embeddings, and then add their
embeddings with the positional encodings to get their input
representations; afterwards, we pass these input representations
through the Transformer encoder, to get a new output repre-
sentation for each log message; finally, the mean of these output
representations is used to predict a set of log templates, that may
appear after the input log substring under normal conditions.
The prediction is accomplished by a linear layer followed by a
softmax layer, and the output is a probability distribution over all
log templates, which indicates how likely each template would
appear after the input log substring. When training, only normal
log sequences are used, and the actual log message following the
input log substring is used as label to calculate a cross-entropy
loss with the output probability distribution, which is then used
for backpropagation to optimize the model. When detecting,
we choose a set of candidate log templates according to their

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: LOADER: A LOG ANOMALY DETECTOR BASED ON TRANSFORMER 3483

probabilities given by the output probability distribution, and
check if the actual next log message of the input log substring
is within the candidate set or not, if yes, we treat it as normal,
otherwise we deem it as anomalous. In the end, a log sequence
would be reported as anomalous if at least one log message in it
is detected as anomalous.

Next, we address the key details throughout the workflow,
including critical steps or components in data preprocessing and
the Loader model.

B. Data Preprocessing

In this section, we introduce how to preprocess raw log
messages into separate log sequences, including two steps: log
parsing (Section III-B1) and separation (Section III-B2).

1) Log Parsing: The goal of log parsing is to transform raw
textual logs into a structured format, as illustrated in Fig. 1. It is
common that each log message begins with several auxiliary
fields, such as the “Timestamp”, “Level”, and “Component”
columns in Fig. 1, followed by the content field. As the auxiliary
fields often have fixed formats and are easy to extract, the core of
log parsing is to distinguish the constant parts from the variable
parts in the content field, and get a log template together with
optional parameters for each log message. The log template
is composed of the constant parts, while the variable parts
corresponding to parameters are replaced by some wildcards
(e.g., * in the “Template” column in Fig. 1).

A log template actually refers to the invariant part of the string
parameter of a log printing statement in the source code, so the
number of log templates is finite for a specific service/system.
Consequently, we can map the possibly endless log messages
generated over time to a restricted set of templates, which can
facilitate our model to learn latent patterns from log sequences.

2) Separation: Logs produced by different tasks or pro-
cesses, within a service/system or across different ser-
vices/systems, are usually mixed up, so we need to separate
them into different log sequences for better anomaly detection.
Some logs have certain kind of identifiers recorded to ease this
separation. For example, in the HDFS log dataset used in our
experiments which we will detail later, each log message has a
block_id indicating the block operated, so we can easily separate
these log messages according to this identifier.

On the other hand, it is a common practice to detect anomalies
in logs, which have a specified number of log messages or are
generated over a specified time period. This also require us to
separate a large set of logs into different log sequences.

C. Loader

In this section, we detail how Loader computes the output
probability distribution from the input log substring (Sections II-
I-C1, III-C2, and III-C3), how to train Loader (Section III-C4),
and how to make a judgment according to the output probability
distribution (Section III-C5).

1) Input Encoding: The input to Loader at each sliding step
is a substring of log messages falling into the sliding window,
i.e., the input log substring. Assume the window size is w and
the step size is 1, then for a log sequence S = [s1, s2, s3, . . .],

the input log substring for each sliding step would be:

[s1, s2, . . . , sw],
[s2, s3, . . . , sw+1],

...
[si, si+1, . . . , sw+i−1],

...

If we define the set of all log templates as T = {T1, T2, . . . , Tt}
(t is the total number of log templates), then for any i ∈ N+, si ∈
T . In the embedding layer, an embedding matrix M ∈ Rt×d (d
is the embedding size) is used to encode all these templates,
whose ith row is the embedding ofTi (1 � i � t), and is denoted
as ei (ei ∈ Rd). Then we can represent each log message si
with an embedding ej if si = Tj . The embedding matrix M is
composed of the template vectors, which are output by our log
parsing method LPV [28], and encode the semantic and syntactic
information of log templates.

Since the Transformer encoder has no recurrence or convolu-
tion structure, the order information of the input log substring is
injected through positional encoding. The positional encodings
have the same size d as the embeddings from the embedding
layer, and are calculated as follows (the same as in [20]):

PE(p,2i) = sin(p/100002i/d),

PE(p,2i+1) = cos(p/100002i/d), (1)

where p is the position index in the input log substring (0 � p <
w), 2i and 2i+ 1 are even and odd indices of the encodings’
dimensions respectively (0 � 2i, 2i+ 1 < d).

Afterwards, for the log messages in the input log substring,
we add their embeddings from the embedding layer with the
positional encodings in a position-wise manner, to get their input
representations, which will be fed to the Transformer encoder.
For the sake of efficient computing, these input representations
are packed into a matrix Xin ∈ Rw×d.

2) The Transformer Encoder: Loader leverages the Trans-
former encoder to capture normal patterns in normal log se-
quences. The Transformer encoder consists of N(N � 1) iden-
tical layers, each of which has two sub-layers, i.e., a multi-head
self-attention mechanism and a fully connected feed-forward
network.

The multi-head self-attention is to apply multiple self-
attention functions to its input in parallel, each of which is
called a head, then concatenate all heads’ outputs and project
to the same d-dimensional space as the input. Suppose there are
h heads and the input to this sub-layer is Xatn ∈ Rw×d, then
for the ith (1 � i � h) head, its output headi is calculated as
follows:

headi = Attention(XatnW
Q
i , XatnW

K
i , XatnW

V
i), (2)

where WQ
i ∈ Rd×dq , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv are projec-

tion matrices which are trainable, and dq = dk = dv = d/h;
Attention(·) is the scaled dot-product attention introduced
in [20], which is defined as follows:

Attention(Q,K, V) = Softmax

(
QKT

√
dk

)
V, (3)

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

3484 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

where dk is the size of the row vectors of Q and K, the
Softmax(·) function is used to calculate the weights for the row
vectors of V and is defined as:

Softmax(z) =
ez∑
i e

zi
, (4)

where z is a row vector. This ensures that the weights calculated
from each row vector add up to 1. It can be seen from the above
that, each row of Xatn attends to all of its rows, including the
row itself. The final output of the multi-head self-attention is
obtained as follows:

MultiHeadh(Xatn) = Concat([head1, . . . , headh])W
o, (5)

where Concat(·) concatenates all headi’s (1 � i � h) horizon-
tally to get a matrix H ∈ Rw×hdv , and W o ∈ Rhdv×d is another
projection matrix which is also trainable.

The fully connected feed-forward network consists of two lin-
ear transformations, between which there is a ReLU activation.
It is applied to each position separately and identically. Suppose
the input to this sub-layer isXffn ∈ Rw×d, then it can be defined
as follows:

FFN(Xffn) = ReLU(XffnW1 + b1) ·W2 + b2, (6)

where W1 ∈ Rd×dff and W2 ∈ Rdff×d are weight matrices,
b1 ∈ Rdff andb2 ∈ Rd are biases, for the two linear transforma-
tions respectively, and all are trainable; dff is a hyperparameter
which defines the dimension of the inner layer; ReLU(·) is a
commonly used activation function defined as:

ReLU(x) =

{
x, x > 0;
0, x � 0.

(7)

In addition, around each sub-layer (i.e., multi-head self-
attention or feed-forward network), there is a residual connec-
tion [39] followed by layer normalization [40]. So the output of
each sub-layer is LayerNorm(X + SubLayer(X)), where X is
the input to the sub-layer, SubLayer(·) is either MultiHeadh(·)
or FFN(·) defined above, and LayerNorm(·) is the layer normal-
ization function.

3) Output Decoding: The output of the Transformer encoder
is a matrix Xout ∈ Rw×d, each row of which is the output
representation of a log message in the input log substring. Since
each log message has attended to all log messages in the input
log substring (including itself), as mentioned earlier, we believe
its output representation has encoded the context information of
the whole input log substring. To ensure no bias, we use the mean
of these output representations, i.e., the mean row vector ofXout

(denoted as mean(Xout, 0) ∈ Rd), and utilize a linear layer with
a softmax followed to produce a probability distribution over
all log templates. The output probability distribution gives the
probability of each log template to appear after the input log
substring, under normal conditions.

Formally, the whole process of output decoding can be de-
scribed as follows:

prob_dist = Softmax(mean(Xout, 0) ·W + b), (8)

Algorithm 1: The ‘top-k’ Algorithm.

where W ∈ Rd×t and b ∈ Rt are trainable weight matrix
and bias respectively, t is the total number of log templates,
prob_dist ∈ Rt and sum(prob_dist) = 1.

4) Training: When training, we use the actual log message
following the input log substring as label, and compute the cross-
entropy loss between its one-hot representation and prob_dist
from output decoding. The one-hot representation of the ith
template Ti is a sparse vector with length t, in which only the
ith element is 1 and the others are 0’s (t is the total number
of log templates). Assume the label is sw+i, then the loss L is
computed as follows:

L = CrossEntropy(one_hot(sw+i), prob_dist), (9)

where one_hot(·) stands for the one-hot representation, and
CrossEntropy(·) is the function to compute the cross-entropy
loss, which is defined as follows:

CrossEntropy(y, ŷ) = −
∑
i

yi log ŷi. (10)

The loss is then used for backpropagation to update the trainable
parameters of Loader.

5) Detecting: On detecting, we first identify a set of can-
didate log templates C according to prob_dist from output
decoding, then check whether the actual next log message snext
of the input log substring is within the candidate set or not.
If snext ∈ C, we treat it as normal, otherwise we treat it as
anomalous.

Previous similar methods, such as DeepLog [11] and
LogAnomaly [12], simply select a fixed number of candidate
log templates with higher probabilities, in any case. We call it
the ‘top-k’ algorithm, and describe the process in Algorithm 1.
However, we observe that the number of distinct log templates,
which can appear after a given log template under normal
conditions, often differs for different log templates. This can be
verified by Fig. 4, where the horizontal axis represents different
log templates, and the vertical axis is the number of distinct
log templates, which appear after a specific log template under
normal conditions. The numbers used to draw Fig. 4 are obtained
based on the training set (only containing normal log sequences)
of the HDFS log dataset used in our experiments which we will
detail later.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: LOADER: A LOG ANOMALY DETECTOR BASED ON TRANSFORMER 3485

Fig. 4. Numbers of distinct log templates appearing after each log template,
in the training set of the HDFS log dataset.

Algorithm 2: The ‘top-p’ Algorithm.

In this paper, we propose a more flexible and robust way
to select the candidate log templates, and name it the ‘top-p’
algorithm. As described in Algorithm 2, the number of candidate
log templates selected is determined by a probability threshold
λp (0 < λp < 1) rather than fixed. Specifically, we iteratively
pick out a log template with the maximum probability at each
iteration, until the cumulative probability of the selected log
templates is no less than λp. So the number of candidate log
templates may vary with different prob_dist’s. We will validate
the effectiveness of this algorithm in our experiments.

IV. EVALUATION

In this section, we first give the experimental settings, in-
cluding datasets, baselines, evaluation metrics, implementation
details, and experimental environment (Section IV-A). Then,
we present the effectiveness comparison between Loader and
all baseline methods (Section IV-B). Next, we compare the
efficiency of Loader with that of the RNN-based baseline
methods (Section IV-C). Subsequently, we confirm the effec-
tiveness of the ‘top-p’ algorithm versus the ‘top-k’ algorithm
(Section IV-D). After that, we investigate the influence of each
model parameter, on the effectiveness of Loader (Section IV-E).
Finally, we give a simple illustration to show how Loader detects
anomalies (Section IV-F).

TABLE I
SOME STATISTICS ABOUT THE DATASETS

A. Experimental Settings

1) Datasets: We evaluate our approach Loader based on
three public log datasets, i.e., the HDFS log dataset [7], the Blue
Gene/L log dataset [41], and the Thunderbird log dataset [41]
(denoted by HDFS, BGL, and Thunderbird respectively).1

� HDFS: This dataset is a set of HDFS (Hadoop Distributed
File System) logs generated by running sample Hadoop map-
reduce jobs on more than 200 Amazon EC2 nodes. There are
11,175,629 log messages in total. A block_id is recorded in each
log message to indicate a block operation, according to which
we can separate the log messages into different log sequences.
Each log sequence reflects the execution path of a block. Every
block was manually labeled as normal or anomalous by Hadoop
experts, and among the total 575,061 blocks, 16,838 blocks are
anomalous.
� BGL: This dataset was collected from the Blue Gene/L

supercomputer deployed at Lawrence Livermore National Labs
(LLNL). It contains 4,747,963 log messages, among which
348,460 were tagged as alerts by the system experts. Un-
like HDFS, there are no identifiers recorded in the log mes-
sages which can be used to separate them. Following previous
works [9], [12], we utilize a sliding time window to slice these
log messages into log sequences, according to their timestamps.
If there exists one or more alerts in a log sequence, then it would
be labeled as anomalous, otherwise as normal.
� Thunderbird: This dataset was collected from Thunderbird,

a supercomputer installed at Sandia National Labs (SNL). It has
more than 200 million log messages. We use the first 10 million
for evaluation, because one of the baseline methods cannot finish
in reasonable time with more log messages, in our experimental
environment. The log format of this dataset is similar to that of
BGL, and alerts were also tagged by the system experts. Among
the first 10 million log messages, 353,794 are alerts. We utilize a
sliding time window to slice the log messages into log sequences,
just as what we do with BGL.

Some statistics about these three datasets are given in Table I.
Following previous works [9], [12], for each dataset, we use the
front 80% normal log sequences for training, and the rest for
testing. Because in practice, we can only learn from historical
logs produced earlier.

2) Baselines: As supervised log anomaly detection methods
need both normal and anomalous log sequences together with
their labels for training, for fair comparison, we choose the
following six unsupervised and semi-supervised log anomaly
detection methods as baselines.

1Available at https://github.com/logpai/loghub

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

https://github.com/logpai/loghub

3486 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

�PCA [7]: This approach builds a message count vector from
each log sequence, and applies principal component analysis
(PCA) on the matrix composed of these message count vectors,
to construct a normal subspace and an abnormal one. Then those
far away from the normal subspace are reported as anomalies.
� Invariants Mining (IM) [17]: Like PCA, this approach also

operates on the matrix composed of the message count vectors. It
employs singular value decomposition (SVD) to mine invariants
which can be satisfied by most of the vectors, and then treats
those violating one or more invariants as anomalies.
� LogCluster [38]: This approach clusters normal log se-

quences into different clusters, and then treats those too far
away from these clusters as anomalies. In this approach, each
log sequence is turned into a vector according to the distinct log
templates it contains.
�DeepLog [11]: DeepLog employs an LSTM model to learn

normal patterns from normal log sequences. It then tries to
predict the next log message of each input log substring. If the
actual next log message is among the top k candidates, then
it’s treated as normal, otherwise as anomalous. It works in a
streaming manner with a sliding window, just as Loader.
� LogAnomaly [12]: Similar to DeepLog, LogAnomaly also

tries to learn normal patterns from normal log sequences and
predict the next log message of each input log substring. But it
employs two LSTM models, one for sequential patterns and the
other one for quantitative patterns.
� LogBERT [37]: Like Loader, LogBERT also leverages the

Transformer encoder to model normal log sequences. But it does
not try to predict the next log message of each log substring, and
is not designed to work in a streaming manner. It randomly masks
some log messages in the log sequence, and then tries to predict
these masked ones.

Among the above six methods, the first two (i.e., PCA and
IM) are unsupervised methods, and the other four are semi-
supervised. More details about these baselines are given in
Section II.

3) Evaluation Metrics: Log anomaly detection is essentially
a binary classification task (anomalous or normal). Following
previous works [9], [11], [12], [37], we use three commonly
used metrics (i.e., Precision, Recall, and F−measure) to
measure the effectiveness of Loader and the baseline methods.
Precision = TP

TP+FP , Recall = TP
TP+FN , and F−measure =

2×Precision×Recall
Precision+Recall , where TP stands for the number of log

sequences which are judged as anomalous and labeled as anoma-
lous as well,FP is the number of log sequences which are judged
as anomalous but labeled as normal, andFN refers to the number
of log sequences which are judged as normal but labeled as
anomalous.

4) Implementation Details: We implemented Loader with
Python 3.9.7 and TensorFlow 2.7.0. By default, the Transformer
encoder consists of two layers. In each layer, the multi-head
self-attention has two heads, and the inner layer dimension of
the feed-forward network is 128. The default sliding window
size is 10. The Adam algorithm [42] with learning rate 0.001
is adopted to optimize the model. We implemented both the
‘top-k’ algorithm and the ‘top-p’ algorithm for detecting, in
order for better comparison. The parameter settings of Loader

are summarized in Table II. For each detecting parameter, we
give the value range we explored on each dataset, which is
also applied to DeepLog and LogAnomaly for fair comparison,
because these three methods share the same detecting strategy.
The numbers in bold (0.95 and 0.999999) are the default values
of the probability threshold for Loader on each dataset. As to log
parsing, we employ LPV, a state-of-the-art log parsing method
which has been published in one of our previous works [28].
With the help of LPV, we can get a template vector for each
log template, which is used in the embedding layer, and the
embedding size is 24.

For baselines PCA, IM, and LogCluster, we employed a
popular implementation provided by the LogPAI team.2 For
baselines DeepLog and LogAnomaly, we adopted a popular
open-source implementation,3 and plugged in our ‘top-p’ algo-
rithm. LogBERT is shared online4 by its authors, and we made
use of it as is.

5) Experimental Environment: We conducted all experi-
ments on a Linux server equipped with an Intel(R) Xeon(R)
CPU E5-2678 v3 @ 2.50 GHz, 192 GB DDR4 memory, and 4
NVIDIA GeForce GTX 1080 Ti GPUs. The Linux distribution
version is Ubuntu 16.04.7 LTS.

B. Effectiveness Comparison With Baselines

Table III shows the effectiveness comparison between Loader
and all baseline methods on HDFS, BGL, and Thunderbird
respectively, in which we put the numbers � 0.9 in bold, and
the maximum number of each column is marked with *. For
DeepLog, LogAnomaly, and Loader, we experimented with the
‘top-k’ algorithm and the ‘top-p’ algorithm respectively. And
for either ‘top-k’ or ‘top-p’, we tested with each value in the
value range given in Table II for the corresponding detecting
parameter, and reported the best result (having the highest
F−measure).

It can be seen from Table III that, our approach Loader
achieves the highest F−measure on each dataset, when adopt-
ing the ‘top-p’ algorithm. This validates the effectiveness and
competitiveness of our approach.

DeepLog, LogAnomaly, and our approach Loader outperform
the other four baselines (i.e., PCA, IM, LogCluster, and Log-
BERT) in terms of Recall on each dataset, no matter adopting
‘top-k’ or ‘top-p’. We think the reason is as follows: DeepLog,
LogAnomaly, and Loader all try to predict the next log message
of the input log substring in current sliding window, under
normal conditions. The sliding window moves forward step by
step, to process every log message of a log sequence (except the
first w ones). If any log message is not within the correspond-
ing candidate set, then the log sequence would be flagged as
anomalous. So DeepLog, LogAnomaly, and Loader are likely
to detect more anomalies, which brings higher Recall. But, as a
side effect, this may cause more false positives and degrades
the Precision, which is verified by the results in Table III.
Specifically, DeepLog, LogAnomaly, and Loader do not beat

2https://github.com/logpai/loglizer
3https://github.com/donglee-afar/logdeep
4https://github.com/HelenGuohx/logbert

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

https://github.com/logpai/loglizer
https://github.com/donglee-afar/logdeep
https://github.com/HelenGuohx/logbert

XIAO et al.: LOADER: A LOG ANOMALY DETECTOR BASED ON TRANSFORMER 3487

TABLE II
PARAMETER SETTINGS OF LOADER

TABLE III
EFFECTIVENESS COMPARISON BETWEEN LOADER AND THE BASELINES ON HDFS, BGL, AND THUNDERBIRD

all the other four baselines in terms of Precision, on any
dataset. Nevertheless, these three methods perform better than,
or equally with (only for LogAnomaly on Thunderbird) the other
four baselines in terms of F−measure on each dataset, when
adopting the ‘top-p’ algorithm. When the ‘top-k’ algorithm is
adopted, they still have better F−measure on two datasets
(i.e., HDFS and BGL). The above confirms the effectiveness and
superiority of the detecting strategy behind these three methods
and our ‘top-p’ algorithm.

DeepLog, LogAnomaly, and our approach Loader have com-
petitive effectiveness with each other, but Loader has better
F−measure than the other two on each dataset, when adopting
the ‘top-p’ algorithm. When ‘top-k’ is adopted, Loader has
better F−measure than the other two on HDFS and BGL,
and is a little lower than them on Thunderbird. On the other
hand, LogAnomaly has better Precision than DeepLog and
Loader on HDFS, both DeepLog and LogAnomaly have better
Recall than Loader on BGL, no matter whether ‘top-k’ or
‘top-p’ is adopted. These indicate that, DeepLog, LogAnomaly,
and Loader possess different advantages and capabilities, on
different datasets.

C. Efficiency Comparison With RNN-Based Methods

To demonstrate the efficiency superiority of our approach
Loader over RNN-based methods, we compare the mean train-
ing time per epoch of Loader with that of DeepLog and
LogAnomaly, on each dataset. The results are shown in Fig. 5,
from which we can see that, Loader needs much less time to
finish a training epoch than DeepLog and LogAnomaly, on each

Fig. 5. Mean training time per epoch of Loader, DeepLog, and LogAnomaly,
on HDFS, BGL, and Thunderbird.

of the three log datasets. This benefits from the Transformer
encoder utilized by Loader, which has no recurrence and is
more parallelizable than RNN and its variants. On the other
hand, as LogAnomaly employs two LSTM models, one for
sequential patterns and the other one for quantitative patterns,
so it is reasonable that LogAnomaly needs more training time
than DeepLog.

D. Effectiveness of ‘top-p’ versus ‘top-k’

From Table III, we can see that, DeepLog, LogAnomaly, and
Loader may achieve better or equalF−measure, if adopting the
‘top-p’ algorithm rather than the ‘top-k’ algorithm. To further
demonstrate the superiority of our proposed ‘top-p’ algorithm,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

3488 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 6. Effectiveness variations of DeepLog, LogAnomaly, and Loader on HDFS, when varying the value of the detecting parameter of the ‘top-k’ algorithm and
the ‘top-p’ algorithm respectively.

we plot the effectiveness variations of these three methods
adopting ‘top-k’ and ‘top-p’ respectively, when changing the
value of the corresponding detecting parameter, i.e., k of ‘top-k’
and λp of ‘top-p’, on HDFS. The results are given in Fig. 6.

It can be observed from Fig. 6 that, for any of the three methods
(DeepLog, LogAnomaly, and Loader), when adopting the ‘top-
k’ algorithm, with k increases from 1 to 10, the Precision
increases rapidly at the beginning and then keeps approaching
1.0 when k � 7, while the Recall keeps dropping, causing the
F−measure to first increase and then decrease. On the other
hand, when adopting the ‘top-p’ algorithm, withλp increases, the
Precision grows slowly to approximate to 1.0, while theRecall
drops slightly, leading the F−measure to increase slowly.

Overall, when adopting the ‘top-k’ algorithm, the effective-
ness is sensitive to parameter k, and is quite different when
k takes different values. When adopting the ‘top-p’ algorithm,

however, the effectiveness does not change much when varying
λp, which makes it easier to choose a proper value for λp to
achieve sound effectiveness. Thus, we can say that our proposed
‘top-p’ algorithm is more flexible and robust than the ‘top-k’
algorithm.

The reason why the ‘top-p’ algorithm performs better is that,
unlike the ‘top-k’ algorithm, which selects a fixed number (e.g.,
5) of candidate log templates in any case, ‘top-p’ may select dif-
ferent numbers of candidate log templates, when encountering
different input log substrings. To illustrate this, we tested Loader
with the first 150 normal and anomalous log sequences from the
testing set of HDFS respectively. In each sliding step, we counted
the number of candidate log templates determined by ‘top-p’,
and recorded the position index of the actual next log message
in the ordered log template list, which is sorted in descending
order according to the output probability distribution. The results

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: LOADER: A LOG ANOMALY DETECTOR BASED ON TRANSFORMER 3489

Fig. 7. The number of candidate log templates determined by the ‘top-p’ algorithm (# of candidates) versus the position index of the actual next log
message in the ordered log template list which is sorted in descending order according to the output probability distribution (true index), in each sliding step.
(a) Testing with the first 150 normal log sequences from the testing set of HDFS. (b) Testing with the first 150 anomalous log sequences from the testing set of
HDFS.

Fig. 8. Effectiveness variations of Loader on HDFS, when varying the value of each model parameter.

are shown in Fig. 7, from which we can see that, the number
of candidate log templates selected by the ‘top-p’ algorithm
changes frequently at different sliding steps. This feature may
enable Loader to detect more anomalies, and avoid producing
too many false positives at the same time.

E. Influences of Different Model Parameters

In this section, we explore how each of the model parameters
(i.e., w, N , h, and dff in Table II) affects the effectiveness of
Loader, through a series of experiments on HDFS.

We varied the value of one model parameter at a time, while
keeping the other model parameters with their values listed in

Table II. The training parameters were kept with their values in
Table II all the time. For the detecting parameters, we tested with
each value within the value range given in Table II and reported
the best result (having the highest F−measure), for the ‘top-k’
algorithm and the ‘top-p’ algorithm respectively, to better mea-
sure the influence of each model parameter. The effectiveness
variations when varying different model parameters are given in
Fig. 8, where the subfigures in the first row (Fig. 8(a)∼(d)) are
about Loader adopting the ‘top-k’ algorithm, and the second
row (Fig. 8(e)∼(h)) about ‘top-p’. Each column of Fig. 8
corresponds to a model parameter. Note that the two subfigures
in the first column (corresponding to the model parameter w)
have a different value range in the y-axis from the others.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

3490 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Fig. 9. A normal log sequence and an anomalous one from the testing set of HDFS. The first ten log messages of them are identical. The sliding window size
w = 10.

It can be seen from Fig. 8 that, Loader is particularly sensitive
to the sliding window size (w), no matter adopting the ‘top-k’
algorithm or the ‘top-p’ algorithm. Specifically, as w increases,
the Precision keeps increasing slowly, while the Recall first
grows and then drops, causing the F−measure to first increase
and then decrease. This means Loader tends to judge a log
sequence as normal (causing more false negatives), when the
sliding window size becomes larger. After analyzing the lengths
of all log sequences in HDFS (the length of a log sequence is
the number of log messages in it), we find the mean length is
19. We infer that, a proper sliding window size should be less
than the mean length, so that not too many log sequences need
padding to fill the sliding window to make Loader work, and
only require Loader to perform prediction once, i.e., predicting
the last log message. On the other hand, the sliding window
size should be neither too small nor too large, as too few log
messages could not convey enough information, while too many
log messages could bring too much noise, both would harm the
performance of Loader. For the remaining three parameters (N ,
h, and dff), the effectiveness of Loader fluctuates with differ-
ent parameter values, when the ‘top-k’ algorithm is adopted,
whereas keeps relatively stable when the ‘top-p’ algorithm is
adopted. This means the number of layers (N), the number
of heads in multi-head self-attention (h), and the inner layer
dimension of feed-forward network (dff) do affect the learning
ability of Loader, but the effectiveness can be improved via
selecting a proper set of candidate log templates at each sliding
step. This also confirms the flexibility and robustness of our
proposed ‘top-p’ algorithm.

F. A Simple Illustration of Detecting

To better understand how Loader detects anomalies, we
picked out a normal log sequence and an anomalous one from
the testing set of HDFS, which are shown in Fig. 9 (each number
represents the template ID of a log message). The first ten log
messages of these two log sequences keep identical, until the
11th. Because the sliding window size is 10 (the default value),
we fed the first ten log messages into Loader, and checked the
output probability distribution, which is visualized in Fig. 10.
We can see that the template with ID 13 has a probability of
more than 0.9999, so the candidate set C contains only one
element since λp = 0.95 (the default value), i.e., C = {13}. As
a result, the second log sequence in Fig. 9 would be reported
as anomalous by Loader, because 5 /∈ C. In practice, we could
terminate the detecting process of the second log sequence at

Fig. 10. The output probability distribution over all log templates, when
feeding Loader with the first ten log messages of the log sequences in Fig. 9.

this moment. For the first log sequence, however, we cannot say
it is normal at this moment, and need to go on checking the
following log messages.

V. CONCLUSION

Log anomaly detection is a critical task in service and system
management. Especially for today’s complex and large-scale
services and systems, it becomes difficult or even infeasible to
manually detect anomalies from massive logs in time. Thus,
automated log anomaly detection becomes imperative. In this
paper, we present a novel semi-supervised log anomaly detection
approach, Loader, which leverages the Transformer encoder,
instead of the commonly used RNN and its variants, to capture
patterns from normal log sequences. Loader only needs normal
log sequences for training. When detecting, it gives a candidate
set of the most possible log templates, that may appear after the
input log substring under normal conditions. If the template of
the actual next log message is not in the candidate set, then it
implies an anomaly. What’s more, we design a more flexible and
robust ‘top-p’ algorithm to determine the candidate set in detect-
ing, rather than the ‘top-k’ algorithm adopted by previous similar
methods. Extensive experiments have been conducted based on
three public log datasets, to validate the effectiveness of Loader.
The results confirm that, our approach Loader is better than or
competitive with other unsupervised and semi-supervised log
anomaly detection approaches.

REFERENCES

[1] S. Huang, C. Fung, K. Wang, P. Pei, Z. Luan, and D. Qian, “Using recurrent
neural networks toward black-box system anomaly prediction,” in Proc.
IEEE/ACM 24th Int. Symp. Qual. Service, 2016, pp. 1–10.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: LOADER: A LOG ANOMALY DETECTOR BASED ON TRANSFORMER 3491

[2] Q. Lin et al., “Predicting node failure in cloud service systems,” in Proc.
26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Foundations Softw.
Eng., 2018, pp. 480–490.

[3] L. Wang, N. Zhao, J. Chen, P. Li, W. Zhang, and K. Sui, “Root-cause
metric location for microservice systems via log anomaly detection,” in
Proc. IEEE Int. Conf. Web Serv., 2020, pp. 142–150.

[4] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data
centers using deep learning,” IEEE Trans. Serv. Comput., vol. 15, no. 3,
pp. 1411–1422, May/Jun. 2022.

[5] M. Cinque, R. D. Corte, and A. Pecchia, “Microservices monitoring with
event logs and black box execution tracing,” IEEE Trans. Serv. Comput.,
vol. 15, no. 1, pp. 294–307, Jan./Feb. 2022.

[6] X. Zhou et al., “Latent error prediction and fault localization for microser-
vice applications by learning from system trace logs,” in Proc. 27th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Foundations Softw. Eng., 2019,
pp. 683–694.

[7] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-
scale system problems by mining console logs,” in Proc. ACM SIGOPS
22nd Symp. Operating Syst. Princ., 2009, pp. 117–132.

[8] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H. Zhang,
“Automated it system failure prediction: A deep learning approach,” in
Proc. IEEE Int. Conf. Big Data, 2016, pp. 1291–1300.

[9] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in Proc. IEEE 27th Int. Symp. Softw. Rel.
Eng., 2016, pp. 207–218.

[10] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu, “A survey on
automated log analysis for reliability engineering,” ACM Comput. Surv.,
vol. 54, no. 6, 2021, Art. no. 130.

[11] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 1285–1298.

[12] W. Meng et al., “LogAnomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs,” in Proc. Int. Joint Conf. Artif.
Intell., 2019, pp. 4739–4745.

[13] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure diag-
nosis using decision trees,” in Proc. Int. Conf. Autonomic Comput., 2004,
pp. 36–43.

[14] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in IBM
BlueGene/L event logs,” in Proc. IEEE Int. Conf. Data Mining, 2007,
pp. 583–588.

[15] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: Automated classification of performance
crises,” in Proc. 5th Eur. Conf. Comput. Syst., 2010, pp. 111–124.

[16] X. Zhang et al., “Robust log-based anomaly detection on unstable log
data,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Foundations Softw. Eng., 2019, pp. 807–817.

[17] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from console
logs for system problem detection,” in Proc. USENIX Annu. Tech. Conf.,
2010, pp. 1–14.

[18] Z. Wang, Z. Chen, J. Ni, H. Liu, H. Chen, and J. Tang, “Multi-scale
one-class recurrent neural networks for discrete event sequence anomaly
detection,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2021, pp. 3726–3734.

[19] L. Yang et al., “Semi-supervised log-based anomaly detection via proba-
bilistic label estimation,” in Proc. IEEE/ACM Int. Conf. Softw. Eng., 2021,
pp. 1448–1460.

[20] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 6000–6010.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics - Hum. Lang.
Technol., 2019, pp. 4171–4186.

[22] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2021, pp. 1–21.

[23] S. Karita et al., “A comparative study on Transformer vs RNN in speech
applications,” in Proc. IEEE Autom. Speech Recognit. Understanding
Workshop, 2019, pp. 449–456.

[24] R. Vaarandi, “A data clustering algorithm for mining patterns from
event logs,” in Proc. IEEE 3rd Workshop IP Operations Manage., 2003,
pp. 119–126.

[25] R. Vaarandi and M. Pihelgas, “LogCluster - a data clustering and pat-
tern mining algorithm for event logs,” in Proc. Int. Conf. Netw. Service
Manage., 2015, pp. 1–7.

[26] H. Dai, H. Li, C.-S. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient
log parsing using n-gram dictionaries,” IEEE Trans. Softw. Eng., vol. 48,
no. 3, pp. 879–892, Mar. 2022.

[27] L. Tang and T. Li, “LogTree: A framework for generating system events
from raw textual logs,” in Proc. IEEE Int. Conf. Data Mining, 2010,
pp. 491–500.

[28] T. Xiao, Z. Quan, Z.-J. Wang, K. Zhao, and X. Liao, “LPV: A log parser
based on vectorization for offline and online log parsing,” in Proc. IEEE
Int. Conf. Data Mining, 2020, pp. 1346–1351.

[29] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in Proc.
IEEE Int. Conf. Data Mining, 2016, pp. 859–864.

[30] M. Du and F. Li, “Spell: Online streaming parsing of large unstruc-
tured system logs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 11,
pp. 2213–2227, Nov. 2019.

[31] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event
logs using iterative partitioning,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2009, pp. 1255–1264.

[32] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 11, pp. 1921–1936, Nov. 2012.

[33] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proc. IEEE Int. Conf. Web Serv., 2017,
pp. 33–40.

[34] A. Vervaet, R. Chiky, and M. Callau-Zori, “USTEP: Unfixed search tree
for efficient log parsing,” in Proc. IEEE Int. Conf. Data Mining, 2021,
pp. 659–668.

[35] J. Zhu et al., “Tools and benchmarks for automated log parsing,” in Proc.
Int. Conf. Softw. Eng.: Softw. Eng. Pract., 2019, pp. 121–130.

[36] S. Huang et al., “HitAnomaly: Hierarchical transformers for anomaly
detection in system log,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4,
pp. 2064–2076, Dec. 2020.

[37] H. Guo, S. Yuan, and X. Wu, “LogBERT: Log anomaly detection via
BERT,” in Proc. Int. Joint Conf. Neural Netw., 2021, pp. 1–8.

[38] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering based
problem identification for online service systems,” in Proc. IEEE/ACM Int.
Conf. Softw. Eng. Companion, 2016, pp. 102–111.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[40] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,”
2016, arXiv:1607.06450.

[41] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proc. Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
2007, pp. 575–584.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

Tong Xiao received the bachelor’s degree in soft-
ware engineering from the North University of China,
Taiyuan, China, and the master’s degree in computer
science from the National University of Defense
Technology, Changsha, China. He is currently work-
ing toward the PhD degree with the College of Com-
puter Science and Electronic Engineering, Hunan
University, Changsha, China. His research interests
include automated log analysis, anomaly detection,
failure prediction, data mining, and deep learning.

Zhe Quan received the PhD degree in computer
science from the University de Picardie Jules Verne,
France. He is currently a professor with the Col-
lege of Computer Science and Electronic Engineer-
ing, Hunan University (HNU), Changsha, China. His
main research interests include parallel and high-
performance computing, artificial intelligence, data
mining, and machine learning. He has published a
set of research papers in venues such as IEEE Trans-
actions on Parallel and Distributed Systems, AAAI,
IJCAI, ICDM, ICSC, and BIBM.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

3492 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2023

Zhi-Jie Wang (Member, IEEE) received the PhD
degree in computer science from the Shanghai Jiao
Tong University, Shanghai, China. He is currently an
Associate Professor with the College of Computer
Science, Chongqing University (CQU), Chongqing,
China. His current research interests include artifi-
cial intelligence, machine learning, data mining, and
databases. He has published a set of research papers
in these fields including IEEE Transactions on Paral-
lel and Distributed Systems, IEEE Transactions on
Knowledge and Data Engineering, IEEE Transac-

tions on Multimedia, IEEE/ACM Transactions on Audio, Speech, and Language
Processing, IEEE Transactions on Computational Social Systems, AAAI, IJCAI,
and ICDM. He is also a member of ACM and CCF.

Yuquan Le received the BS degree from Nanchang
University, and the MS degree from Hunan Univer-
sity. He is currently working toward the PhD degree
with Hunan University. His current research interests
include natural language processing, legal artificial
intelligence, data mining, and machine learning. He
has published research papers in venues such as
IJCAI, ECAI, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, CIKM, ICASSP,
AACL, and PAKDD.

Yunfei Du received the BS degree from the Beijing
Institute of Technology, Beijing, China, and the PhD
degree from the National University of Defense Tech-
nology, Changsha, China. He is now the chief archi-
tecturer for cluster computing in Huawei Technolo-
gies Co., Ltd. His research interests include parallel
and distributed systems, fault tolerance, and scientific
computing. He has published a set of research papers
in venues such as IEEE Transactions on Parallel and
Distributed Systems, AAAI, PACT, and ICCAD.

Xiangke Liao received the BS degree from the De-
partment of Computer Science and Technology, Ts-
inghua University, Beijing, China, in 1985, and the
MS degree from the National University of Defense
Technology, Changsha, China, in 1988. He is a pro-
fessor with the College of Computer Science and
Electronic Engineering, Hunan University, Chang-
sha, China. His research interests include parallel and
distributed computing, high-performance computer
systems, operating systems, cloud computing, and
networked embedded systems.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, Wuhan, China, in
2003. He was a visiting scholar with the University of
Illinois at Urbana-Champaign, Champaign, IL, USA,
from 2004 to 2005. He is currently a full professor
with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, China. He
has served on the editorial boards of the IEEE Trans-
actions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions

on Sustainable Computing, and the IEEE Transactions on Industrial Informatics.
His current research interests include parallel computing, cloud computing, Big
Data computing, and neural computing.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Univer-
sity of New York. He is also a national distinguished
professor with Hunan University, China. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient
computing and communication, embedded systems
and cyber-physical systems, heterogeneous comput-
ing systems, Big Data computing, high-performance
computing, CPU-GPU hybrid and cooperative com-
puting, computer architectures and systems, com-

puter networking, machine learning, intelligent and soft computing. He has
authored or coauthored over 900 journal articles, book chapters, and refereed
conference papers, and has received several best paper awards. He holds nearly
70 patents announced or authorized by the Chinese National Intellectual Property
Administration. He is among the world’s top 5 most influential scientists in
parallel and distributed computing in terms of both single-year impact and
career-long impact based on a composite indicator of Scopus citation database.
He has chaired many international conferences. He is currently an associate
editor of the ACM Computing Surveys and the CCF Transactions on High
Performance Computing. He has served on the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems, the IEEE Transactions on
Computers, the IEEE Transactions on Cloud Computing, the IEEE Transactions
on Services Computing, and the IEEE Transactions on Sustainable Computing.
He is an AAAS fellow and an AAIA fellow. He is also a member of Academia
Europaea (Academician of the Academy of Europe).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on November 03,2023 at 12:49:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

