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Abstract—Maximizing profit is a key goal for cloud service providers in themodern cloud businessmarket. Service revenue and business

cost are twomajor factors in determining profit and highly depend onmultiserver configuration. Understanding the relationship between

multiserver configuration and profit is important to service providers. Although existing articles have explored this issue, few of them

consider deadlinemiss rate and soft error reliability of cloud services inmultiserver configuration for profit maximization. Since deadline

misses violate cloud services’ real-time requirements and soft error prevents successful processing of cloud services, it is necessary to

consider the impact of deadlinemiss rate and soft error reliability on service providers’ profitswhen configuring themultiserver. This article

introduces a deadlinemiss rate and soft error reliability awaremultiserver configuration scheme for maximizing cloud service providers’

profit. Specifically, we derive the deadlinemiss rate considering the heterogeneity of cloud service requests, and propose an analytical

method to compute the soft error reliability ofmultiserver systems. Based on the new deadlinemiss rate and soft error reliability models, we

formulate themultiserver configuration optimization problem and introduce an augmented Lagrangemultiplier-based iterativemethod to

find the optimalmultiserver configuration. Extensive experiments evaluate the efficacy of the proposedmultiserver configuration approach.

Compared with the two state-of-the-art methods, the profit gained by our scheme can be up to 11.92% higher.

Index Terms—Cloud service, deadline miss rate, multiserver configuration, profit maximization, soft error reliability

Ç

1 INTRODUCTION

CLOUD computing is a successful commercial paradigm
that delivers user services over communication net-

works and virtualizes infrastructure resources into ordinary

commodities in a pay-as-you-go manner [1], [2], [3], [4], [5].
With the rapid development of virtualization technology
and the increasing scale of infrastructure deployment, cloud
service providers such as Amazon [7], Google [8] andMicro-
soft Azure [9] are gaining popularity. In the cloud business
market, service providers would naturally pursue the goal of
maximum profit. Meanwhile, for users, they expect high-
quality cloud services in terms of timeliness and correctness.
Therefore, how to configure a cloud infrastructure platform
based on the features of cloud service requests for maximiz-
ing profit and ensuring the timeliness and correctness of ser-
vice request processing is of utmost importance.

Timeliness of service refers to satisfying the real-time
requirements of service requests such as deadlines. Differ-
ent from hard real-time constraints found in cyber-physical
systems such as automotive and airplane controllers [10],
many common service requests in the Cloud [11], such as
video/music-on-demand, cloud gaming, and scientific com-
puting, are associated with soft real-time requirements. For
such service requests in the Cloud, their timeliness is not
stringent and occasional deadline misses are acceptable but
would decrease the quality of service. Service requests in
the Cloud may experience transient faults [12], which may
prevent successful processing of service requests. In sum-
mary, only when service requests are successfully processed
within the deadline can bring profit to the service provider.

Resource scheduling (e.g., multiserver configuration) in
cloud computing plays a key role in timely and successful
completion of service requests. Resources scheduling can be
divided into two broad categories based on the type of infor-
mation on which the scheduling decisions are made [13]:
average-based scheduling [1], [2], [3], [4], [5] and instantaneous-
based scheduling [14], [15]. Average-based scheduling uses
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averaged metrics (e.g., the average number of arrival service
requests and the average processing capabilities of servers)
to guide resource management, which is also called static
scheduling. On the other hand, instantaneous-based sched-
uling guides resourcemanagement by instantaneousmetrics
(e.g., the execution time of current processing requests and
current residual processing capabilities of each server),
which is also called dynamic scheduling. Typically, instanta-
neous-based scheduling outperforms average-based sched-
uling. Nevertheless, obtaining real-time system information
[13] to schedule each service request induces high time and
energy overheads [13]. This becomes more severe when the
cloud servers are geo-distributed, in which the latency for
retrieving and transmitting system informationmay be over-
whelming, or when the recorded information at servers is
not always available. Furthermore, in cloud data centers, an
easy-to-maintain and large-scale inexpensive network usu-
ally tends to deliver service requests in a first-come-first-
serve (FCFS) order [16]. Therefore, this work explores aver-
age-based scheduling to optimize the multiserver configura-
tion for intermittent cloud service requests with soft real-
time requirements.

The multiserver configuration problem for maximizing
cloud service providers’ profit has been studied in [1], [2],
[3], [4], [5] which assume that cloud service requests have
the same maximum waiting time. However, the cloud ser-
vice requests’ maximum waiting time is not always the
same due to the heterogeneity of cloud service requests [17].
In addition, none of the existing papers considers deadline
miss rate and soft error reliability simultaneously which do
affect the profit of service providers. In this paper we
explore an optimal multiserver configuration that maxi-
mizes the profit of cloud service providers with deadline
miss rate and soft error reliability consideration. Our main
contributions are summarized as follows.

� We derive the cloud service requests’ deadline miss
rate based on the probability distribution of cloud
service requests’ slack, and model the soft error reli-
ability of processing service requests on the multi-
server system.

� Based on our deadline miss rate and soft error reli-
ability models, we formulate the profit maximization
problem as a constrained optimization problem and
then convert it into an unconstrained optimization
problem. The conversion is achieved by utilizing the
augmented Lagrange multiplier (ALM).

� We design an iterative algorithm to find the optimal
solution to the converted unconstrained problem
(i.e., the profit maximization problem), which is con-
sidered as the solution to the constrained optimiza-
tion problem if the solution error is less than a
sufficiently small threshold.

� Comprehensive simulation experiments are carried
out to evaluate the proposed scheme by i) observing
the relationship between the profit and themultiserver
configuration under varying setups, and ii) comparing
the performance of our scheme with that of two state-
of-the-art (SOTA)methods inmaximizing profit.

Results show that our scheme outperforms the two SOTA
methods by asmuch as 11.92% profit increase.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on profit maximization. Sec-
tion 3 introduces the cloud business market architecture,
cloud service model, cost model, and service charge model
considered in this paper. In Section 4, we present our dead-
line miss rate and soft error reliability models as well as for-
mulate the profitmaximization problem. Section 5 details our
proposed multiserver configuration optimization scheme. In
Section 6, we evaluate our scheme through three sets of
experiments. Finally, Section 7 concludes the paper.

2 RELATED WORK

Since a cloud service provider’s profit is related to the mon-
etary cost of processing cloud customers’ service requests
and the revenue earned by providing customers cloud serv-
ices, increasing services’ revenue and reducing operation
costs are both helpful in increasing the profit.

Pricing is a common way to increase service revenue. It
can be broadly classified into two categories: static and
dynamic pricing. Unlike static pricing schemes that the ser-
vice price is fixed, dynamic pricing schemes allow flexible
adjustment of service price based on the customer demand
and hence have beenwidely used by cloud service providers.
For example, a service level agreement-based dynamic ser-
vice pricingmethod (i.e, TSPM) is proposed in [5] to improve
the service provider’s revenue. To guarantee the revenue of
service providers, Mei et al. [1] design a hybrid server rent-
ing strategy containing a long-term and a short-term renting
method that are both developed based on an M/M/mþD
queuing theory. Considering the interaction between cloud
customers and service providers, customer perceived value
is introduced to design a dynamic pricing model which is
further used to increase service revenue [3]. Inspired by [3],
Wang et al. [4] adopt customer perceived value and service
satisfaction to propose a dynamic strategy and present a sim-
ulated annealing based approach which estimates the
demand of customers for cloud services and then sets the
multiserver configuration for earning more revenue. A feed-
back control technique is also developed in [4] to mitigate
the risk induced by inaccurate service demand prediction.

Reducing operation cost for profit maximization has been
explored recently. Ye et al. [18] present an autonomous
resource management algorithm to select the shared resour-
ces or dedicated resources. The algorithm can reduce serv-
ers’ energy consumption and hence decrease electricity bill
by using the least number of servers to meet the service-
level requirements. Mazzucco et al. [19] propose a strategy
that maximizes the service provider’s profit by estimating
user demand and system behavior as well as dynamically
reducing the number of activated servers. Beloglazov et al.
[20] develop a resource allocation heuristic for energy con-
sumption reduction by increasing the servers’ utilization.
An optimal power and workload assignment scheme is
designed in [21] for saving energy of heterogeneous servers.

Although existing works are effective for profit improve-
ment, few of them consider the adverse impact of soft
errors on processing of service requests. In a cloud com-
puting system, soft errors are unacceptable since they
propagate through the system and induce corrupted out-
puts or even system crashes [22], [23]. In addition, most
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existing approaches assume that cloud service requests have
the same maximum waiting time when configuring a multi-
server. Under this assumption, the heterogeneity in the tim-
ing requirements of cloud service requests is ignored [17],
whichmay lead to a high deadlinemiss rate or inappropriate
server configuration and thus in turn decrease the profit [39].
To fill the gap in existing literature, this paper proposes a
deadline miss rate and soft error reliability aware multi-
server configuration scheme to maximize cloud service
providers’ profit while considering the heterogeneity of ser-
vice requests as well as the impact of transient faults.

3 MODEL AND PROBLEM FORMULATION

This section describes the architecture of the cloud business
market and related models adopted in our work.

3.1 Architecture of Cloud Business Market

Fig. 1 illustrates a typical three-tier architecture of the cloud
business market which is considered in this paper. This
architecture contains three entities: 1) cloud infrastructure
providers (CIPs), 2) cloud service providers (CSPs), and 3)
cloud customers (CCs). As an attractive business model (i.e.,
cloud computing environment model), this structure has
been widely found in the actual cloud service market [7], [8],
[9] and commonly adopted in the literature [1], [2], [3], [4]. In
this architecture, CIPs own and maintain hardware and soft-
ware facilities, and CSPs pay for leasing infrastructure
resources provided by CIPs. CSP uses the rented infrastruc-
ture resources to build up the cloud service platform (i.e., the
multiserver system) and prepares cloud services with virtu-
alization techniques, i.e., virtual machines, and then charges
CCs for providing cloud services. A CC submits a service
request to a CSP, receives the desired result from the CSP
with certain service-level agreement and pays for the service
based on the amount and quality of the service.

Similar to [1], [2], [3], [4], [5], CSPs are conceptually dis-
tinct from CIPs in the sense that CSPs explore the intelligent
algorithms to optimize multiserver configuration to process
CCs’ service requests for the desired results. In other words,
CSPs optimize the configuration of the multiserver system
in pursuit of maximum cloud service profit, while CIPs sim-
ply charge CSPs based on the rented infrastructure resour-
ces. In practice, the CSP also cloud be the CIP (who
provides IaaS, PaaS, and SaaS simultaneously) and our
model can also handle this case by combining the rental
cost and utility cost, or a separate party that only provides

CCs with PaaS or SaaS services. This attractive three-tier
architecture also can be found in the cluster computing sys-
tem [5] with three parties (i.e., cluster nodes, cluster manag-
ers, and consumers) or in the grid computing system [5] with
three parties (i.e., resource providers, service providers, and
clients).

3.2 Cloud Service Model

Three modes of services are generally provided by CSPs: 1)
infrastructure-as-a-service (IaaS), 2) platform-as-a-service
(PaaS), and 3) software-as-a-service (SaaS). In our work, we
configure the cloud service platform to process customers’
cloud service requests. We consider the scenario that infra-
structure resources are rented by PaaS/SaaS cloud service
provider from the IaaS provider. Common examples of IaaS
are Google Compute Engine and Amazon CloudFormation
which provision the cloud infrastructure resources through
virtual machines [4]. Thanks to the virtualization technol-
ogy, CSPs are able to focus on providing the cloud service
business without spending any efforts in maintaining hard-
ware platforms. In this paper, our goal is to maximize CSPs’
profit by optimizing the configuration settings of cloud ser-
vice platforms. Similar to [1], [2], [3], [4], the cloud service
platform used in our work is viewed as a multiserver sys-
tem. The system architecture can vary [5]. For example, a
multiserver system could be a group of blade servers, a set
of commodity servers, or a multicore processor [5]. For sim-
plicity, we refer to the blades [25]/processors [26]/cores [27]
above collectively as servers.

To formally model the multiserver system, we make the
following assumptions. Each multiserver system deploys
dedicated software to serve one type of service requests [2],
e.g., Fig. 1 shows three multiserver systems for scientific
computing, e-commerce computing, and image processing,
respectively. A multiserver system is characterized by two
basic features: the arrival rate of cloud service requests and
the expected number of instructions for processing a cloud
service request if no soft errors occur [5]. The adopted mul-
tiserver system is equipped with m homogeneous servers
with execution speed s. The multiserver configuration m
and s are the two basic characteristics of the multiserver sys-
tem. Although the cloud infrastructure is inherently hetero-
geneous, this assumption on the multiserver system is still
reasonable since these servers usually prefer load-bal-
anced [28]. As in the literature [1], [2], [3], [4], [5], [13], a
multiserver system is viewed as an M/M/m queuing sys-
tem. The arrival of service requests in the multiserver sys-
tem follows a Poisson distribution with an arrival rate
denoted by �. Cloud service requests follow the FCFS pol-
icy, i.e., they wait in a queue with infinite storage capacity.

The resource for processing a service request from a
cloud customer is quantified by the number of instructions
r. The number of instructions is assumed to follow the expo-
nential distribution and its mean is denoted by r. Therefore,
the service request processing time t can be calculated by
t ¼ r=s, and also follows the exponential distribution. The
mean of t is represented by t, which is calculated by t ¼ r=s.
The server service rate is represented by m, which is the
average number of service requests that can be processed at
the server running speed s in a unit of time. The system uti-
lization is then calculated as

Fig. 1. Three-tier architecture of the cloud business market.
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r ¼ �

mm
¼ �r

ms
: (1)

Let Pk be the probability that k requests are waiting or proc-
essing. Similar to [29], we have

Pk ¼ P0
ðmrÞk
k! ; k4m

P0
mmrk

m! ; k > m

(
; (2)

where P0 represents the probability that there is no cloud
service request in the system and is calculated by

P0 ¼
Xm�1

k¼0

ðmrÞk
k!

þ ðmrÞm
m!

� 1

1� r

 !�1

: (3)

Let PW ðxÞ denote the probability that a service request’s
waiting time is less than x (i.e., the maximum waiting time),
which is in fact the Cumulative Distribution Function (CDF)
of x. According to the queuing theory [29], PW ðxÞ can be
derived by using

PWðxÞ ¼ 1� Pm

1� r
e�mmð1�rÞx; (4)

where Pm can be derived based on Eq. (2) and is expressed as

Pm ¼ ðmrÞm
m!

Xm�1

k¼0

ðmrÞk
k!

þ ðmrÞm
m!ð1� rÞ

 !�1

: (5)

3.3 Cost Model

CSPs need to pay for the cloud infrastructure resources to
CIPs. The cost of a CSP can be divided into two parts: 1) the
cloud infrastructure renting cost, and 2) the utility cost [1],
[2], [3], [4]. The CSP rents servers from a cloud infrastruc-
ture provider and pays the corresponding rent. The utility
cost is essentially the cost of energy consumption and is
determined by the number and speed of the m-server sys-
tem [5], [6]. Assuming that the renting price of a server per
unit time is g, then the renting cost of a m-server system per
unit time is

CostrðmÞ ¼ mg: (6)

The energy cost of a multiserver system is obtained by the
product of energy price and system energy consumption.
Although the energy consumption of a multiserver may
come from various sources such as processors, network com-
ponents, and cooling systems, the processor energy con-
sumption dominates the energy consumption of the entire
multiserver system [30]. This is because processors dominate
system-wide power consumption [30] and the system-wide
power consumption is in proportion to the processors’
power consumption [31]. Therefore, we focus on the energy
consumption of processors in this paper. The energy con-
sumption of a CMOS processor consists of dynamic and
static energy consumption. The dynamic power is calculated
as NswCLf

3 [5], [32], where Nsw denotes the average gate
switching factor at each clock cycle of the CMOS processor,
CL represents the processor loading capacitance, and f is the
clock frequency. The server speed s is linearly proportional
to the clock frequency of its processor f , i.e., s / f . In this

context, for simplicity, we rewrite the dynamic power of a
server as �s3 where � is a constant related to the hardware.
Since we assume that the arrival of service requests follows a
Poisson distribution, amultiserver system is not always fully
utilized. Given the multiserver’s utilization r, the dynamic
energy consumption of the system with m servers and run-
ning speed s during a unit time can be calculated as mr�s3.
Let E� and d be the static energy consumption of a server
during a unit time and the energy price, respectively. The
multiserver system’s energy cost per unit time can be calcu-
lated by

Costutðm; sÞ ¼ dðmr�s3 þmE�Þ
¼ dmðr�s3 þ E�Þ: (7)

Therefore, we obtain the total cost of the service provider
per unit time, denoted by Costtot, as

Costtot ¼ Costr þ Costut

¼ mg þ dmðr�s3 þ E�Þ
¼ m g þ dðr�s3 þE�Þ� �

: (8)

Note that we focus on the homogeneous multiserver sys-
tem and hence do not consider the server heterogeneity in
the configuration model for the multiserver system. But this
model can still be extended to the heterogeneous multi-
server system by adopting the scheme presented in [2], [28].

3.4 Service Charge Model

To ensure customer satisfaction, negotiation on the service
price and the service quality between the service provider
and customers is needed. Without loss of generality, we
adopt a popular service charge model [1], [2] to describe the
negotiation. It is also a service-level-agreement, which is
reflected by the waiting time of requests. The service charge
of the cloud service for CCs is related to the amount of the
service requests and the service-level-agreement. Specifi-
cally, the service charge model is developed based on the
service request processing requirement r and waiting time
$ and it is expressed as

SCðrÞ ¼ ar; 04$4x

0; $ > x

�
:(9)

a is a constant that represents the service charge per unit
service request. x denotes the maximum waiting time in a
waiting queue that a service request can tolerate. The
expected charge to service requests during a unit time when
all the requests are timely served, is then derived as [1]

C ¼ �ar; (10)

where � and r are the cloud service request arrival rate and
the expected number of instructions of the cloud service
request without suffering any soft errors, respectively.

3.5 The Profit Maximization Problem

The CSP’s profit per unit time is defined as the difference
between the service revenue gained from providing cloud
services to customers and the monetary cost of using a mul-
tiserver system and is expressed as
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Profit ¼ Revserdmr � Costtot; (11)

where Revserdmr is the service revenue earned by the portion of
the service requests that are successfully processed and do
not miss their deadlines. The details on the derivation of
Revserdmr is presented in Section 4. Costtot is the total cost
given in Eq. (8).

The goal of this work is to decide the number of servers
and the servers’ speed for maximizing the profit. To this
end, we formulate the profit maximization problem as

Max : Profitðm; sÞ (12)

s.t. : r < 1; (13)

sl � s � su; (14)

ml � m � mu: (15)

Eq. (13) indicates the utilization constraint that the multi-
server utilization r must be lower than 1, in order to avoid
server crashes [33]. Eqs. (14) and (15) represent the con-
straints on sever speed and server size, respectively. sl and
su are the lower and upper bound on the server speed,
respectively. ml and mu denote the lower and upper bound
on the number of servers, respectively.

4 DEADLINE MISS RATE AND RELIABILITY

This section presents our method to derive the deadline
miss rate of cloud service requests, the soft error reliability
for average-based scheduling, and the service revenue con-
sidering both deadline miss rate and soft error reliability.

4.1 Deadline Miss Rate of Service Requests

As aforementioned, we focus on the service requests with
soft real-time requirements, i.e., occasional deadline misses
can be tolerated by service requests [13]. The real-time
requirement of such service requests is characterized by
two commonly used metrics, i.e., slack [11] and deadline
miss rate [34]. Slack is defined as the maximum waiting
time (i.e., x in Eqs. (4) and (9)) that can be tolerated by a ser-
vice request before being processed. In other words, for a
newly arrived cloud service request in the waiting queue of
the multiserver system, if the waiting time of this request is
less than its slack, the deadline requirement of this service
request would be met. The deadline miss rate is defined as
the ratio between the number of cloud service requests that
miss their corresponding deadlines and the total number of
cloud service requests to be served. The smaller the dead-
line miss rate, the better the system performance as well as
the more profit gained by the service provider.

Referring to [11], [16], we assume the slack of a service
request follows a uniform distribution and has a soft real-
time requirement

SðxÞ ¼
0; x < Smin
1

Smax�Smin
; Smin � x � Smax

0; x > Smax

8<
: : (16)

Smin is the minimum slack of a service request, while Smax

denotes the maximum value of the slack. According to
Eqs. (4), (5), and (16), the deadline miss rate (DMR) of ser-
vice requests for a multiserver system can be derived as

DMR ¼
m�mðe�ðms

r
��ÞSmin � e�ðms

r
��ÞSmaxÞ

ðsrÞm�1ðms
r � �Þ2ðSmax � SminÞ½m!

Pm�1
k¼0

ðmrÞk
k! þ ðmrÞm

1�r
�
: (17)

To ensure the quality of services, the cloud service requests
missing deadlines are free of charge [1], [2]. Under this
assumption, the revenue from the cloud services during a
unit timewhen they are all successfully completed is

Revdmr ¼ �ar � ð1�DMRÞ: (18)

4.2 Soft Error Reliability for Average-Based
Scheduling

There are extensive research efforts [35], [36], [37] that model
the soft error reliability for instantaneous-based scheduling.
However, there are few works on modeling the soft error
reliability for the average-based scheduling. Since the appli-
cation of our interests is the average-based scheduling of
intermittent cloud service requests with soft real-time
requirements, we propose a new approach to derive the
expected soft error reliability for the average-based schedul-
ing of service requests as follows.

Let �se be the soft error rate of a server, which is calcu-
lated as the average number of soft errors experienced by
the server during a unit time. According to [35], [36], [37],
soft error rate can be modeled by an exponential distribu-
tion as

�seðsÞ ¼ �0e
d0

smax�s
smax�smin : (19)

Clearly, when the server is running at the maximum speed,
i.e., s ¼ smax, the server system error rate is �0. d0 represents
a hardware-related constant used to measure the sensitivity
of the error rate to dynamic voltage scaling.

When the service request runs on the server, the reliabil-
ity of a service request with the existence of soft errors is the
probability that the cloud service request is processed with-
out suffering any soft errors. Based on the error rate model
given in Eq. (19), it can be formulated as

Rðm; s; rÞ ¼ e��seðsÞ r
ms: (20)

Like the assumption in [40], in this paper, each service
request can tolerate at most one transient fault when run on
the server and re-execution is used to improve the reliability
of the system due to soft errors. Note that the service
request is deemed as failed if itself and its re-execution both
suffer a failure. Hence, the soft error reliability of a service
request with re-execution can be obtained by

Rreðm; s; rÞ ¼ 1� 1�Rðm; s; rÞð Þ2: (21)

Given the above-mentioned models, the following theo-
rem describes how to obtain the expected soft error reliabil-
ity of a request.

Theorem 4.1. The expected soft error reliability of a service
request, represented by SER satisfies the following

SER ¼ ms � 2

msþ �seðsÞr�
1

msþ 2�seðsÞr
� �

: (22)
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Proof. The number of instructions of a service request r
with mean r is a random variable that follows the expo-
nential distribution. The probability distribution function
of r is frðzÞ ¼ 1

r e
�z=r. According to Eq. (21) and the proba-

bility distribution function fr, the expected soft error reli-
ability is derived as

SER ¼ Rreðm; sÞ ¼ Rreðm; s; rÞ
¼
Z 1

0

frðzÞ � Rreðm; s; zÞ dz

¼
Z 1

0

1

r
e�z=r � ð1� ð1� e��seðsÞ z

msÞ2Þ dz

¼
Z 1

0

1

r
e�z=r dz

�
Z 1

0

1

r
e�z=r � ð1� 2e��seðsÞ z

ms þ e�2�seðsÞ z
msÞ dz

¼
Z 1

0

2

r
e�zð1

r
þ�seðsÞ

ms Þ dz�
Z 1

0

1

r
e�zð1

r
þ2�seðsÞ

ms Þ dz

¼ 2

r
� 1

1=rþ �seðsÞ
ms

� 1

r
� 1

1=rþ 2�seðsÞ
ms

¼ ms � 2

msþ �seðsÞr�
1

msþ 2�seðsÞr
� �

:

tu
Given the formula for the expected soft error reliability

for service requests, the expected service revenue by serving
these requests during a unit time, which use re-execution to
improve soft error reliability, is calculated as

Revserdmr ¼ �ar � ð1�DMRÞ � SER; (23)

where � is the cloud service requests’ arrival rate and the
service price per service request is represented by a.

Fig. 2 plots the expected soft error reliability of a service
request under varying multiserver settings. In this figure,
we set s ¼ ½0:1; 5:0�, m ¼ ½1; 8� and use the same value of
parameters �0, d0 as in [38]. The results clearly show that
the expected soft error reliability increases with the growth
of server size and speed. Although the expected system reli-
ability due to soft errors can be effectively improved by
increasing server size or speed, a higher cost (and hence a
lower profit) is inevitable. Thus, it is crucial to consider the
impact of soft error reliability on cost when the CSP config-
ures the multiserver to achieve maximum profit.

5 PROFIT MAXIMIZATION

Given the problem formulation inEqs. (11), (12), (13), (14), and
(15) and theDMR and SER computation models, this section
presents the details of our augmented Lagrange multiplier
based approach to determine a multiserver configuration that
maximizes the CSP’s profit. Specifically, our approach lever-
ages augmented Lagrange multiplier, since augmented
Lagrange multiplier is powerful for solving constrained opti-
mization problems. Our approach contains two key steps.
First, we convert the profit maximization problem defined in
Eqs. (11), (12), (13), (14), and (15) into an unconstrained prob-
lem by building an augmented Lagrange function. Then, to
obtain the optimal solution to the unconstrained problem, we
develop an augmented Lagrange multiplier-based iterative
algorithm. The obtained optimal solution to the uncon-
strained problem is deemed as an optimal solution to the cor-
responding constrained problem when the solution error is
less than a sufficiently small threshold. For ease of reading,
Table 1 shows the main variables and descriptions in this
paper.

5.1 Augmented Lagrange Function

Similar to [3], the problem of profit maximization for the
service provider is first converted into an unconstrained
minimization problem by building an augmented Lagrange
function. In order to utilize the augmented Lagrange
method [3], the profit maximization objective defined in
Eq. (12) is converted into a minimization function (i.e., the
standard form) as

Min : �Profit: (24)

Combining the equations given in Eqs. (8), (10), (11), (17),
and (22) with the minimization function, our constrained
minimization problem can be rewritten as

Min : Oðm; sÞ ¼ �Profit

¼ �ð�arð1�DMRÞ � SER� CosttotÞ (25)

s. t. : g1ðm; sÞ ¼ 1� �r

ms
> 0 (26)

g2ðm; sÞ ¼ m�ml � 0 (27)

g3ðm; sÞ ¼ mu �m � 0 (28)

g4ðm; sÞ ¼ s� sl � 0 (29)

g5ðm; sÞ ¼ su � s � 0; (30)

where gjðm; sÞ ðj ¼ 1; 2; 3; 4; 5Þ are the constraints on m and
s corresponding to constraints in Eqs. (13), (14), and (15).
The above formulation (i.e., Eqs. (25), (26), (27), (28), (29),
and (30)) can be converted into an unconstrained minimiza-
tion problem (i.e., the augmented Lagrange function) as

fðm; s; s; v; yÞ ¼ Oðm; sÞ �
X5
j¼1

vjðgjðm; sÞ � y2j Þ

þ s

2

X5
j¼1

ðgjðm; sÞ � y2j Þ2; (31)

where s ðs > 0Þ is a constant denoting the penalty factor
of the augmented Lagrange function, v is the Lagrange

Fig. 2. The expected soft error reliability of a service request processed
at varying multiserver settings.
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multiplier vector defined by the multiplier method, and y is
the vector used to convert inequality constraints into equal-
ity constraints. The augmented Lagrange function defined
in Eq. (31) is also called the multiplier penalty function.

5.2 Optimal Multiserver Configuration for Profit
Maximization

For obtaining the optimal solution (i.e., m and s) of Eq. (31),
we need to transform fðm; s; s; v; yÞ to fðm; sÞ by removing
s, v, and y. If we could remove them, we can find the optimal
solution by calculating the partial derivatives of fðm; sÞwith
respect to m and s. Since s is a constant and the Lagrange
multiplier vector v can be readily derived during the process
of solving the augmented Lagrange function (i.e., Eq. (31)),
below we first describe how we remove y in fðm; s; s; v; yÞ
and then detail the partial derivatives of fðm; sÞwith respect
tom and s. Note that the server speed cloud be taken from a
predefined set if not considering overclocking, in this case,
our model (Eqs. (12), (14), and (15)) is still applicable, which
only needs to modify the Eq. (14). To the solution, for a lim-
ited and discrete server speed set, the solution can traverse
to find the optimal server speed, in other words, the solution
can treat s as a known variable (i.e., fðm; sÞ changes to fðmÞ),
then it can derive the optimal server size m under an arbi-
trary server speed s.

5.2.1 Transform fðm; s; s; v; yÞ to fðm; sÞ
y is an auxiliary matrix used to transform inequality con-
straints of Eqs. (27), (28), (29), and (30) into equality con-
straints in order to build the augmented Lagrange function.
The main idea of removing y is to express y as a function of
m, s, s, and v when Eq. (31) reaches its minimum. The alge-
braic transformation for removing y proceeds as follows.

We first use the method of completing the square for
deriving theminimumvalue of Eq. (31) with respect to y, i.e.,

fðm; s; s; v; yÞ ¼ Oðm; sÞ

þ
X5
j¼1

�vjðgjðm; sÞ � y2j Þ þ
s

2
ðgjðm; sÞ � y2j Þ2

h i
¼ Oðm; sÞ

þ
X5
j¼1

s

2
ðy2j �

1

s
ðsgjðm; sÞ � vjÞÞ2 �

v2j
2s

" #
: (32)

Clearly, the augmented Lagrange function f reaches its
minimum value only when ðy2j � 1

s
ðsgjðm; sÞ � vjÞÞ2 takes

the minimum value, i.e., yj meets the condition that

y2j ¼ 1
s
ðsgjðm; sÞ � vjÞ; sgjðm; sÞ � vj � 0

y2j ¼ 0; sgjðm; sÞ � vj < 0

(
: (33)

From Eq. (33), we can deduce that

y2j ¼
1

s
maxð0; sgjðm; sÞ � vjÞ; j ¼ 1; 2; 3; 4; 5: (34)

We can simplify the augmented Lagrange function by
substituting Eq. (34) into Eq. (31). Finally, y is successfully
removed and we get

fðm; sÞ ¼ Oðm; sÞ

þ 1

2s

X5
j¼1

maxð0; vj � sgjðm; sÞÞ� �2�v2j

h i
: (35)

5.2.2 Compute the Partial Derivatives of fðm; sÞ
To get the minimum value of fðm; sÞ, we need to compute
the partial derivatives of fðm; sÞ with respect to m and s.

TABLE 1
Description of Main Variables

Variable Description

m server size, i.e., the number of servers in a multiserver system
s server speed, i.e., the execution speed of a server
r system utilization of a multiserver per unit time
Pk probability that k service requests are waiting or processing in the system
P0 probability that there is no service request in the system
x maximum waiting time of a service request can tolerate in the system
PW ðxÞ probability that a service request’s waiting time is less than x
� number of service requests arrive to the system per unit time
�se number of soft errors experienced by the server per unit time
C expected charge to service requests during a unit time when all the requests are timely served
DMR ratio between the number of requests that miss their deadlines and the total number of requests
SER probability of a service request with re-execution which can be successfully executed
Revserdmr expected service revenue by serving service requests during a unit time

Costtot total cost of the service provider per unit time
v Lagrange multiplier vector, i.e., v ¼ fvjg; ðj ¼ 1; 2; 3; 4; 5Þ
y auxiliary variable vector, i.e., y ¼ fyjg; ðj ¼ 1; 2; 3; 4; 5Þ
s a constant used to constrain the bounds of the augmented Lagrangian function
gjðm; sÞ; ðj ¼ 1; 2; 3; 4; 5Þ constraints onm and s corresponding to constraints in Eqs. (13), (14), and (15)
fðm; s; s; v; yÞ augmented Lagrangian function that is converted by Eqs. (25), (26), (27), (28), (29), and (30)
Oðm; sÞ objective function, i.e., Eq. (25)
F ðm; sÞ function used to simplify expressions, i.e., Eq. (36)
D1; D2; D3; D4 functions used to simplify expressions, which are in the 4th paragraph of Section 5.2.2
Gjðm; sÞ function used to simplify expressions, which is in the 5th paragraph of Section 5.2.2
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Below, we detail the computation of these derivatives. For
better readability, we let F ðm; sÞ represent the second term
in Eq. (35), i.e.,

F ðm; sÞ ¼ 1

2s

X5
j¼1

½ðmaxð0; vj � sgjðm; sÞÞÞ2 � v2j �: (36)

We can easily derive the partial derivatives of fðm; sÞ with
respect to m and s once the corresponding partial deriva-
tives of Oðm; sÞ and F ðm; sÞ are obtained.

The partial derivatives of Oðm; sÞ with respect to varia-
blesm and s are calculated as

@O
@m ¼ �ð�ar � @ð1�DMRÞ

@m � SER
þ �ar � ð1�DMRÞ � @ðSERÞ

@m � @Costtot
@m Þ;

@O
@s ¼ �ð�ar � @ð1�DMRÞ

@s � SER
þ �ar � ð1�DMRÞ � @ðSERÞ

@s � @Costtot
@s Þ;

8>>><
>>>:

(37)

whereDMR, SER, and Costtot are given in Eq. (17), Eq. (22),
and Eq. (8), respectively. Clearly, the key to computing the
partial derivatives of Eq. (37) concerning m and s is to

derive @ðDMRÞ
@m , @ðDMRÞ

@s , @ðSERÞ
@m , @ðSERÞ

@s , @Costtot
@m , and @Costtot

@s . To

this end, we first calculate DMR’s partial derivatives with

respect to m and s, and then the corresponding partial

derivatives of SER and Costtot, respectively.

By applying Taylor series expansions
Pm�1

k¼0
ðmrÞk
k! 	 emr

and m! 	 ffiffiffiffiffiffiffiffiffiffi
2pm

p ðme Þm, DMR in Eq. (17) can be re-written
as

DMR ¼ 1

Smax � Smin

� m�mðe�ðms
r
��ÞSmin � e�ðms

r
��ÞSmaxÞ

ðsrÞm�1ðms
r � �Þ2½ ffiffiffiffiffiffiffiffiffiffi2pm

p ðme Þmemr þ ðmrÞm
1�r

�
: (38)

Let D1 ¼ e�ðms
r
��ÞSmin � e�ðms

r
��ÞSmax , D2 ¼ ðsrÞm�1, D3 ¼

ðms
r � �Þ2,D4 ¼

ffiffiffiffiffiffi
2p

p ðme Þmemr þ ðmrÞm
1�r

, then the partial deriv-
atives of DMR with respect to m and s can be obtained
as

@ðDMRÞ
@m

¼ 1

ðSmax � SminÞðD2D3D4Þ2

�
�
ðð�m þm�m ln �ÞD1 þm�m @D1

@m

�
D2D3D4

� ðm�mD1Þ
�
@D2

@m
D3D4 þD2

@D3

@m
D4 þD2D3

@D4

@m

��
; (39)

@ðDMRÞ
@s

¼ m�m

ðSmax � SminÞðD2D3D4Þ2

�
�
@D1

@s
D2D3D4 �D1

@D2

@s
D3D4 �D1D2

@D3

@s
D4

�D1D2D3
@D4

@s

�
; (40)

where

@D1

@m
¼ s

r

�
� Smin � e�ðms

r
��ÞSmin þ Smax � e�ðms

r
��ÞSmax

�
;

@D1

@s
¼ m

r

�
� Smin � e�ðms

r
��ÞSmin þ Smax � e�ðms

r
��ÞSmax

�
;

@D2

@m
¼
�
s

r

�m�1

ln

�
s

r

�
;

@D2

@s
¼ m� 1

r

�
s

r

�m�2

;

@D3

@m
¼ 2s

r

�
ms

r
� �

�
;

@D3

@s
¼ 2m

r

�
ms

r
� �

�
;

@D4

@m
¼
�
m

e

�m

emr

�
pffiffiffiffiffiffiffiffiffiffi
2pm

p þ
ffiffiffiffiffiffiffiffiffiffi
2pm

p
ðlnm

e
þ 1Þ

�

þ ðmrÞm
ð1� rÞ2

�
lnðmrÞð1� rÞ þ �r

m2s

�
;

@D4

@s
¼ �

ffiffiffiffiffiffiffiffiffiffi
2pm

p �
m

e

�m

emr

�
�r

s2

�

� ðmrÞmð1� rÞ � ðmrÞmð �r
s2m

Þ
ð1� rÞ2 :

The partial derivatives of SERwith respect tom and s are

@ðSERÞ
@m

¼ 2s

msþ �seðsÞr
� ð1� ms

msþ �seðsÞrÞ

� s

msþ 2�seðsÞr �
�
1� ms

msþ 2�seðsÞr
�
; (41)

@ðSERÞ
@s

¼ m

msþ �seðsÞr

�
�
2�msþ rs @�seðsÞ

@s

msþ �seðsÞr
�

� m

msþ 2�seðsÞr �
�
1�msþ 2rs @�seðsÞ

@s

msþ 2�seðsÞr
�
; (42)

where @�seðsÞ
@s is expressed as

@�seðsÞ
@s

¼ ��0e
d0

smax�s
smax�smin

�
d0

smax � smin

�
:

The corresponding partial derivatives of Costtot are

@Costtot
@m

¼ dE� þ g; (43)

@Costtot
@s

¼ 2d��rs: (44)

Let Gjðm; sÞ ¼ ðmaxð0; vj � sgjðm; sÞÞÞ2 � v2j ; j ¼ 1; 2; 3; 4; 5,

then we have

F ðm; sÞ ¼ 1

2s

X5
j¼1

Gjðm; sÞ: (45)
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The partial derivatives of F ðm; sÞ with respect to variables
m and s are

@F
@m ¼ 1

2s

P5
j¼1

@Gi
@m

@F
@s ¼ 1

2s

P5
j¼1

@Gi
@s

(
; (46)

where

@Gj

@m
¼

0; vj � sgjðm; sÞÞ � 0

�2sðvj � sgjðm; sÞÞ @giðm;sÞ
@m ; vj � sgjðm; sÞÞ > 0

(
; (47)

@Gj

@s
¼

0; vj � sgjðm; sÞÞ � 0

�2sðvj � sgjðm; sÞÞ @giðm;sÞ
@s ; vj � sgjðm; sÞÞ > 0

(
: (48)

The partial derivatives of gjðm; sÞ in Eqs. (47) and (48) can be
easily derived from Eqs. (26), (27), (28), (29), and (30).

Once the partial derivatives with respect to m and s are
derived, the optimal solution for the profit maximization
problem can be obtained by setting these partial derivatives
to 0. Obtaining the optimal solution for the formulated prob-
lem analytically requires the problem convex, m and s are
continuous variables and also needs to introduce a closed-
form expression for approximating the function (i.e.,
Eq. (12)) [1], [2], [4], [5]. However, since the server sizem (or
the server speed s) of an actual multiserver system is a dis-
crete variable, the error caused by the closed-form approxi-
mation is not negligible, thus it is not feasible to prove the
convergence of the our optimal problem analytically.
Although we cannot prove the convergence of the formu-
lated problem analytically, we can still perform extensive
experiments to plot Profitðm; sÞ for different configurations
to check whether the optimal solution of Profitðm; sÞ exists,
which is similar to [1], [4]. Below we show the values of
Profitðm; sÞ under six different multiserver configurations.
All the experiments of Profitðm; sÞ indicate that there must
be an optimal point for the profit maximization problem.
The experimental results here are not comprehensive and
are only meant to demonstrate the existence of an optimal

point. Based on the observation, an iterative algorithm is uti-
lized to find the numerical optimal solution.

5.3 ALM-Based Iterative Method

Since the analytical solution ofm and s cannot be directly cal-
culated through the partial derivatives in Section 5.2, we
introduce an ALM-based iterative (ALMI) method which
can efficiently find numerical solutions. During each itera-
tion of ALMI, it determines a numerical solution and verifies
whether the solution satisfies the constraints. If the con-
straints are not met, the Lagrangian multipliers are updated
and the process repeats until the optimal solution is found.
The pseudo-code of the proposed method ALMI is given in
Algorithm 1.

Algorithm 1 takes the following inputs: threshold L on
the number of iterations, penalty factor s, update rate of
penalty factor h (to avoid the solution converging too slow
or not converging), threshold " on the error between the sol-
utions of the unconstrained problem in Eq. (35) and that of
the constrained problem in Eqs. (25), (26), (27), (28), (29),
and (30), and threshold b on solution’s convergence speed.

Algorithm 1 first generates an initial solution ðmð0Þ, sð0ÞÞ
randomly, sets the initial value of multiplier vector vð1Þ to the
all-one vector, and initializes the counter for iteration l to 1
(Lines 1-3). It then searches for the optimal solution itera-
tively (Lines 4-17). In each iteration, Algorithm 1 attempts to
find an optimal solution, represented by ðmðlÞ; sðlÞÞ, for the
unconstrained minimization problem given in Eq. (35) using
our ALF-Solver (Line 5). The details on ALF-Solver are pro-
vided in Algorithm 2. After that, Algorithm 1 exploits the
optimal solution obtained in the previous iteration to
address the unconstrained problem. If the error between the
solution to the unconstrained minimization problem given
in Eq. (35) and the solution to the constrained minimization
problem given in Eqs. (25), (26), (27), (28), (29), and (30) is suf-
ficiently small, i.e., kgjðmðlÞ; sðlÞÞ � y2jk < " (line 6), then the
Lagrange multiplier vector v converges, and the solution
found by ALF-Solver can be treated as the optimal solution to

Fig. 3. The values of Profitðm; sÞ under varying configurations.
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the constrained minimization problem (Lines 7-8). In this
case, the optimal multiserver configuration is found and the
corresponding maximum profit can be calculated using
Eqs. (11), (37), (39), (40), (41), (42), (43), (44), (46), (47), and (48)
(Lines 9-12). Thus, the iteration is terminated and the algo-
rithm returns the optimal profit Profit� and the optimal con-
figuration ðm�; s�Þ (Line 18). Otherwise, the solution derived
byALF-Solver cannot be deemed as the optimal solution to the
constrained minimization problem. Further, if this solution
meets the condition kgjðmðlÞ; sðlÞÞ � y2jk=kgjðmðl�1Þ; sðl�1ÞÞ �
y2jk � b (Line 13), indicating that the convergence speed of the
solution found by ALF-Solver is slow (Line 14), Algorithm 1
then modifies the value of penalty factor s to speed up the
convergence speed by setting s ¼ hs (Line 15). The Lagrange
multiplier and iteration counter are updated by v

ðlþ1Þ
j ¼

maxð0; vðlÞj � sgjðmðlÞ; sðlÞÞÞ; j ¼ 1; 2; 3; 4; 5 (Lines 16-17). The
iteration stops if the predefined number of iteration is reached
and Algorithm 1 finally returns the best profit and configura-
tion ½Profit�;m�; s�� found (Line 18).

Algorithm 1. Augmented Lagrange Multiplier Based
Iterative (ALMI) Method

Input: Threshold L on the number of iterations, penalty fac-
tor s, update rate of penalty factor, h, threshold " on
the solution error, threshold b on convergence speed.

Output: Optimal solution of server size m�, server speed s�,
and profit Profit�;

1: Generate an initial solution ðmð0Þ, sð0ÞÞ randomly;
2: Calculate the initial value of multiplier vector vð1Þ to the

all-one vector;
3: Set l = 1;
4: while ðl < LÞ do
5: ðmðlÞ; sðlÞÞ = ALF-Solverðmðl�1Þ; sðl�1Þ; vðlÞ; sÞ;

// ALF-Solver is called to calculate the optimal solution
to the augmented Lagrange function in Eq. (35);

6: if kgjðmðlÞ; sðlÞÞ � y2jk < " then
7: // Ensure the solution to the unconstrained problem in

Eq. (35) is an acceptable solution to the constrained
problem in Eqs. (25), (26), (27), (28), (29), and (30);

8: // y2j can be calculated by Eq. (34);
9: Calculate Profit using Eq. (11);
10: Profit� ¼ Profit;
11: ðm�; s�Þ ¼ ðmðlÞ; sðlÞÞ;
12: break;
13: else if kgjðmðlÞ; sðlÞÞ � y2jk=kgjðmðl�1Þ; sðl�1ÞÞ � y2jk � b then
14: //The convergence speed of solutions derived by

ALF-Solver is slow;
15: s ¼ hs; //Update penalty factor s to speed up the con-

vergence speed;
16: v

ðlþ1Þ
j ¼ maxð0; vðlÞj � sgjðmðlÞ; sðlÞÞÞ; j ¼ 1; 2; 3; 4; 5;

17: l ¼ lþ 1;
18: return ½Profit�;m�; s��;

Algorithm 2 summarizes the process of our proposed
ALF-Solver which uses a gradient descent approach [41] to
find the optimal configuration of m and s during each itera-
tion of Algorithm 1. The inputs to Algorithm 2 include the
solution ðmðl�1Þ; sðl�1ÞÞ derived from the (l� 1)-th iteration
and the parameters vðlÞ used in the l-th iteration. According
to [41], we set the maximum iterator number iternum ¼ 1000,
the iterator error error ¼ 1e� 10, and the learning rate
alpha ¼ 0:1 (Line 1). Then, we initialize the iterator counter

i ¼ 1 and a temporary variable change ¼ 0 (Line 2). Follow-
ing the derivation in Section 5.2, Algorithm 2 computes the
partial derivatives of Eq. (31) based on Eqs. (37), (39), (40),
(41), (42), (43), (44), and (46), (47), and (48), and puts vðlÞ into
these computed derivatives (Line 3). Then, Algorithm 2 finds
the optimal server sizeml and server speed sl by using a gra-
dient descent process that computes @fðmðl�1Þ; sðl�1Þ; vðlÞÞ=@m
and @fðmðl�1Þ; sðl�1Þ; vðlÞÞ=@s (Lines 4-8). Once ðmðlÞ; sðlÞÞ is
found or the iterator counter reaches the maximum iteration,
Algorithm 2 returns the solution to Algorithm 1 (Line 9).

Algorithm 2. The Augmented Lagrange Function Solver
(ALF-Solver)

Input:mðl�1Þ; sðl�1Þ; vðlÞ;
Output:mðlÞ; sðlÞ;
1: Set iternum ¼ 1000, error ¼ 1e� 10, alpha ¼ 0:1;
2: Initialize i ¼ 1, change ¼ 0;
3: Compute the partial derivatives of Eq. (31) based on

Eqs. (37), (39), (40), (41), (42), (43), (44), (46), (47), and (48);
4: while i < iternum and change > error do

5: mðlÞ ¼ mðl�1Þ � alpha
 @fðmðl�1Þ;sðl�1Þ;vðlÞÞ
@m ;

6: sðlÞ ¼ sðl�1Þ � alpha
 @fðmðl�1Þ ;sðl�1Þ ;vðlÞÞ
@s ;

7: change ¼ jfðmðl�1Þ; sðl�1Þ; vðlÞÞ � fðmðlÞ; sðlÞ; vðlÞÞj;
8: i ¼ iþ 1;

9: return ðmðlÞ; sðlÞÞ;

6 EVALUATION

Consider the scenario where a CSP leases the infrastructure
resources to configure the multiserver system to handle ser-
vice requests submitted by CCs. Such the multiserver system
can be an infrastructure of many forms, e.g., the multiserver
system could be the multicore server processor and each
server is a single core [27], the traditional server cluster and
each server is a normal processor [26], and the blade center
and each server is a blade server [25]. To simulate the consid-
ered scenario, we assume that the multiserver system is in
the form of the multicore server processor, and use advanced
multiple processors (e.g., AMD EPYC 7742 processor [43],
Intel Platinum 8376 processor [46]) to simulate our multi-
server system. Table 1 summarizes the parameters used to
estimate the energy consumption cost per unit, infrastructure
resource usage cost, and service requests. The key variables
like the sever size (m) and speed (s), and the cloud service
requests arrival rate (�) are extracted from real-world sys-
tems [43], [44], [45], [46] and existing literature [2], [4].
Besides, the setup of the multiserver configuration not only
cover the up-to-date multiprocessors (e.g., the AMD EPYC
7742 processor [43] and the Intel Platinum 8376 proces-
sor [46]) but also represent some real-world CSPs (e.g., Hua-
wei Elastic Cloud Server (HECS) [47] where the server size of
HECS varies in the range of [1,60] and the maximum server
speed of HECS runs at 3.5GHz). All the experiments are
implemented on the same Rack Server which is installed
with a Linux version of Matlab x64 (version 9.3.0.713579
which contains Simulink, Global Optimization Toolbox, etc.)
and equipped with 64GB DDR4 memory and a 2.1GHz Intel
Xeon Silver 8-core processor.

In this section, we evaluate the performance of our
approach by analyzing the trend of the maximum profit
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with the multiserver configuration. We also compare our
approach with two SOTA methods for increasing profit.
There sets of simulation experiments are summarized as fol-
lows. Specifically, in the first set of experiments, we study
the optimal multiserver system configuration (which are the
server size m and speed s) as well as the corresponding
profits under varying arrival rates of cloud service requests.
This set of experiments is to explore how a multiserver con-
figuration affects the CSP’s profit under different arrival
rates of cloud service requests.

In the second experiment set, we observe the maximum
profit of the CSP as well as the corresponding multiserver
configuration under varying expected numbers of instruc-
tions for service requests. This set of experiments is to inves-
tigate how a multiserver configuration affects the profit of
the CSP under different expected numbers of instructions
for service requests.

In the third experiment set, our proposed multiserver
configuration scheme in maximum profit is compared with
two SOTA methods. This set of experiments evaluate the
effectiveness of the proposed scheme in terms of the profits
of the CSP.

6.1 ProfitWith Varying Service Request Arrival Rates

In this set of experiments, we aim to explore how a multi-
server configuration affects the CSP’s profit under differ-
ent cloud service request arrival rates. The expected
number of the service request’s instructions r is set to 1.
The server size m ranges from 10 to 60, the server speed s
ranges from 0.75 to 4.0, and the value of service request
arrival rate � ranges from {20, 25, 30, 35}. The values of

parameters �0, d0, a, v, �, P
�, d, Smin and Smax are consistent

with those in Table 2.
Figs. 4a and 4b show the trend of the corresponding max-

imum profit achieved by our proposed scheme when
increasing the server size (m) and speed (s) under varying
service request arrival rates �, respectively. From the two
figures, we observe that a larger service request arrival
rate � is able to bring higher profit for CSPs. Moreover, we
also find that the profit varies with the server size m (see
Fig. 4a) and the server running speed s (see Fig. 4b). Spe-
cifically, it can be seen from Fig. 4a that when the server
size m is small, it is beneficial to lease more servers appro-
priately. But as the number of rented servers increases and
the server size m exceeds a threshold that corresponds to
the processing capability required to complete the cloud
service requests at rate �, the profit gradually decreases
due to the extra renting and operating costs of excessive
servers. As shown in Fig. 4b, when the server speed s falls
into a small range (e.g., from 0.75 to 1.2), the service
provider’s profit increases with the server speed s. If con-
tinuously increasing the server speed s, the extra energy
cost induced by speedup is larger than the cost savings
achieved by reducing the server size, leading to the
decrease in the profit of the service provider. From Fig. 4c,
we observe that for a given service request arrival rate �,
when the server size m increases, the optimal server run-
ning speed s decreases. This is because that there exists an
upper bound on the processing capability required by a
given cloud service request. If the server size m exceeds a
threshold, our proposed strategy will lower server speed s
to decrease energy cost.

TABLE 2
Setup of Main Notations Used in the Experiments

Notation Definition Value

�0 soft error rate while the server at the maximum speed 10�5 [38]
d0 hardware-dependent coefficient related to dynamic voltage scaling 2 [42]
a service charge per unit quantity of service 18 cents per billion instructions [39]
v usage fee of a server during a unit of time 1.5 cents per second [1], [2], [4], [5]
� processor dependent coefficient 9.4192 [1], [2], [4], [5]
P � static power dissipation 2Watts per second [2], [4], [5]
d energy price paid for a server during a unit of time 0.1 cents perWatt
 second [2], [4], [5]
Smin minimum value of the slack during a unit of time 0.5 s [13]
Smax maximum value of the slack during a unit of time 5 s [13]

Fig. 4. Maximum profit and optimal multiserver configuration under varying service request arrival rates.
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6.2 Profit With Varying Expected Numbers of
Instructions

In this set of experiments, we investigate how the configura-
tion of a multiserver system affects the maximum profit of
the CSP under varying expected number of instructions r
for cloud service requests. We set service request arrival
rate � ¼ 20. The value of server speed s, server size m,
expected number of instructions r for the cloud service
request range from (0.75, 4.0), (10, 60), and {0.5, 0.75, 1, 1.25},
respectively. The values of parameters �0, d0, a, v, �, P

�, d,
Smin and Smax are consistent with those in Table 2.

Figs. 5a and 5b show the trend of the maximum profit
achieved by our proposed scheme when increasing the
server size m (or server speed s) under varying expected
number of instructions r of cloud service requests. From
these two figures, we can observe that given the expected
number of instructions, the CSP’s profit will gradually rise
to the peak and then decline as the server size m (or server
speed s) increases further, except for the special curve of r ¼
0:5 in Fig. 5a where the proposed strategy can quickly con-
verge to the maximum profit since the expected number of
instructions for service requests is too small. The CSP’s
profit increases when server sizem (or the server speed s) is
small until m (or s) increases to a threshold, the CSP’s profit
will decrease. This is because simply increasing the server
size or the server speed will possibly reach the point where
the processing capacity offered by the CSP exceeds the max-
imum processing requirements of cloud service requests. At
that moment, continuously increasing the server size or the
server speed will bring wasted energy consumption and
infrastructure resources, thereby reducing the profit of the
CSP. Besides, from these two figures, we also observe that
the larger the expected number of instructions r of cloud
service requests, the more profit the CSP can achieve. As
can be seen from Fig. 5c, when the server size m increases,
our strategy lowers server speed s to reduce energy costs
for improving profits as much as possible. This is consistent
with the observation in Fig. 4c.

6.3 Performance Comparison

To further evaluate the performance of the proposed multi-
server configuration scheme for profit maximization, in this
set of experiments, we compare our scheme with a SOTA
approach TSPM [5] and a heuristic optimization algorithm
SA [4] which is to solve the same problem as ALMI. The

two comparison targets, TSPM and SA, are briefly described
as follows.

� The multiserver system used in TSPM [5] is modeled
as an M/M/m queuing system. It derives the proba-
bility density function of the waiting delay for the
newly arrived service request and uses a numerical
method to calculate the optimal configuration of the
multiserver system as well as the maximum service
provider profit. The major difference between our
ALMI and TSPM is that the latter considers neither
the heterogeneity of service requests nor the occur-
rence of soft errors. In the comparison experiments,
we first use TSPM to find the optimal multiserver
configuration under the same experimental settings
(seen in Table 2) as ALMI and then calculate themaxi-
mum profit considering the heterogeneity of service
requests and soft errors simultaneously (i.e., substi-
tute the derivedm and s by TSPM into Eq. (11)).

� SA [4] is a discrete simulated annealing-basedmethod
and also a classic heuristic algorithm. The process of
solving the optimal solution by this algorithm is simi-
lar to physical annealing and is a probabilistic tech-
nique. Since there are no exist SA-based solutions for
my optimization problem, we implemented the SA-
based approach to solve our proposed deadline miss
rate and soft error reliability awaremultiserver config-
uration problem (i.e., Eqs. (25), (26), (27), (28), (29), and
(30)). Then, we compare our proposed ALMI scheme
with the SA-based approach in terms of profit as well
as themulitserver configuration.

Tables 3 and 4 compare our proposed ALMI with TSPM
and SA under the settings of r ¼ 1 and � ¼ 20, respectively.
Besides, we set the server speed s range from [0.5,2.5] and
the server size m range from [5,45]. The values of parame-
ters �0, d0, a, v, �, P

�, d, Smin and Smax are consistent with
those in Table 2.

It can be seen from the tables that ALMI outperforms
TSPM and SA in terms of the CSP’s profit. Table 3 shows that
ALMI can gain 3.62% on average and up to 5.56% higher
profit than that of TSPM. In addition, ALMI can achieve
1.39% on average and up to 3.45% higher CSP’s profit than
that of SA. Although ALMI and SA are solving the same
problem using different optimization methods, their results
are relatively close on average, this boost is meaningful if in

Fig. 5. Maximum profit and optimal multiserver configuration under varying expected numbers of instructions for requests.
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a long time cloud service environment for the CSP. Table 4
the profit comparison between TSPM, SA, and ALMI when
the arrival rate � of cloud service requests is given. The
results again validate that our ALMI is superior to TSPM,
with 6.08% on average and up to 11.92% more profit. Com-
pared with SA, the improvement in profit achieved by our
ALMI is 4.1% on average and is up to 6.52%. Besides, from
the two tables, we can seen the expected number of instruc-
tions r on profit exceeds the effect of the number of service
requests � on profit. ALMI obtains a higher profit than TSPM
because ALMI takes into account the impact of deadline
miss rate and soft error reliability on the CSP’s profit when
optimizing themultiserver configuration.

7 CONCLUSION

This paper studies the problem of finding a multiserver con-
figuration that maximizes the profit of CSPs with the con-
sideration of deadline miss rate and soft error reliability
simultaneously. Since no existing work formulates soft error
reliability for average-based scheduling to optimize the
multiserver configuration, this paper introduces a new ana-
lytical approach to derive the deadline miss rate of cloud
service requests and the soft error reliability for average-
based scheduling. Based on our deadline miss rate and soft
error reliability models, we formulate the profit maximiza-
tion problem as a constrained optimization problem. To
solve this problem, we convert it into an unconstrained opti-
mization problem by constructing an augmented Lagrang-
ian function and propose a method based on an augmented
Lagrangian multiplier, ALMI, to iteratively improve the
quality of the multiserver configuration solution until the
optimal solution is derived.

To validate the effectiveness of our multiserver configura-
tion approach, we conduct a series of experiments. We ana-
lyze the trend of the profit gained by the proposedmethod in
different configurations as well as service requests. We also

compare our ALMI with two SOTA methods. Experimental
results show that ALMI can increase profit by up to 11.92%
and 6.52% compared with the two SOTA methods, TSPM
and SA, in different scenarios, respectively.
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