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Bringing a single still image into reality is a challenging topic in computer animation because the driven
and structural information in single still image is inadequate. In this paper, we present an image animat-
ing method for enhancing single still image in social media with virtual realistic and animated motions
without prior information. We imitate the interaction between the active objects in an image and their
neighboring passive objects. The existing actions in the image and the virtual specified force are
employed to animate the active objects. Observing that the change between two subsequent motions
of the active objects derives a motion tendency, we can calculate a virtual driving force based on the
motion tendency. By virtue of the virtual driving force, the stochastic motion texture is used to animate
the passive objects. Finally, the convolutional neural network is employed to optimize the virtual motion
animations. In this way, the proposed method produces visually natural results while guaranteeing
motion harmony between active objects and passive objects. To demonstrate the applicability and
rationality of virtual animation driving force, our method generates several animations from still images
in Social Media.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

When appreciating a photograph in social media that includes
a number of objects (e.g. animals and plants), we can subcon-
sciously comprehend much more information than the static
image. We may imagine that the objects in the image will exhibit
some certain movement phenomena with the laws of nature. For
example, given an image with some seagulls standing on the
branches, we may imagine that the seagulls are swinging their
head and the branches are slightly swaying. The proposed image
animation framework has many potential applications in social
media, such as image/video enhancement editing and synthetic,
personal photo album editing, movie and game production, and
augmented reality. Moreover, the other image animating models,
for example, the stochastic motion texture driven by the wind,
can also be integrated into our system, which will make our
system more versatile.
Without adequate prior information, driving video, such as the
3D shape of the objects, wind strength, animating a static image is
very challenging because it is difficult to find out enough key ani-
mating information from one picture. Many research efforts have
been made on animating a still image [1–6]. For example, ELOR
et al. [1] used driving video to generate a portrait video sequence
from a still target portrait image based on 2D Warp and continu-
ously transferring fine-scale, which is one of prior information
methods. Chuang et al. [2] animated the still picture using stochas-
tic motion textures. This method works well for animating the pas-
sive elements such as plants, trees, water and clouds. Xu et.al. [3]
animated a still image of a moving animal group by morphing
among the ordered snapshots extracted from the image. The core
idea in this method is the shape matching of the animal’s motions.
This method generates a motion cycle of the animal object based
on the result of shape matching. Our method aims to process com-
plex image that contains more types of objects and to animate a
still image by simulating the interaction between the active objects
and their neighboring passive objects. Compared to [3], we focus
on different research points, such as analyzing the principle of
how to generate a virtual force based on object’s motion in still
image.
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Guided by the available 3D models, Kholgade et al. [4] per-
formed 3D manipulations on the objects in a photograph. Jhou
et al. [5] presented a cloud appearance model which combines
two computable properties: cloudiness and cloud structure, to syn-
thesize the motion of cloud flow based on a content-aware wind
field. Although these methods can produce visually pleasing
results, there is still much room left to be improved. For example,
most algorithms cannot animate the still image with complex nat-
ural scene because it is very difficult to find out the prior knowl-
edge in still image, such as the correlation between many objects
in the image and the animation driven methods for different types
of objects.

Different from the existing literature [2–5], this paper aims at
animating a still image by computing the interaction between the
moving objects (active objects) and their neighboring objects
(passive objects). For example, when some birds standing on
small branches are swinging their heads, the branches should
shake accordingly. Thus, to produce natural and realistic anima-
tion results, we need to compute not only the motion of the
swinging birds, but also the motion of the branches. In addition,
we need to guarantee the consistency between two types of
movements.

Deep Learning is one of the most major researching topic in
Computer Science. Some deep learning models are employed to
generate fabricated videos from single input image. For example,
Olszewski et al. [7] use GANs to generate realistic dynamic facial
to infer realistic per-frame texture deformations from a Single
Image. Those methods require a lots of data to train the deep learn-
ing model, which is a very complicated and time-consuming pro-
cess. Whether need a lot of data driving, that is the significant
difference between deep learning methods and our method. And
based on the benefits deep learning in image interpolation [8–
11], our method uses the convolutional neural network (CNN) to
smooth the generated video animation.

We animate the motion of active objects such as swinging birds
using the existing actions [3] in the original image. For some active
objects, such as the athlete on the diving board, and the dropping
raindrop, we simulate their motion according to automatic falling
model or Newton’s force model. The key problem to compute the
interaction between the active objects and the passive objects is
to derive the driving force, which will be used in stochastic motion
synthesis model [2,12]. We observe that the change between two
subsequent motions of the active objects will determine a motion
tendency. With mechanical analysis for the motion tendency, we
derive the motion force that drives the surrounding passive objects
to move.

The major contributions of this paper are summarized as
follows:

(1) A new animation method is proposed to generate a video
animation from still image based on intelligent computing.
Our method classifies active and passive objects in the image
by interaction. The active objects can generate a virtual driv-
ing force to drive the passive objects.

(2) An innovative analytical method is designed to generate a
virtual driving force for active objects. Based on the shape
context of each active object, we calculate the motion ten-
dency of their similarity. Then, we employ the Newton’s
laws of motion [13] to estimate the magnitude and direction
of virtual driving force.

(3) We specify two types of animation driving force: virtual
driving force and virtual wind force. Joining the animation
driving force and stochastic motion texture, we calculate a
time-varying motion map for each object, which is used to
generate a new motion in new animation frame based on
last motion. And CNN is used to smooth the generated
animation frames. So our method can simultaneously drive
the active objects and passive objects in the image to gener-
ate complex video animation.

The rest of this paper is organized as follows: We first present
the related work in Section 2, and then describe the framework
of our system in Section 3. In Section 4, we present the technical
details of the proposed method. Experimental results and discus-
sion are presented in Section 5. Finally, we conclude our work
and present some future research directions in Section 6.
2. Related work

Over the past few years, many studies have been conducted on
animating a static image, leading to numerous classic animation
generation methods, such as stochastic motion texture model,
shape contexts matching model, 3D motion capture data driven
model, and image interpolation.

The prior knowledge is very useful to animate motion from still
image because it can help to achieve physically realistic results.
Simulating the natural motion phenomenon based on stochastic
models is a classic problem. Stochastic models have been widely
used in animating the fractional Brownian motion of terrains
[14]. For example, Chen and Johan [15] proposed a 2D method
for real-time animation of vegetation in 3D scenes based on 2D
harmonic motion. Okabe et al. [16] used the fluid video database
to synthesize fluid animation from a single image. Based on two-
phase bond between water particles, which are located on a non-
absorbent hydrophilic surface, Chen et al. [17] converted an input
still image into a water-art-style artwork. Motion driven by wind is
a common method in animating motion form still image. Sun et al.
[18] presented an inverse harmonic oscillation method to extract
parameters of wind and regular water waves, then, they used har-
monic oscillation model to synthetic object motion based on the
extracted parameters.

However, the stochastic motion texture model can not generate
complex motion from the still image. Using 3D motion capture
data to animate photos of 2D characters [19] is another effective
animating method, which transfers the motion of a 3D skeletion
onto a 2D shape in image space and generates realistic movement.
Jain et al. [20] proposed an augmenting method to create a hand-
drawn animation of human characters with 3D physical virtual
effects, which the driving points in two dimensions are recon-
structed into three dimensions. They further employed 3D proxies
to connect hand-drawn animation and 3D computer animation to
generate more complex and smooth 2D animation [21].

In some common cases, image interpolation [22,23,26] is a
common technique to generate image animation results. It is used
to reduce blurring artifacts between non-successive motions to
improve the quality of animation video. Romano et al. [24] com-
bined non-local self-similarity and sparse representation modeling
to image interpolation. Xu et.al. [3] animated a still image of a mov-
ing animal group by morphing among the ordered snapshots
extracted from the image. The core idea in this method is to shape
matching of the animal’s motions. This method generates a motion
cycle of the animal based on the results of shape matching. In our
paper, the convolutional neural network [8–10,25] is used to gen-
erate more smooth virtual motion actions by motion interpolation.

In our approach, we are interested in generating an animation
video from still image based on intelligent computing. In this
paper, we employ the stochastic motion texture to calculate the
motion displacement of objects driven by virtual motions, which
are generated by our method, aiming at processing complex image
that contains more types of objects. We target to animate a still
image by simulating the interaction between the active objects
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and their neighboring passive objects. Compared with [3], we focus
on different research questions, for example, analyzing the princi-
ple of how to generate a virtual force based on object’s motion in
still image and smoothing the video based on DeepMotion CNN
model [8]. What’s more, our method does not employ 3D model
library to generate a virtual motion.

3. The proposed system and framework

In this section, we describe the main idea on how to generate a
virtual motion frame, and then describe the framework of our
system.

3.1. System overview

Given a single image, we aim to animate the specified objects
and their interaction with the surroundings. We specify the objects
that generate the driving force as ForceObjects. Image usually
includes three kinds of objects: ForceObjects; ForceObjects’ sur-
rounding objects, and other objects (Fig. 1). Different models are
employed to drive motion for different objects. The animation of
ForceObjects is created according to different motion styles. The
animation of ForceObjects’ surrounding objects and other objects
are inferred from physical analysis of mechanics and natural phe-
nomena. So we must firstly specify the motion type for different
animation objects in the still image through user interactions. If
there is a single animating object in the still image, we can also
specify whether the animating driven force is the wind force or
another virtual force. Based on the object’s type and the driven
force, we can then generate a list of virtual motions using the same
algorithm.

A time-varying motion map M is defined to create a motion in
one frame. This motion map MðKðpÞ; p; tÞ is a function of motion
class KðpÞ, pixel p and time t, where KðpÞ returns the motion type
of the pixel p. Applying the map directly to a potential animating
object Oðp; tÞ results in a forward motion Oðp; t þ 1Þ such that

Oðp; t þ 1Þ ¼ Oðp; tÞ þMðKðpÞ;p; tÞ ð1Þ
whereMðKðpÞ;p; tÞ is a relative displacement of motion class KðpÞ in
pixel p between time t þ 1 and t. And the forward motion Oðp; t þ 1Þ
indicates the whole displacement of motion class KðpÞ at time t þ 1.
In other words, Oðp; t þ 1Þ shows a new motion of KðpÞ.

Based on different motion class K, the motion map M is defined
as follows, which are specified by the users of our system:

� ForceObjects motion: the motion map is calculated from the
motion cycle.

� ForceObjects’ surrounding object motion: The motion map is cal-
culated from the force generated by ForceObjects.
Fig. 1. An example of object c
� Other objects: the motion map is calculated by wind force.

We focus on three types of virtual motion, which can generate
an animation video from a still image. These virtual motions can
be described as motion cycle movement, natural gravity move-
ment and swimming. Each virtual motion employs the basic
method of stochastic motion texture to calculate the motion
map. But the principles to trigger virtual motion are not the same,
and Table 1 lists the differences between each type of virtual
motion.

3.2. The framework of our system

Based on the motion map, the displacement of each object can
be calculated. Using the map, we construct new motion for each
object. Then, we synthesize new motion frame according to the
new motions. Finally, we render the animation video based on
motion frames. The framework of our system (Fig. 2) consists of
the following steps: motion objects extracting, driving force analy-
sis and motion editing, and finally animation rendering.

(1) Motion objects extracting. The first step is to segment the
input image I into several motion classes. The same class is ani-
mated with the same motion model. For example, for the image
in Fig. 2(a), we have the following classes: seagull and tree stem.
We assume that stem shaking is caused by the swinging of seag-
ulls’ head.

Each extracted object Oi consists of color information Ii, alpha
matte ai and motion type Ki. Considering that there may be differ-
ent motions with the same kind of objects in the single image, a
global combination order OL is generated by comparing the simi-
larity between the motion shape of ForceObjects. The OL determi-
nes the rendering order of motion in the final frame of motion
animation. In order to ensure the continuity of the virtual animat-
ing motions, we employ the motion cycle to indicate the motion
order for each kind of objects based on OL.

Driving force analysis and Motion editing. Editing the motion
of each driven object is another work in this process. Currently, we
provide three motion types: ForceObjects motion, object motion
driven by ForceObjects (shaking, swaying), and object motion dri-
ven by the wind force. For each motion type, we use novel method
to generate the animation results that confirm with the law of
nature.

Through the global combination order OL, a virtual motion cycle
is generated from the motions extracted from a still image.
Through simulating the stochastic motion, motion textures are
time-varying 2D displacement maps for each static object. Motion
textures are employed to drive those objects (such as leaves, trunk
and water) to take some actions. There is a close connection
between motion cycle and motion textures. And virtual motions
lassification in an image.



Table 1
The principle of each virtual motion animation.

Virtual motion type The principle of implementation

Wind Force driven Stochastic motion texture
Motion cycle driven Interaction force generated by continuous motion

Gravity driven Virtual gravity by estimating mass of ForceObject
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will drive some objects to move. For example, if seagulls in Fig. 2(a)
swing their heads side by side, a virtual force is generated to drive
the trunk below the seagulls to shake up and down in 2-D plane.
We describe the motion textures and motion cycle in detail in
Section 4.

Animation rendering The virtual motion can be generated by
using Eq. (1), and CNN model is used to interpolate more virtual
frames between virtual motions. During the animating process,
all virtual motions will be synthesized together with inpainted
background image each time. Considering the shadowing and
viewing effects, we use the global combination order OL to synthe-
size each virtual motion, and the background. Then the background
will be updated as synthesizing results.

The virtual motion can be generated by using Eq. 1. After
motion definition and editing process, we can construct two kinds
of virtual motion: static object motion, and motion based on shape.
Motion rendering combines virtual motion cycle, motion textures,
combination order and time. For each time t, using OL to determine
the rendering order of each virtual motion, using virtual motion
cycle to determine which action to adopt, using motion textures
to calculate the displacement of static objects. The rendering result
is an animated video which contains some objects with a variety of
actions and some objects with natural movement.

3.3. Stochastic motion texture model with virtual wind

Many natural motion phenomena, e.g., a swinging leaf by the
wind, can be described as harmonic oscillations [18], which are
employed to simulate natural motions in computer graphics. In
this section, we describe the core idea of stochastic motion texture
based on harmonic oscillations and virtual motion driven by wind
force.
Fig. 2. System Framework. The input still image (a) is segmented into several motion clas
map Mðk; p; tÞ. Firstly, generating a virtual motion cycle, (c) through shape context, and
surrounding with ForceObject, we calculate the driven force for these objects to get
ForceObject’s surrounding objects (other objects), the time-varying motion map (e) tha
enhanced inpainting algorithm (f) to repair the background. Finally, different motions are
final animation (g).
A stochastic motion texture of an object is defined by a time-
varying map of displacement, which is one kind of motion map.
Through simulating harmonic oscillations with appropriate param-
eters, we can get the displacement of one object at time t. Then, we
can construct the motion posture of the object using motion tex-
ture at time t.

To the best of our knowledge, several motion models are
designed to simulate different motion phenomena with harmonic
oscillations. In this paper, we design two models to simulate two
kinds of motion phenomena; one is driven by wind force and
another is driven by virtual object motion. Fig. 3 is the process flow
for generating stochastic motion texture. We first introduce the
stochastic motion texture and wind force driven animation, and
then describe several typical static object motions in detail using
stochastic motion texture with interaction driven forces in
Section 4.

3.3.1. Stochastic motion texture based on harmonic oscillations
Considering animating motion of objects with different materi-

als, we describe the harmonic oscillation firstly. Then, we present
motion displacement propagation of the non-rigid objects.

The displacement dðtÞ at the time of a damped harmonic oscil-
lator is:

€dðtÞ þ c _dðtÞ þ 4p2ðf oÞ2dðtÞ ¼ xðtÞ=m ð2Þ
wherem is the mass of oscillator,xðtÞ is the driving force, dðtÞ is the
displacement of the oscillator at time t; c is the damping coefficient,
and f o is the natural frequency. In other words, dðtÞ means the dis-
placement of the force point in the object at time t.

We use Newton’s Equation to solve Eq. (2) and express the driv-
ing force in Fourier series expansion. Taking the Fourier transform
of Eq. (2), the result becomes as Eq. (3).

�4p2f 2Dðf Þ þ i2pcfDðf Þ þ 4p2f 2oDðf Þ ¼ Wðf Þ=m ð3Þ
where Dðf Þ and Wðf Þ are the Fourier transforms of dðtÞ and xðtÞ,
and i ¼

ffiffiffiffiffiffiffi
�1

p
. So the solver of Dðf Þ can be described as follows:

Dðf Þ ¼ Wðf Þei2phffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pðf 2 � f 2oÞ þ c2f 2

q ð4Þ
ses, (b) each foreground animating class is then animated with time-varying motion
then determining the type of driving force for each other object. For the objects

their motion map (d) through mechanics analysis of the ForceObject motion. For
t is driven by wind force can be simulated in stochastic modeling. We utilize the
composed together to produce a new frame. All frames are rendered to generate the



Fig. 3. The process flow of stochastic motion texture. There are seven steps in the flow. (a) Transform harmonic oscillation model into frequency domain. (b) Analyze the
phase Shift of motion frequency. (c) Analyze two kinds of driving force: wind and motion force. (d) Generate the displacement of the force point in the object based on
different driving force in frequency domain. (e) The displacement map transform into time domain for displacement using inverse Fourier transform. (f) Propagate the
displacement from force point to other parts of the object. (g) Displacement map is generated after the above six steps. Using the map, we construct a new motion for one
object at time t.
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where f is the function of frequency, and the phase shift h is defined
as Eq. (5).

h ¼ arctan
cf

2pðf 2 � f 2oÞ

 !
ð5Þ

The problem of solving Eq. (4) is how to get the approximate
value of driving force. For the wind force which can drive the
objects in the still image to perform a slight shaking or swinging,
we can give some initial parameters of wind, such as velocity and
direction. The object motion force, whose initial parameters are
generated from the virtual motions, can drive the objects surround-
ing with ForceObjects to perform some motions consistent with the
virtual motions.

3.3.2. Stochastic motion texture driven by wind force
In the wind energy community some fitting methods of velocity

power spectra are often used. Based on Kaimal’s formula and Kol-
mogrov theory, the fluctuating wind velocity is defined as follows:

Eðv ; f Þ ¼ v�

ð1þ jf=v�Þ5=3
ð6Þ

where f is the frequency, Eðv ; f Þ is the wind power spectrum, v� is
the shear wind speed, and j is generally a constant of altitude.
Based on Eðv; f Þ, the velocity spectrum of wind force with a random
Gaussian noise field Gðf Þ in the frequency domain is formulated as
follows:

Wðf Þ � Gðf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðv ; f Þ

q
ð7Þ

Based on Eqs. (6) and (7), the wind force can be calculated. Integrat-
ing the wind force into Eq. (4) and performing inverse Fourier trans-
form, we can obtain the displacement of the stress point driven by
wind force.
4. Motion driven by stochastic motion texture and virtual force

In this section, we focus on simulating the interaction between
the active objects and their neighboring passive objects. When ani-
mating the passive objects using stochastic motion texture, the key
problem is to derive the driving force, which will be used in
stochastic motion synthesis model. And we give the basic princi-
ples of driving the stochastic motion texture using two kinds of vir-
tual motion.

4.1. Stochastic motion texture driven by virtual motion

Based on the change between two virtual motions defined by
virtual motion cycle, a motion tendency is found. With mechanical
analysis for the motion tendency, we can obtain a motion force
which can act on the objects surrounding the ForceObject.

Mass is an important factor to mechanical analysis. For exam-
ple, we can confirm that the gravity of diving athlete causes the
wobbling motion of diving board, and the water on the leaf tip
drops down based on the gravity of water. So we must estimate
the mass of those Forceobjects in those scenes. Moreover, Eq. (2)
is used to calculate the displacement dðtÞ for each animating
object, the mass of animating object should be known.

4.1.1. Mass estimating method based on particle number
Because it is not possible to get the mass of animating objects

from a single image directly, we propose a mass estimating
method based on particle number. We take each pixel of animating
object as a particle. Different particles have different density. For
simplicity, we employ the same mechanical analysis method for
each animation object in a single image, which includes ForceOb-
jects and their surroundings. We infer that the mass of animating
object is proportional to the number of particles. The mass estimat-
ing method is described as:

massi ¼ log
ParticleiXn

i¼1
Particlei

0
@

1
A � densityi ð8Þ

wheremassi is the mass of animating object i; Particlei is the particle
number of animating object i;

Pn
i¼1Particlei is the particle number of

all animating objects, and densityi is the particle density of animat-
ing object i.

4.1.2. Motion driven by motion cycle
For highly regular and repetitive motions [3] in a still image, we

can calculate similarity between different motion actions based on
their shapes. The shape context [27] is employed to quantify the
shape feature of action, and describe the distribution of the relative
positions of all action shape contour points in a spatial histogram.
We first use intelligent scissors to extract all motion actions and
their matte [28] from a still image. At the same time, the contour
points are saved during extracting motion action. Then, we con-
struct an action shape context by using a shape similarity metric,
and measure the similarity between the two corresponding shape
contexts. Finally, we infer the motion cycle based on the most sim-
ilar actions among all motion actions.

Feature points, which express the appearance of the entire
shape, are sampled from the contour points of each animal action.
Shape context uses a histogram for each point on the shape to
describe the distribution over the relative positions of other points
in log-polar coordinate system. The motion matching measures the
similarity of the feature points in Ai and their corresponding points
in Aj. The distance DðAi;AjÞ between shapes can determine the dis-
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parity between two action shapes. The motion matching formula-
tion is given by

DðAi;AjÞ ¼ 1
Ci

X
i2Ai

argmin
1
2

XK
k¼1

½ðgðkÞ � sðhðkÞÞÞ�2
gðkÞ þ sðhðkÞÞ

 !

þ 1
Cj

X
i2Aj

argmin
1
2

XK
k¼1

½ðhðkÞ � sðgðkÞÞÞ�2
gðkÞ þ sðhðkÞÞ

 !
ð9Þ

where Ci (Cj) is the total number of contour points of Ai (Aj); gðkÞ
(hðkÞ) is the shape context feature vector for the contour points of
Ai (Aj). A shape transformation s is employed to ensure the mini-
mum cost of shape matching before calculating the difference
between gðkÞ and hðkÞ. A smaller DðAi;AjÞ indicates more similar
shapes.

A matching matrix is generated after matching all extracted
motion actions in pair. Each row is the matching result between
one action and others. We firstly find a minimum value of one
row in the matrix, which means the largest similarity between
the current action Ai and another action Aj. Then, for Aj, we deter-
mine its most similar action Ak using the same method. By itera-
tively searching the matrix, a motion cycle of object actions has
been constructed.

Since the virtual motions are generated from different objects,
some smooth transitions are employed to guarantee the virtual
motion actions for each object before the rendering process. Those
transitions keep the consistency in motion pose, morphology and
appearance. For a contour point qi on the motion action and its cor-
responding point q0i on the most similar action, an affine transfor-
mation matrix is used to ensure the pose consistency between qi

and q0i. For each action Ai and its corresponding action A0i, we
use convolutional neural network [8] to ensure a smooth transition
between Ai and A0i.

Fig. 4 is one motion cycle example based on shape context. We
initialize a motion order number for each running wildebeest
(Fig. 4(b)). We calculate motion similarity by matching shape con-
text of each wildebeest, as illustrated in Fig. 4(d). We construct a
wildebeest running motion cycle based on the motion similarity
matching matrix, as in Fig. 4(e). The motions in the red rectangular
box (Fig. 4(b)) are the virtual smooth frames between two motions
from the motion cycle. An example of motion shape matching of
two motions (Fig. 4(b)) based on the shape context as shown in
Fig. 5.

4.2. Motion driven by virtual force

There are two kinds of virtual motion: One is the driving force
derived from the object motion cycle based on shape context, the
other one is the driving force derived from the object gravity.
And we explore the displacement propagation model of non-rigid
objects.

4.2.1. Motion driven by virtual motion force
Assuming the swinging of seagull head is one kind of uniform

motion, so the driving force is generated during the first change
of motions, and is going to act on other motions. Fig. 6 shows the
mechanical analysis process for seagull head shaking. According
to the physics laws of motion, the driving force is generated at
the beginning of motion. The rest of motion stages are in uniform
motion state. We can construct the velocity field of head shaking
list (Fig. 6(a)), which is illustrated in Fig. 6(b). The direction of yel-
low arrows means the motion direction from one shaking state to
another. The length of yellow arrows means the motion distance
correspondingly. Assuming the driving force is generated during
the stage as demonstrated in Fig. 6(c). The kinetic energy produced
belongs to the motion, which makes the head of seagull have a
velocity. Based on Newton’s laws of motion, we can calculate the
velocity of the head shaking as follows Eq. (10).

forcek ¼
mkDs
Dt2

ð10Þ

where mk is the mass of seagull’s head, Ds is the distance of seagull
shaking, and Dt is the time between two motions. We employ Eq.
(8) to estimate mk. Based on Eq. (11), the total driving force, which
drives the tree trunk and all seagulls to make harmonic motion, can
be generated as:

Force ¼
XN
k¼1

forcek cos hk ð11Þ

where hk is the angle between driving force and vertical direction,
and N is the number of seagulls. Based on the force Eðv; f Þ in Eqs.
(6) and (7), the velocity spectrum of driving force for seagull head
shaking with a random Gaussian noise field in frequency domain
is estimated as follows:

Wðf Þ � Gðf Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Force

p
ð12Þ

Using Wðf Þ in Eq. (12), we can calculate the displacement of tree
trunk and all seagulls in frequency domain. Fig. 6(d) is the tip dis-
placement of tree trunk within a time period, and Fig. 6(e) is the dis-
placement of tree trunk within a time period.

4.2.2. Motion driven by gravity
Gravity is a common driving force to make object motion. For

example, assuming there is one athlete standing on the diving
board, and the athlete is going to dive into the water. The athlete
will pause for a few seconds to ensure the diving board to become
balance. As the gravity of the athlete can make the diving board
wobble, we simulate the wobble animation driven by the gravity
of the athlete.

Given a still diving image as shown in Fig. 7(a), we analyze the
force of diving board (Fig. 7(b)). There is a gravity Force g caused by
the athlete in the point P0 of diving board, and a holding force
Force s exists in the point P1. When the athlete walks to P0, the div-
ing board will wobble strongly due to the impact of Force g. Then,
the wobble will stop gradually by the holding force Force s. So the
force F d of diving board can be described as Eq. (13).

F d ¼ Force g � Force s ð13Þ
where Force g ¼ massa � g;massa is the mass of athlete, which can
be estimated by Eq. (8), and g is the acceleration of gravity.

We can describe the wobble as that F d generates a downward
displacement to diving board at the beginning of wobble. We
assume that the wobble motion of both athlete and diving board
is just the results driven by the gravity of athlete. As we do not
know any information of Force s, the supporting function of diving
board is ignored in the moment when the athlete stands on the
diving board. The F d drives the diving board to do upward
moment in another time until the board and the athlete achieve
a state of equilibrium. We get the Wðf Þ of F d based on Fourier
transform.

4.2.3. Displacement propagation model
In this section, we describe how to propagate the displacement

from stress point to the whole object based on the features of
stochastic motion model. We use the displacement propagation
model to calculate the whole object’s displacement from the stress
point, such as diving board wobbling, leaf and trunk jittering. Due
to the deformation of different objects driven by different external
forces, we use a trunk as an example to describe the displacement
propagation for non-rigid object.



Fig. 4. The example of virtual motion cycle. (a) The original still image; (b) the initialization motion order of each running wildebeest; (c) the smooth frames between two
motion; (d) the histogram of motion similarity by matching the motion shape context, which are extracted from (b); The left histogram in (d) is the total similarity of each
motion pair, and the right histogram is the largest similarity between each motion pair; (e) the motion cycle resulting from (d), while the matching animation motion order
is: 5!6!3!1!7!2!4.

Fig. 5. Motion matching example. (a) The extracted motions of wildebeest from Fig. 4(a), (b) the original shape of two motions, (c) the matching result based on shape
context, and the original shapes have been transformed before shape matching.
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For example, we can calculate the shaking displacement of one
point on the trunk based on Eqs. (4) and (7) in frequency domain.
After the inverse Fourier transform, the displacement has been
changed in time domain. Then, we employ our displacement prop-
agation model to estimate the displacements of other points on the
trunk.

When wind blows, the jitter displacement of branches and
trunks of the tree are different. For example, the jitter displace-
ment of tip is much larger than the displacement in root. So we
estimate the motion of trunk by a point to plane model. In this
model, the leaf, branch and trunk are segmented into several parts
with 2D-line segment method. We assume that the tip is stress
point. We use a line propagation method to distribute the displace-
ment from tip to root of the object based on this segmentation. The
propagation model of the non-rigid object can be simplified to the
form:

dðs; tÞ ¼ dtipðtÞ 1
3
s4 � 4

3
s3 þ 2s2

� �
ð14Þ
where dtipðtÞ is the displacement in tip at time t, which can be cal-
culated by our model in Eqs. (2)and (7), s is the parametric repre-
sentation of the line segment which ranges from 0 to 1, and dðs; tÞ
is the displacement in location s of the object at time t.

When the objects are moving from their original position to
new position, the left blank background should be inpainted or
completed, so as to avoid that a visible blank background appears
during rendering. We use an image melding algorithm [29] to fill
the blank regions in background image after extracting the objects,
which can make the blank background regions have the consistent
texture and content with their surroundings.
5. Experiments and results

We applied our animation model to several still images in social
media. The accompanying animating videos for the input images
contain three types of motion classes: the motion of ForceObjects,
object’s motion driven by virtual motion, and object’s motion dri-
ven by wind force.



Table 2
The initialization parameters.

Notation Meaning in our algorithm

density i The particle density of animation object i in Eq. (8)
Vt The virtual animation driving type: Gravity type,

VirtualMotion type, Wind type, Water wave in Eq. (1)
v� The speed of virtual wind in Eq. (6)
~v The direction of virtual wind in Eq. (6)

Point j The reference point of Virtual Motion j

Fig. 6. Mechanical analysis process for seagull head shaking. (a) an example for seagull head shaking list, where the red points are the reference points of movement of the
heads; (b) the velocity field of head motion of (a); (c) an example of mechanical analysis process for the motion changing; (d) the tip displacement of tree trunk within a time
period; (f) the displacement of tree trunk within a time period.

Fig. 7. Mechanical analysis for diving board. (a) The image with athlete standing on the diving board, (b) mechanical analysis for the diving board.
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We test a list of still images to verify the usability of our anima-
tion model. We generate a wobbling animation to test the stochas-
tic motion texture driven by virtual motion firstly. On the basis of
primary stochastic motion experiment, we add the wind force to
generate another wobbling scene. Then, an animation of seagulls
head shaking is generated, which is also based on stochastic
motion texture. The seagulls head shaking is going to cause a jitter-
ing phenomenon of trunk. To distinguish the original shape context
model, we introduce a wind force driving animation in wildebeests
running scene. Finally, we test the virtual swimming wake anima-
tion in the wild geese flying and swimming image.

We interactively set the initial animation parameters. Table 2
lists the important initialization parameters. For example, we
specify the wobbling pivot and tip point of diving board in the orig-
inal image. To get approximate mass value of the driven objects,
we set the density value for them. If the wind is the driven force,
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we initialize wind speed and wind direction in the scene. The
parameters determine the amplitude of virtual motions. When
the time-varying motion map for a still image is generated, we
construct new animation frames by image synthesis method.
Finally, we combine those frames into an animation video.
Fig. 9. Wobble displacement of P0 (Fig. 7(b)) on diving board with different athlete
densities.
5.1. Frames interpolation based on CNN model

We optimize our model by a convolutional neural network
(CNN) [8]. The DeepMotion CNN model [8] is used to eliminate
incoherence between virtual motion frames by generating inter-
mediate frames. The work [8] described the detail of how to train
datasets and predict the intermediate frames. Giving two video
frames, which are generated by the proposed method, we can gen-
erate the intermediate frame between them by DeepMotion CNN
model [8]. And based on DeepMotion CNN model [8], we can do
the quadratic interpolation between original and intermediate
frames. The final frame interpolation results are shown as Fig. 8.
5.2. Wobbling animation driven by gravity

In our experiments, we set different density for the diving ath-
lete to validate the effects of gravity on board wobble. We extract
an initial frame (Fig. 7(a)) from a board diving video in social
media. We set the density in the interval ½0:0 : 0:1 : 5:0�. The density
of diving board is a constant value at the same frame. Fig. 9 is the
wobble displacement value of P0 (shown in Fig. 7(b)) in diving
board with different athlete densities. We can find out that the
effect of the athlete gravity on diving wobble becomes smaller
when the athlete density is in the interval ½0:0 : 1:0�. The board dis-
placement tends to be a constant with density > 1:5.

We select three density values f0:8;1:4;4:0g for the athlete to
valid our method. We also compare our animations with the orig-
inal video (Fig. 10). The validity of the proposed model is discussed
in Fig. 11. From the animations of wobble, we find that the dis-
placement in animation is slightly smaller than ground-truth.
Due to lack of the prior knowledge to simulate the wobble of board
and athlete, we just use the gravity to drive the motions. However,
the running force of athlete may be a key factor to cause the board
wobble in actual situation. Due to F s 	 F g (Fig. 7(b)), the wobble
amplitude can not be greater than 0 which is one drawback of our
Fig. 8. The motion interpolation results based on DeepMotion CNN model [8]. The first li
on DeepMotion CNN model [8], and the third line is the quadratic interpolation results
method. Compared with the ground-truth, we perform error anal-
ysis on the wobbling amplitude values under different density,
which is shown as Table 3. From Table 3, we get the minimum
MSE (Mean Squared Error) and RMSE (Root Mean Squared Error)
with density ¼ 0:8, and get the minimum MAE (Mean Absolut
Error) with density ¼ 4:0. As the MAE can better reflect the actual
situation of the prediction error, we infer that our method can sim-
ulate the wobbling most similar to the real situation with
density ¼ 4:0. The final offset displacements of board are almost
the same as ground-truth, which shows that our method can effec-
tively simulate the wobbling driven by the gravity of the athlete.

We also use the proposed method to simulate the raindrop fall-
ing effects from a leaf (Fig. 12). We extract the animating objects in
the original image firstly (Fig. 12(b)). Due to the power of gravity,
the raindrop will fall down from the leaf, which can cause a slight
jitter of the leaf at the same time. The animation result is shown as
Figs. 12(c)-(i). From the animation video, we can observe a signif-
icantly downward acceleration of raindrop. Furthermore, we add a
virtual wind on the raindrop to create a more intense jitter effect
for the leaf. The wind force will also change the trajectory of the
raindrop falling. The direction of virtual wind is set from right to
left. The animation result driven by both gravity and wind force
is shown in Fig. 13. From Fig. 13, we can confirm that the gravity
and wind force can drive the an drifting trajectory with the wind
of raindrop.
ne is the input video frames, the second line is the motion interpolation result based
based on DeepMotion CNN model [8].



Fig. 10. Wobbling animation example. (a) is the original video, (b), (c) and (d) are the corresponding virtual motion videos generated by our model with different athlete
values. Please click on the sub figures to watch the animation video in detail. (Please use Adobe reader to read our paper.)

Fig. 11. Wobble amplitudes in wobble animation compared to Ground-truth.

Table 3
Error analysis of wobbling amplitude in wobbling animation with different density.

MSE RMSE MAE

Wobbling amplitude with density = 0.8 84.28 9.18 4.47
Wobbling amplitude with density = 1.4 89.00 9.43 4.61
Wobbling amplitude with density = 4.0 87.04 9.33 4.24
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5.3. Seagulls head shaking animation

For the seagulls standing on the trunk, we animate the trunk jit-
tering based on seagull head shaking. We extract the head part of
the seagulls from Fig. 2(a), and generate the head motion cycle
after morphological preprocessing. Based on the motion cycle, we
fuse the head and body of seagull together in accordance with



Fig. 12. Simulating a raindrop falling from a leaf.

Fig. 13. Virtual animation frames of raindrop falling, which are driven by both gravity and wind force.
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time. At each time, the virtual seagulls and trunk are assumed as a
whole object which is driven by continuous head shaking motions
in the image. There are two types of motions: seagull head shaking
and trunk jittering driven by the motion of all virtual seagulls.
Fig. 14 is an example for motion cycle of seagulls head shaking.
From Fig. 14, there are regular and common-sense virtual motion
in the video.
5.4. Wildebeests running

Fig. 15 is an example for animating wildebeests running in
prairie from a single image. We first extract all wildebeests
from the image, then the background of this image is repaired.
We use method [3] to calculate motion similarity by matching
shape context of each wildebeest to generate wildebeest



Fig. 14. Seagulls head shaking animation. (a) The original still image; (b)-(e) The seagulls are shaking their heads and the underlying trunk are jittering accordingly.

Fig. 15. Animating wildebeests running. (a) A wildebeests image from Internet; (b)-(c) are the wildebeests running animation frames from ours result; (d) is the animation
video by [3], where the plants are not driven to motion; and (e) is the wildebeests running animation video with swaying plants, which is driven by wind force. Please click on
the sub figures (d) and (e) to watch the animation video in detail. (Please use Adobe reader to read our paper.)

Fig. 16. The displacements of one leaf tip with different wind velocity.
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running order (Fig. 4). We initialize the running speed of wilde-
beest, which can construct a wildebeests running animation, as
shown in Fig. 15(d).

Considering in the scene where a natural wind may blow, we
initialize the velocity and direction of wind force in image. The
velocity of virtual wind force is set from 1m=s; . . . ;5m=s½ �, and the
direction is set from left to right in the image. We extract one tree
in distance scene and one sapling in near scene. Then we generate
the time-varying 2D displacement maps for the tree and sapling
using stochastic motion texture based on the initialization wind
parameter. Fig. 15(b)-(c) are the motion frames which contain run-
ning wildebeests, the swinging tree and swaying sapling, and
Fig. 15(e) is the animation video correspondingly. Compared with
method [3], the proposed method can drive more objects by the
wind force in the still image.

The validity of stochastic motion texture is discussed in
Fig. 16. We employ the different wind velocities to calculate the
displacement of the tree tip in Fig. 15(a). The result shows that
a proportional relationship exists in displacement and wind
speed. The effects of the wind gradually decline with time
growth.
5.5. Wild geese flying and swimming animation

Finally, to show the practicability of our model, we employ the
framework of our model to animate the water wave when the
geese are swimming on calm surface. We also synthesize the



Fig. 17. The animation of wild geese flying and swimming generated by our techniques. (a) A still nature image, (e) a flying order list of wild geese generated by our method,
(b) the real time swimming wake waves of wild geese generated by our method, (c) and (d) the animating frame based on (e) and (b).
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motion animation, which contains the flying and swimming wild
geese, as shown in Fig. 17. We generate the wake waves of wild
geese based on Kelvin wake pattern [30] firstly, which are shown
as Fig. 17(b). We then generate the geese flying motion order list
based on shape context firstly (Fig. 17(e)). Finally, we synthesize
flying and swimming motion for each wild goose correspondingly
(Figs. 17(c) and (d)), which are smoothed by DeepMotion CNN
model [8].
5.6. Discussion

Table 4 presents total frames of each experiment with the our
basic model and the optimization model. From the Table 4, we
can infer that our model can generate enough virtual motion
frames with quadratic motion interpolation.

We run all our experiments on a single PC, with 64-bit Window
10 system, Intel Core 3.4 GHz CPU and 4 GB RAM. Table 5 presents
Table 4
The Total Frames of Generation Animations.

Animation Total
Frames

Total Frames based
on DeepMotion [8]

Interpolation

Total Frames based on
Quadratic DeepMotion

[8] Interpolation

Wobbling 16 32 68
Raindrop falling

based on
gravity

20 50 100

Raindrop falling
based on

gravity and
wind force

20 50 100

Seagulls head
shaking

84 168 340

Wildebeests
running

63 129 255

Wild geese flying
and swimming

74 146 292

Table 5
The time consume of Generation Animations.

Animation Image Size Total Driven
Objects

Wobbling 1280 � 720 2
raindrop falling from a leaf driven by gravity 768 � 432 2
raindrop falling from a leaf driven by gravity and

wind force
768 � 432 2

Seagulls head shaking 1300 � 870 5
Wildebeests running 2200 � 877 8
Wild geese flying and swimming 1000 � 644 17
time cost of the main steps of each experiment. As illustrated in
Table 5, interactive object extraction and virtual motion generation
consume relatively more time. And then, we discuss the time com-
plexity of those two steps as follows.

(1) Objects extracting: this step employs manual interaction to
extract the animating objects from a still image. The time
complexity of objects extracting is determined by the num-
ber of animating objects and qualification of interaction.

(2) Motion generation: there are two procedures in this step:
the displacement propagation for each pixel of an animating
object and motion cycle generation. Based on Eq. (14), the
time complexity of displacement propagation is Oðs3Þ. The
motion cycle generation can be divided into two parts:
motion matching and matching matrix sorting. Based on
Eq. (9), the time complexity of feature points matching is
OðC � KÞ. And the time complexity for one pair of motion
matching is OðNf Þ � OðC � KÞ, where Nf is the number of fea-
ture points of motion. The larger the size of matching motion
shape, the more time consuming of motion matching based
on shape context. As our model generates a matching matrix
based on motion matching, the number of motion matching
and the size of matching shape are the proportional factors
of time cost. For example, there are 13 geese in Experiment
6, we must generate a 13� 13 matching matrix, which need
conduct 96 times of motion matching. The user interaction
step for object extracting also takes some time.

6. Conclusions

We have presented an approach for generating object anima-
tion from still images based on virtual motion driving, and effec-
tively simulated the interaction between the active objects and
their neighboring passive objects. We divide the image into For-
ceObjects and some static objects. The animation of ForceObject is
Objects
Extracting

Force
Analysis

Virtual Motion
Generation

Animation
Rendering

4 min 0.2 s 88 s 36 s
4 min 0.3 s 214 s 19 s
4 min 0.4 s 217 s 19 s

10 min 1.2 s 328 s 24 s
18 min 0.2 s 8740 s 22 s
35 min 0.8 s 2282 s 35 s
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driven by virtual force or similar motion posture, and the anima-
tion of other objects is driven by the corresponding ForceObject.
We employ time-varying displacement maps, which are generated
by harmonic oscillation model, to determine the shift position and
posture of the animating objects in each frame. The shape context
is applied to create the posture shift map (motion cycle), which
determines the next posture of other static objects. In order to
smooth the generated video, we use the DeepMotion CNN model
[8] to interpolate more intermediate frames between each pairs
of generated video frames. Finally, the virtual motions are synthe-
sized according to the layer order. We have animated different
kinds of scenes to validate the effectiveness of the proposed
method.

In the future, we will intend to retrieve the motion actions from
the image set to construct more delicate models to animate more
complex scenes. To transfer the motion of the 3D moving object
(or the moving object in the video) to the elements in the image
is also an interesting work, which will improve the quality of the
motion.
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