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Thanks to the recognition and promotion of chiplet-based High-Performance Computing (HPC) system

design technology by semiconductor industry/market leaders, chiplet-based multi-chip systems have

gradually become the mainstream. Unfortunately, programming such systems to achieve efficient computing

is a challenge, especially when considering dynamic task parallelism. This paper presents an Adaptive

Batch-Stream Scheduling (ABSS) module for dynamic task parallelism on chiplet-based multi-chip systems.

To this end, we propose an adaptive batch-stream scheduling method based on Graph Convolution Network

(GCN) classifier to select the appropriate scheduling scheme. We further design a chiplet-based core-cluster

binding mechanism, which establishes the affinity between threads and core-clusters on CPU-compute die.

Moreover, to achieve dynamic workload balance, we propose a chiplet-based nearest task stealing method. We

implement our ABSS module on the HiSilicon Kunpeng-920 chiplet-based multi-chip system. Experiments

show that it outperforms state-of-the-art parallelism solutions, such as Intel Threading Building Blocks.
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1 INTRODUCTION

With the development of low-power, low-cost, and high-performance processors, multi-core

RISC chips and multi-chip systems have gradually become the mainstream architecture of

high-performance computing (HPC) systems. The non-uniform memory access (NUMA)

architecture is generally adopted to address memory bandwidth bottlenecks [9, 16]. Communi-

cation between on-chip cores is faster than that between off-chip cores, which can be quantified

by the NUMA distance in a hierarchical NUMA distance matrix [29]. Although the QuickPath

Interconnect (QPI) [17] and HyperTransport [5] technologies can narrow the difference be-

tween local and remote memory access latency to within 30%, reducing memory access overhead

in multi-chip systems is still critical [12]. Additionally, large monolithic System-on-Chips

(SoCs) typically result in low yields and tremendous costs in verification effort and advanced

manufacturing [27].

Various market leaders within the industry have used/recognized a chiplet technology, which

can divide a traditional System-on-Chip (SoC) into smaller functions and then implement them

into different dies. It can significantly increase the yield of a single die and create a better balance

between cost and performance. Emerging commercial chiplet-based multi-core RISC chips are

being released, such as HiSilicon Kunpeng 920 and Phytium FT-2000+ [31]. Such chiplet-based

multi-core RISC chip contains several CPU-Compute Dies (CCDs), and each CCD contains

dozens of computing cores (form a core-cluster) and a last-level cache (LLC). Therefore, the

remote LLC and the corresponding local caches of the core-cluster form a NUMA relationship

throughout the SoC. When considering parallel programming in a chiplet-based multi-chip

system, we face challenges not only with the impact of NUMA architecture, but also with the

NUMA relationship among CCDs in a single chip.

Dynamic task parallelism is a parallel programming style, in which the workload is divided

into tasks as units of computation, and is applied to familiar CPU programming models, such as

Intel Cilk Plus [14], Intel Threading Building Blocks (TBB) [19], and OpenMP [3]. There are

two scheduling solutions for task parallelism, including batch scheduling and stream scheduling.

Among those, batch scheduling is the most common method with a long history and is widely

adopted by multi-core architecture. However, batch scheduling may cause core idleness or

inter-core workload imbalance in applications that have different scales of tasks or non-negligible

inter-arrival times. The stream scheduler can immediately respond to each arriving task, and

the work-stealing method can make it insensitive to the load imbalance of the task. However,

stream scheduling leads to frequent access to state variables of computing units. Therefore, it is

necessary to consider a way to identify the most suitable scheduling strategy for dynamic task

parallelism and achieve the overall optimal performance.

In this paper, we focus on the optimization of dynamic task parallelism on chiplet-based

multi-chip systems, and propose an Adaptive Batch-Stream Scheduling (ABSS) module to

optimize the execution performance of tasks. Our ABSS module provides efficient parallelism

services through adaptive batch-stream scheduling, chiplet-based core-cluster binding, and

chiplet-based nearest task stealing. Our ABSS module is successfully implemented on the

real-world chiplet-based multi-chip system of HiSilicon Kunpeng-920 server, and is delivered

to Kunpeng Math Library (KML) to accelerate sparse matrix decomposition [11]. It yields

competitive performance advantages over the state-of-the-art of parallelism solutions such as

Intel TBB. The main contributions of this work are summarized as follows:

— We design an adaptive batch-stream scheduling method, which automatically and adaptively

selects the optimal scheduling strategy by using a Graph Convolutional Network (GCN)

classifier.
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Table 1. Terminology used in this Paper

Terminology Description

HPC High-performance computing

OS Operating system

NUMA Non-uniform memory access

CCD CPU-compute die

LLC Last level cache

ABSS Adaptive batch-stream scheduling

deque double-ended queue

MCU Memory control unit

SLIT System locality information table

BLAS Basic linear algebra subprograms

GEMM General matrix multiplication

SpQRF Sparse QR factorization

SpLQF Sparse LQ factorization

SpLUF Sparse LU factorization

SpCHF Sparse Cholesky factorization

TBB Threading building blocks

— To further address the problems of thread overhead and resource idleness, we propose a

chiplet-based core-cluster binding mechanism. Threads are bound to the core cluster of

CCDs instead of a single core, and multiple cores in each CCD share the same task queue.

The mechanism can narrow the frequent context switching and remote memory access, and

significantly improve the utilization of the cores.

— We propose a chiplet-based nearest task stealing mechanism for stream scheduling, which

steals tasks from the nearest busy CCDs of each idle core. The mechanism not only maintains

load balance, but also avoids frequent context switching caused by thread sleep and wake-up.

It effectively minimizes the heavy overhead of remote memory access caused by the diverse

NUMA distance and NUMA relationship between CCD and LLC.

The rest of the paper is organized as follows: Section 2 introduces the background and dynamic

task parallelism of chiplet-based multi-chip systems. Section 3 presents the proposed ABSS module,

and details the adaptive batch-stream scheduling method, the chiplet-based core-cluster binding

for threads, the chiplet-based nearest task stealing, and the implementation. Section 4 evaluates

the performance of the ABSS module by comparing it with the state-of-the-art solutions. Relevant

work is discussed in Section 5. Section 6 discusses the scalability of the proposed module. Finally,

the paper is summarized in Section 7.

2 BACKGROUND

In this section, we introduce the chiplet-based multi-chip HPC system and the corresponding

parallelism programming of tasks. Table 1 gives the abbreviations and descriptions of the

terminology methods used in this paper.

2.1 Chiplet-based Multi-chip System

A chiplet-based multi-chip system contains several chips and each chip is assembled by multiple

chiplets (i.e., dies) which are stacked on an interposer via advanced packaging technologies [30].

There are several types of primitive dies in an SoC, such as CPU-Compute die, AI-Compute die,

Compute-IO die, and Wireless-accelerate (ACC) die. These dies can be selected and combined

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.
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together to meet various requirements. Such a system can be seen on modern commercial HPC

systems, such as HiSilicon Kunpeng 920 server and Phytium FT-2000+ server. A CCD contains a

series of computing cores and their corresponding L1 cache, as well as the private L2 cache. The

cores in the same CCD share the last-level cache (LLC), and all CCDs in the same chip support

full consistency. Each CCD independently accesses a memory node through its own memory

control unit (MCU), that is, all available memory in a node has the same access characteristics

for all cores in a CCD. Based on the NUMA architecture support, each CCD in the chiplet-based

multi-chip system is tightly connected to a NUMA node. The communication speed between

on-chip CCDs is faster than off-chip, which can be quantified by the NUMA distance [29] which

forms a hierarchical NUMA distance matrix. The NUMA distance is the relative distance between

nodes, which is determined by the system locality information table (SLIT) and is given

at the time of manufacturing. An example of the NUMA distance matrix DNUMA is expressed

as:

DNUMA =

������

10 d0,1 . . . d0,N

d1,0 10 . . . d1,N

...
...

. . .
...

dN−1,0 dN−1,1 . . . 10

������
. (1)

The value range of DNUMA is 10 to 254, and 255 represents that there is no connection between

NUMA nodes. A value of 10 indicates how fast a thread can access the memory in the same NUMA

node, and a value of 254 will be 25.4 times slower.

2.2 Dynamic Task Parallelism

Dynamic task parallelism is a style of parallel programming where the workload is divided into

tasks as units of computation and dependencies among tasks are generated at runtime. This parallel

programming style becomes popular in many modern programming frameworks, such as Intel Cilk

Plus [14], Intel TBB [19] and OpenMP [4]. It can provide a flexible data-flow execution to exploit

dynamic, irregular and nested parallelism of workloads, especially in scientific applications. The

dependencies of the tasks and data-flow execution in task parallelism can be represented by a

Directed acyclic graph (DAG), where nodes represent tasks and edges represent data flow among

tasks. A common parallelism solution for tasks parallelism is the fork-join mechanism [26] and the

corresponding DAG is an up-down symmetrical structure.

In general, there are two types of scheduling methods for task parallelism that dynamically

map tasks to hardware at runtime, including batch processing and stream processing. Batch

processing is a static scheduling method and is widely used on multi-core architecture. The

scheduler dispatches all tasks in the queue to the same number of idle cores as the tasks in

the queue for execution. This method is suitable for applications in which the number of

parallel tasks is predictable, arrives in batches, or the arrival time interval is negligible. For

non-continuously arriving tasks, parallel tasks need to be added to the set batch scheduling

queue after arriving at the system. They wait for other tasks in the queue until the queue is

filled, and the scheduler will be scheduled to the same computing core. This method is more

sensitive to task workload balancing. In contrast, stream processing is a dynamic scheduling

method. After the task arrives at the system, the scheduler responds immediately and puts the

task on an idle core for execution or joins the task buffer queue. The method is suitable for

situations where the number of parallel tasks is unpredictable and the arrival interval cannot be

ignored. It schedules tasks to the computing core for execution for the first time, reduces task

waiting time, and improves task responsiveness, which is of great help to tasks with responsive

requirements.

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.
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Work-stealing is a common and effective method for parallel programs on multi-core computers

for load balancing among dynamic tasks [1]. Cilk Plus and TBB use a work-stealing mechanism

to automatically and efficiently balance a load of forkjoin, which migrates tasks to idle processors

[6]. When work-stealing is running, each thread is associated with a task queue to store tasks

available for execution. The task queue is a double-ended queue (called deque). When a thread

is available, it first attempts to fetch a task from the top of its own deque. If the thread’s own

deque is empty, it will try to steal a task from the bottom of another thread’s deque. When the

number of threads increases, the total number of deques maintained by threads increases, which

will significantly increase the overhead of threads in work-stealing. The overhead primarily arises

from the "stealing" aspect, as threads need to retrieve available tasks from other deques when

carrying out task stealing. This overhead will sharply increase with the total number of threads

and deques. The traditional work-stealing method where each thread maintains a task deque is

not suitable for chiplet-based multi-chip systems. The prerequisite for the system cores executing

in parallel is that the number of threads is not less than the number of cores, so an increase in

the number of cores directly leads to an increase in the overhead incurred by threads during task

stealing. The number of cores of the chiplet-based multi-chip system far exceeds that of traditional

multi-core architecture. The former can reach hundreds of cores, while the latter has only dozens

of cores, as shown in Table 3.

The carrier of task execution depends on threads, which are closely related to the architecture.

The conventional optimization for threads on multi-core computing systems takes the strategy of

binding threads to individual cores. This conventional optimization can reduce cache misses and

migration time between CPUs and works well on architecture with a small number of CPU cores.

However, adopting this strategy completely limits the ability of the operating system (OS) to

schedule threads, which may cause significant performance degradation. Because threads bound

to a core may concurrently undergo blockage, stemming from either explicit or implicit causes,

and the strategy impedes the OS’s ability to redistribute threads from other cores to the affected

one. Explicit blockage occurs when a task is programmed to await the completion of other tasks,

necessitating the suspension of the executing thread. Implicit blockage occurs when a task at-

tempts to access a critical section and must wait for a mutex, leading to an involuntary suspension

of the executing thread. When it happens, it can lead to resource underutilization unless the

number of threads per core is increased. For example, there are 4 cores A, B,C , D, and each core is

bound to 2 threads for executing tasks. When the 2 threads on core A are both blocked due to the

mutex lock, while cores B,C , D still have spare threads available, but since these spare threads are

bound to non-A cores, even though there are spare threads available in the system, core A still has

no threads available. To mitigate this issue, we can either increase the number of threads bound to

each individual core, or unbind the spare threads on non-A cores, so the operating system can par-

ticipate in thread scheduling. In a 4-core system, the overhead of increasing the number of threads

bound to each single core is acceptable. However, in chiplet-based multi-chip systems with a large

number of cores, this approach results in a substantial increase in the total number of threads

system-wide. Such an escalation can excessively consume resources, which is unacceptable. The

non-binding strategy is not a good choice either. Adopting a no-binding strategy may cause

threads to frequently migrate across CCDs. In task execution, the computing core necessitates not

only the loading of task data but also the loading of thread contexts in task execution. The absence

of a thread binding mechanism during task scheduling results in indeterminate thread assignment

to tasks. This uncertainty becomes problematic when the thread executing the task comes from

a remote node, requiring the core to perform remote access for loading the thread context. This

situation leads to reduced task execution efficiency, especially involving task stealing. Accordingly,

applications are suffering from adverse effects of the NUMA relationship among CCDs/chips.

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.



6:6 Q. Cai et al.

Fig. 1. The overall workflow of the proposed Adaptive Batch-Stream Scheduling (ABSS) module on the

chiplet-based multi-chip systems. The ABSS module includes three optimization approaches: the adaptive

batch-stream scheduling, the chiplet-based core-cluster binding, and the chiplet-based nearest task stealing.

The above challenges can be briefly summarized as:

(1) How to choose a suitable scheduling strategy for dynamic task parallelism on the chiplet-

based multi-chip system?

(2) How to optimize thread execution behaviors on the chiplet-based multi-chip system to ob-

tain the appropriate tradeoff between the reduced overhead of remote memory access and

the utilization improvement of computing resources?

(3) How to adjust the placement of tasks in queues on the chiplet-based multi-chip system to

reduce the impact of workload imbalance at run-time?

3 OUR PROPOSED ABSS MODULE

3.1 Overall Architecture

In this section, we design an Adaptive Batch-Stream Scheduling (ABSS) module on the

chiplet-based multi-chip system to provide efficient parallelism services for dynamic tasks. ABSS

provides performance optimization from three perspectives: adaptively batch-stream scheduling,

chiplet-based core-cluster binding, and chiplet-based nearest task stealing. A GCN-based classifier

is used to learn the execution features of the task parallelism, and adaptively select the suitable

scheduling scheme between batch and stream scheduling for a given DAG of application. In addi-

tion, the chiplet-based core-cluster thread binding mechanism is designed to bind threads to a core

cluster on a CCD instead of a core, which can improve the utilization of CCD’s computing units, ef-

fectively reduce remote memory access, and narrow frequent context switching. On this basis, the

chiplet-based nearest task stealing method for stream scheduling is further proposed, which steals

tasks from the nearest CCDs for each idle core, achieves workload balance, and further reduces

context switching. The overall workflow of the proposed ABSS module is shown in Figure 1.

3.2 Adaptive Batch-stream Scheduling

There are two task scheduling schemes for task parallelism, one is batch scheduling and the other

is stream scheduling, as shown in Figure 2.

They have their own advantages and limitations in different scale applications and task types.

The batch scheduling method is suitable for large-scale tasks, and the number of tasks is an integral

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.
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Fig. 2. Examples of batch scheduling and stream scheduling for tasks.

multiple of the number of cores. However, in applications with different task sizes or unignorable

intervals, it may cause core idleness or unbalanced workloads among cores. In contrast, in a stream

scheduling scheme, the scheduler will immediately respond to each arrived task and put it to an

idle core or add it into the buffer queue. However, during scheduling each task, it is necessary

to query and modify the available state of computing units, which leads to frequent reads and

writes of the state variables of computing units. We experimented with a typical task parallelism

application by using both batch and stream scheduling with several sparse matrices randomly

selected from the UF datasets as the input and each of these datasets formed a corresponding DAG.

We found that there are three situations from results summarized in Table 2: 1) stream scheduling

is better than batch scheduling, 2) contrary to the former, and 3) both scheduling methods are

pretty close (performance gap within 2%). According to our observation, we expect that tasks

can be scheduled by the most appropriate scheduling method in parallel execution to achieve

better overall performance. To adaptively select the appropriate scheduling scheme for a given

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.
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Table 2. SpQRF with Scheduling Method of the Datasets Randomly Selected

SpMat m nnz den NT tb ts pд
thermal 3.4 66.5 0.55% 22 34.01 42.31 –19.6%

rajat06 10.9 46.9 0.04% 197 19.59 22.41 –12.6%

rdist2 3.2 56.8 0.56% 186 16.44 16.72 –1.7%

rdb968 1.0 5.6 0.60% 27 3.48 3.43 1.5%

rdist3a 2.4 61.9 10.76% 94 18.16 15.78 15.1%

Wordnet3 82.6 132.9 1.95% 15 5364.94 5012.68 7.1%

m is the size of each sparse matrix (m/103), and nnz is the number of non-zero

elements (nnz/103). den represents the density ratio of a sparse matrix. tb represents

the execute time (millisecond, ms) with batch scheduling. ts represents the execute

time (millisecond, ms) with stream scheduling. pд represents the performance gap of

the comparison scheduling methods, pд = tb/ts − 1, where pд > 0 represents the

stream scheduling bring better performance.

Fig. 3. Task scheduling scheme classification based on GCN model.

application according to the characteristics of the computing tasks, we analyze the corresponding

DAG of the execution process on task parallelism, which can be obtained from explicit or implicit

methods. For example, for a specific matrix decomposition function, the algorithm will form an

elimination tree to represent the DAG for task parallelism [15]. Other statically executed code can

be obtained through the compiler.

Due to the complexity of dynamic task parallelism, we hope to obtain a selection of an

appropriate scheduling mode with the help of machine learning. Considering the feature of the

DAG graph dataset and taking into account the tradeoff between effect and performance, we

choose the Graph Convolutional Neural network (GCN) [25] as a machine learning classifier

to intelligently predict the target scheduling options for each input DAG. The workflow of the

GCN-based adaptive batch-stream scheduling is shown in Figure 3.

LetG = (V ,E) be a DAG graph of a given application, whereV is the set of nodes (i.e., computing

tasks) and E is the set of edges (i.e., logical or data dependencies between tasks). In addition, X =
G1,G2, . . . ,GN represents a set of training samples, and Y = y1,y2, . . . ,yN are the corresponding

classification labels, namely, the scheduling schemes of the input DAG graphs. Label yi is the

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.
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appropriate scheduling scheme for Gi , yi ∈ RS = (B, S, BS), where B is batch scheduling, S is

stream scheduling, and BS represents that Gi can be executed using batch scheduling or stream

scheduling to achieve similar scheduling performance. Therefore, we can define the problem of

task-scheduling scheme selection as a three-category classification problem.

To effectively implement the GCN model, it is crucial to assign suitable features to both vertices

and edges. Vertices are assigned four distinct features: in-degree, out-degree, type-degree and type.

Each vertex symbolizes a task, which has logical or data dependencies with other vertices in the

task dependency graph. The in-degree feature represents the number of parent or predecessor

tasks on which the task relies. The out-degree feature represents the number of child or successor

tasks generated by the task. The type-degree feature represents the number of types of child or

successor tasks generated by the task. The type feature refers to the type of tasks that are generated

by the same parent and perform the same functional operation. Commonly, tasks of a same type are

generated in batches by a specific "for" loop within the source code. These tasks are characterized

by their concurrent spawning at short intervals and uniform execution times. Edges are directed,

representing the sequential relationship in the execution process of the tasks. Edges are assigned

one feature: the weight, which represents the likelihood of a successor’s execution. The execution

of a successor task may be conditional, contingent upon the fulfillment of specific criteria related

to the actual performing of the predecessor task. Consequently, the weight feature is designed to

represent the likelihood of executing the successor task. Given the challenge in ascertaining the

precise probability of task execution prior to program execution, this weight feature is binary: a

value of 1 indicates conditional execution, while a value of 0 denotes definite execution.

When the first deployment of ABSS module on a chiplet-based multi-chip system, the GCN

classifier is trained via utilizing benchmark testing results as its training dataset. The training

process of the GCN classifier is completed before the ABSS module starts optimizing the target

programs, and the predicting process is carried out at runtime. To train the GCN classifier, we

generate a large number of random task DAG graphs. For each graph, we respectively use batch

and stream processing to execute it, choose a better performance scheduling scheme, and set it as

the classification label of the graph. All of the graphs and the corresponding labels are used as the

training dataset of GCN. Then, given a task parallelism programming application, the DAG graph

Gi is input to the GCN model. The GCN model can effectively collect the parallelism and dependen-

cies of nodes and pass them to the neighborhood, and finally predict the task scheduling scheme.

If the output yi of GCN is BS or S , we will perform stream scheduling on Gi , otherwise, we will

use batch scheduling. Based on the GCN-based classifier, we can adaptively select batch or stream

scheduling schemes for different task programming applications to improve running performance.

3.3 Chiplet-based Core-cluster Binding

The behavior of threads in the system is ultimately executed by the OS. The user level cannot

directly control the specific behavior of the thread, but we can still indirectly interfere with its

behavior by setting the affinity of the thread to the computing core. The core-affinity strategy (i.e.,

thread binding to the core) is usually used in multi-core architecture. As opposed to no binding

threads, the thread binding strategy can directly bind threads to computing cores, which is a com-

mon optimization for multi-core architectures. Binding threads to cores can significantly reduce

the number of thread migrations among CPUs and reduce the number of cache invalidations, but

it also completely limits the OS’s ability to schedule threads. When threads bounded to a core are

blocked, the core may have no threads available, resulting in idleness.

To avoid the above challenge, we propose a chiplet-based core-cluster binding mechanism that

can establish an affinity between CCDs’ core-cluster and threads. Threads can run as long as pos-

sible in the CCD cores without migrating to other CCD cores, which can reduce the impact of the

ACM Trans. Parallel Comput., Vol. 11, No. 1, Article 6. Publication date: March 2024.
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Fig. 4. Examples of core binding and chiplet-based core-cluster binding mechanisms.

NUMA relationship. Examples of core binding and chiplet-based core-cluster binding mechanisms

are illustrated in Figure 4.

Assume that there are k CCDs, and each CCD has m cores. The task execution time of the j-
th core on the i-th CCD is Ti j , where i = 1, 2, . . . ,k ; j = 1, 2, . . . ,m. Tmax represents the longest

task execution time among all cores.Tcmax−i represents the longest task execution time among all

cores in the i-th CCDs.UCore andUCCL represent the CPU utilization rate by using the core binding

mechanism and chiplet-based core-cluster binding mechanism, respectively. For the core binding

mechanism, the CPU utilization rate of the chiplet-based multi-chip system is:

UCore =
1

km

k∑
i=1

m∑
j=1

Ti j

Tmax
=

1

k

k∑
i=1

1

mTmax

m∑
j=1

Ti j . (2)

For the chiplet-based core-cluster binding mechanism, the CPU utilization rate of the chiplet-

based multi-chip system is:

UCCL =
1

k

k∑
i=1

∑m
j=1Ti j

mTcmax−i
=

1

k

k∑
i=1

1

mTcmax−i

m∑
j=1

Ti j . (3)

It can be seen that UCCL is not less than UCore, since Tmax = max{Tcmax−i |i = 1, 2, . . . ,k}.
Therefore, we use the chiplet-based core-cluster binding mechanism to bind threads to core-cluster

of the CCD instead of individual cores. Unless all threads on the CCD are blocked, the cores on

the CCD will not be idle. In addition, threads are controlled in a CCD, avoiding the migration of

thread context between CCDs. In this way, it is possible to ensure the local access of the data used
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when the tasks carried by the threads is interrupted and returned to the execution. Moreover, this

flexible mechanism also gives the OS a certain amount of leeway. It also laid the foundation for us

to further efficiently use computing core resources.

3.4 Chiplet-based Nearest Task Stealing

We propose the chiplet-based nearest task stealing method to automatically and efficiently bal-

ance the workload for the system thereby improving resource utilization and optimizing program

performance. The chiplet-based nearest task stealing method is only effective after fixing the rel-

ative position relationship among threads, CCDs and memory, which relies on the chiplet-based

core-cluster binding mechanism.

Initially, several preparations need to be done before the chiplet-based nearest task stealing

method will work effectively. Firstly, once the chiplet-based core-cluster binding mechanism is

working, threads are naturally grouped according to CCDs, and the relationship among threads

can be represented by the NUMA distance [29]. A task queue is established for the group of threads

of each CCD, and shared by all threads within the group. Secondly, a searching space is established

according to the NUMA distance table, which stipulates the searching order for each thread to

search task queues. Threads are required to prioritize the local CCD’s task queue and extend to

the most distant one if necessary.

During the time the chiplet-based nearest task stealing method is working, tasks are not only

being passively stolen by other available threads, but also being actively pushed to other available

threads. We discuss three situations as follows. (1) When a thread’s executed task generates a new

task and the thread’s affiliated CCD has at least one idle computing core, the thread pushes this

new task directly to the thread that can immediately execute it on the idle core. In this case, the

new task does not need to go through the task queue. (2) When a thread’s executed task generates

a new task and the thread’s affiliated CCD has no idle computing core, the thread then pushes

the new task to the local task queue. (3) When a thread’s executed task completes its task and

does not spawn any extra task, the thread then firstly searches for an available task based on the

established search order, starting from near to far. Once an available task is identified, the thread

fetches and executes it. In the running state of the ABSS module, each thread continually repeats

these processes. An example of the nearest task stealing is shown in Figure 5. There are two idle

cores on CCD2, and the task queue Q2 of CCD2 is empty. Since CCD3 is the nearest neighbor of

CCD2 with the minimum NUMA distance d2,3 = 16, so the first idle core steals a task from Q3. At

this time, there are no more tasks available in Q3. Therefore, the second idle core on CCD2 can

only find the second nearest neighbor CCD1 (d1,2 = 25) and steals an available task from Q1.

By adopting the chiplet-based nearest task stealing method, the total NUMA node migration

distance of all tasks generated by a program throughout its entire execution process in the system is

very small. Assume there are three task migration scenarios: The eventA represents that tasks only

migrate among cores within the same CCD, corresponding to the mentioned situation (1) or (2).

The event B represents that tasks only migrate among CCDs within the same socket, and the

event C represents that stealing tasks migrate across sockets, corresponding to the mentioned

situation (3). The NUMA distance between cores within the same CCD is represented as d1. The

NUMA distance between CCDs within the same socket is represented as d2. The NUMA distance

between sockets is represented as d3, and d1 < d2 < d3. The expectation of NUMA distance of

tasks migration Ed can be calculated as:

Ed = d1P(A) + d2P(B |A) + d3P(C |A ∪ B). (4)

Because of the chiplet-based nearest task stealing method, tasks and its parent task are usually

executed in the same CCD. In HPC programs, the parent task usually needs to wait for the results
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Fig. 5. The example of the chiplet-based nearest task stealing method.

returned by its spawned child tasks thereby it will release the computing resource during the

waiting. At this situation, the idle computing resources can immediately execute another new task

in the same CCD, resulting in a greater probability of occurrence of the event A. Therefore, the

expectation value of the total migration distance is small. It indicates that the system can achieve

an effective workload balance and meanwhile cost low transmission overhead.

3.5 Implementation

We implement the proposed ABSS module on a real-world chiplet-based multi-chip system of the

HiSilicon Kunpeng 920 server. The module includes our contributions above and a POSIX-based

implementation that supports scalable parallel programming. It is designed to support the par-

allelism of dynamic tasks on the chiplet-based multi-chip system and does not require a special

language or compiler. Universal programming makes the ABSS module flexible and efficient. The

example code of the SparseQR program from the SuiteSparse with using ABSS module APIs is

shown in Figure 6. In the main function, the ABSS_init API and the ABSS_finalize API is needed

for controlling the ABSS moudule starting and ending. In the SparseQR function, the ABSS_selector
API utilizes the trained GCN classifier to select a scheduling scheme and stores the result as as a

global variable for the qr_factorize function. The selection is according to the task_graph parame-

ter obtained from the qr_analyze function. The ABSS_addtask API adds the qr_factorize function

as a task to the ABSS module. The ABSS_barrier API ensures that all subtasks spawned by the

qr_factorize task have been completed at this program point.

3.5.1 Module Initialization. Before the module works, it needs to be initialized by using the

ABSS_init() interface. Multiple preparations will be executed for parallelism serving, including:

(1) Creating a thread pool to reduce the overhead of thread creation and destruction at runtime,

which is a conventional technique for all parallel systems;
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Fig. 6. The example code with ABSS module APIs from the viewpoint of users. The left portion of the code

displays the main function, which calls the SparseQR function depicted on the right.

ALGORITHM 3.1: ABSS_StreamAddTask() Interface

Require:

ti : The current computing task;

Q : The task queues;

T : The thread pool;

Ensure:

�: Execution status.

1: Get current CCD rank: r ← getCCDRank();

2: Set variable and initialize: idx ← r ;

3: Set a variable and initialize: a = 0

4: repeat

5: for i in T do

6: if T [i] is idle then

7: a ← i;
8: end if

9: end for

10: if a ≥ 0 then

11: Lock T [a];
12: T [a] ← ti ;

13: Unlock T [a];
14: Wake up T [a];
15: else

16: idx ← getNearestCCDRank(r );
17: end if

18: until idx ≥ 0

19: Put the task into local task queue: Q[idx] ← ti ;

20: return �.

(2) Grouping threads evenly according to the number of CCDs with the NUMA support of the

Linux kernel, and these threads are bounded to CCDs instead of individual cores;

(3) Allocating memory space to each task queue in the local NUMA node, and assigning it to

the corresponding CCD for task scheduling and chiplet-based nearest task stealing;

(4) Generating a search space table based on the NUMA distance matrix, and duplicating the

table for each NUMA node;
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(5) Creating an array to store and update markers of synchronization for the task parallelism.

3.5.2 ABSS Module Interfaces and the Thread Action. In our ABSS module, we develop several

important interfaces to support task parallel programming:

(1) ABSS_AddTask() interface: a task is added and waiting to be scheduled as batch/stream way

according to the judgment of the GCN classifier.

(2) ABSS_BatchAddTask() interface: a task is added to the local task queue, waiting for other

tasks to arrive at the same level of the call tree.

(3) ABSS_StreamAddTask() interface: a task is added to the local task queue, waiting to be stolen

by other threads or pushed to the nearest thread for immediate execution. The detailed pro-

cesses is described in Algorithm 3.1.

(4) ABSS_Barrier() interface: an explicit blocking operation where execution must wait until all

tasks of the current function branch to that point have returned.

(5) ABSS_ThreadAction() function: an implicit operation for thread controlling including all

thread actions used in our ABSS module at runtime. The detailed processes is described

in Algorithm 3.2.

ALGORITHM 3.2 ABSS_ThreadAction() Function

Require:

d : Running state;

Qs : Task queues in stream mode;

Qb : Task queues in batch mode;

Aavb: The global array of the available threads number value on CCDs;

Asyn: The global array of synchronization;

Ensure:

�: Execution status.

1: Get current CCD rank: r ← getCCDRank();

2: Allocate a thread block on current CCD: b ← malcOnCCD(r );
3: Initialize the thread block : initTB(b);
4: Set thread state in b is idle: (b→state)← IDLE;

5: Set a local variable: s is idle: s ← IDLE;

6: repeat

7: Atomically update the available threads number value: Aavb[r ]++;

8: (b→state) ← s;
9: repeat

10: Sleep and wait to be awakened;

11: until (s ← (b→state)) is IDLE && d is KEEP-RUNNING

12: Atomiclly update the available threads number value: Aavb[r ]- -;

13: if d is not KEEP-RUNNING then

14: break;

15: end if

16: if s is EXECUTION then

17: Execute current task: do(b→t);

18: Atomiclly update the value of synchronization: Asyn[(b→p)]- -;

19: Update state: s ← STEALING;

20: end if

21: if s is STEALING then

22: if lenдth(Qs [r ]) > 0 then

23: Lock Qs [r ];
24: Get the task: (b→t) ← pop(Qs [r ]);
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25: Unlock Qs [r ];
26: Execute current task: do(b→t);

27: Atomiclly update the value of synchronization: Asyn[(b→p)]- -;

28: else

29: i ← getNearestCCDRank(r )
30: if i ≥ 0 then

31: Lock Qs [i];
32: Get the task: (b→t) ← pop(Qs [i])
33: Unlock Qs [i];
34: Execute current task: do (b→t);

35: Atomiclly update the value of synchronization: Asyn[(b→p)]- -;

36: end if

37: end if

38: Update state: s ← IDLE;

39: end if

40: if s is BATCHING then

41: Execute current queue: do(Qb [b→q]);

42: Atomiclly update the value of synchronization: Asyn[(b→q)]- -;

43: Update state: s ← IDLE;

44: end if

45: until True

46: return �;

3.5.3 Explanation of Algorithm 3.2.

(1) Algorithm 3.2 line 2: malcOnCCD(r ) interface is based on NUMA library, which allocates a

space on the specified NUMA node.

(2) Algorithm 3.2 lines 9-11: This loop is a regular implementation for a thread pool,

which can make the thread wake up here and prevent the thread from being awakened

accidentally.

(3) Algorithm 3.2 lines 15-18: this code block makes the thread immediately execute its task

when the thread state is set to EXECUTION. When the task completes, the thread state

would immediately be set to STEALING.

(4) Algorithm 3.2 lines 19-34: this code block makes the thread to steal task from the nearest

CCD. the getNearestCCDRank(r ) interface (line 27 at Algorithm 3.2 and line 14 at Algorithm

3.1) will search each CCD task queue according to the distance from near to far, and return

the rank number of the first non empty queue. When the task completes, the thread state

would immediately be set to IDLE. This represents the thread would steal the nearest task

only once.

(5) Algorithm 3.2 lines 35-38: This code block makes the thread immediately execute the cor-

responding task in the batch queue, when the task accomplishes, the thread state would

immediately be set to IDLE.

4 EXPERIMENTS

4.1 Experimental Setting

We implement the proposed ABSS module on the real-world chiplet-based multi-chip system

of the HiSilicon Kunpeng 920 server [31], and conduct comparison experiments to evaluate the

performance of the proposed model. The system settings of such chiplet-based multi-chip system

are described in Table 3. The NUMA distance is obtained by the “numactl -H” command on

Linux [22].
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Table 3. System Settings of HiSilicon Kunpeng 920 Server

Items Values

Processor Kunpeng 920 ARM v8.2

Server 2 Sockets; 4 CCDs (2 CCDs/Socket); 128 Cores (32 Cores/CCD)

Clock cycle 2.6 GHz

Cache 64KB L1 I Cache; 64KB L1 D Cache; 512KB L2 Cache; 32MB L3 Cache

NUMA 4 Nodes; 256GB (64GB/Node)

Theoretical throughput 1331.2Gflops

HPL benchmark 2.2407 Gflops

Fig. 7. The result of GCN classifier.

4.2 Experiments on GCN-based Classifier

All experiments in this section are conducted on Ubuntu 16.04.6 LTS and TITAN RTX-24G. The

GCN model is implemented in Python 3.7, PyTorch 1.4.0, and PyTorch-geometric 1.6.0. To simu-

late the execution mode of dynamic tasks in HPC applications, we randomly generate 1,000 DAG

graphs using BLAS Level 1 routine as the task load kernel. The maximum number of tasks in each

DAG graph is 2,048. The task load changes hierarchically with task spawn, and the calculation

time of workload conforms to a normal distribution. The experimental results of the GCN-based

classifier are shown in Figure 7.

The training accuracy of the GCN model is shown in the yellow curve in Figure 7, the test

accuracy is the blue curve and the loss is the red curve. When the epochs reach 6,500, the loss

gradually converges to 0.4, the training accuracy of the model is about to 90%, and the test accuracy

of the model is about to 72%. The experimental results show that the GCN model can accurately

predict the appropriate scheduling across different programs and realize adaptive batch-stream

scheduling.

4.3 Optimization Results of Chiplet-based Core-cluster Binding Mechanism

4.3.1 Benchmark. We migrate the General Matrix Multiplication (GEMM) routine from AT-

LAS [28] to our ABSS module, and use this routine as our kernel routine of DAG. As a basic routine
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Fig. 8. Histogram of the performance comparison results among different core binding mechanisms.

of BLAS level 3, GEMM has been widely used in various HPC applications. The parallel load of

the GEMM routine is more balanced. It can reduce the fluctuations in test performance caused by

unbalanced workloads. We believe the GEMM routine can reflect the difference in thread affinity

strategy to the greatest extent. We measure the performance of GEMM with our ABSS module

parallelization and the performance of the prototype ATLAS GEMM.

We generate 20 random square matrices with a dimension from 8,00 to 16,000 (interval of 800)

and use them to test each routine for analysis. Since the block size of ATLAS GEMM is 80 × 80,

we choose these dimensions that are multiples of 80 to match the block size and reduce the impact

of the data cache hit rate. We test each routine 20 times and then calculate the average execution

time in order to reduce the error caused by fluctuations in system performance. The prototype of

ATLAS GEMM is without any thread binding strategy, and we note it as AtlGEMM. The modified

GEMM with using our ABSS module parallelization adopts two thread binding mechanisms: core

binding mechanism noted as CoreGEMM and chiplet-based core-cluster binding mechanism noted

as CclGEMM.

4.3.2 Performance Evaluation on the GEMM Routine. Figure 8 shows the performance compar-

ison results among AtlGEMM, CclGEMM, and CoreGEMM. In this figure,

(1) The CoreDecATL represents the percentage of time decrease as CoreGEMM to AtlGEMM.

(2) The CclDecATL represents the percentage of time decrease as CclGEMM relative to

AtlGEMM.

(3) The CclSpCore represents the speedup (Sp) of CclGEMM relative to CoreGEMM,

(4) The CclSpATL represents the speedup (Sp) of CclGEMM relative to AtlGEMM.

Our ABSS module has noticeable optimization effects on the prototype ATLAS GEMM routine, and

the average optimization effect is greater than 8.00%. All the CclGEMM performances are better

than coreGEMM or AtlGEMM, while the coreGEMM performances are worse than AtlGEMM in

few cases. It shows that under the chiplet-based multi-chip system, the core binding mechanism is

not necessarily better than no binding strategy and worse than chiplet-based core-cluster binding

mechanism.

We analyze these GEMM routines from page faults and CPU migration count perspectives. In

Figure 9,

(1) The CclDecPF represents the decrease percentage of the page fault counts for matrices

running in CclGEMM relative to AtlGEMM.
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Fig. 9. Histogram of the impact of different binding mechanisms on page faults.

Fig. 10. Histogram of the impact of different binding mechanisms on CPU migration counts.

(2) The CoreDecPF represents the decrease percentage of the page fault counts for matrices

running in CoreGEMM relative to AtlGEMM.

In all cases, the CclGEMM with chiplet-based core-cluster binding mechanism results in a

decrease in page faults on matrices, while in several cases, the coreGEMM with core binding

mechanism causes an increase in page faults, as shown in Figure 9.

Figure 10 shows the impact of different binding mechanisms on the CPU migration count, that

is, the thread migration count across CPU cores. The ATLCM, CoreCM and CclCM in Figure 10

respectively represent that CPU migration counts for matrices running in AtlGEMM, CoreGEMM
and CclGEMM. The thread-bound in the CCD-based core-cluster mechanism is freer than the

thread-bound in the core, and will not cause excessive CPU migration.

4.4 Optimization Results of ABSS Module

4.4.1 Benchmark. Firstly, we use the DAG diagram that we generated in Section 4.2 to simulate

the dynamic tasks of HPC applications on chiplet-based multi-chip system. We evaluate our ABSS
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Fig. 11. The scatter plots of time ratio (TBB/ABSS) by the number of tasks, where y > 1 represents that

the ABSS module can bring better performance and the red dotted line indicates the trend of performance

changing with the number of tasks increasing.

Fig. 12. The scatter plots of time ratio (OpenMP/ABSS) by the number of tasks, where y > 1 represents that

the ABSS module can bring better performance and the red dotted line indicates the trend of performance

changing with the number of tasks increasing.

module, TBB, and OpenMP for parallelism on the 1,000 DAG diagrams, respectively. Then, we

compare ABSS with TBB and OpenMP, and report the performance comparison by the number of

tasks.

Secondly, to truly reflect the advantages of the proposed ABSS module in dynamic task perfor-

mance on the chiplet-based multi-chip HPC system, we use the widely-used benchmarks, such

as the SpQRF [2] routine, SpLQF routine, SpLUF routine and SpCHF routine from the Linear Al-

gebra Package (LAPACK). These routines in SuiteSparse (version:5.7.2) use an elimination tree

to organize tasks, which is a typical parallelism issue of dynamic tasks. These routines perform

parallel execution by using Intel TBB for dynamic task parallelism. We replace Intel TBB with our

ABSS module to realize the parallelism of these routines.

4.4.2 Performance Evaluation on Random DAG. Figure 11 and Figure 12 show the performance

comparison by the number of tasks, where the blue dots present the time ratio (TBB/ABSS and

OpenMP/ABSS). We use the least square method to realize linear regression. The R2 of the fitted

regression line in the figures is known as the determination coefficient, which represents the sta-

tistical measure of the distance between the data and the fitted regression line. In general, if R2 is

greater than 0.5, the fitting regression line would indicate the trend of the y value changing with

the increase of the x value. All blue dots in both Figure 11 and Figure 12 are above the y = 1

line, which indicates our ABSS module has better performance than TBB and OpenMP. In addi-

tion, the red fitted regression lines in both Figure 11 and Figure 12 indicate that as the number of
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Fig. 13. Histogram of spare matrix factorization routines including SpQRF, SpLQF, SpLUF, and SpCHF. The

green areas represent the average time ratio ((OpenMP/ABSS)-1), and the yellow areas represent the average

time ratio ((TBB/ABSS)-1).

tasks increases, ABSS brings a wider range of performance improvements than the comparison

methods.

4.4.3 Performance Evaluation on Sparse Matrix Factorization Routines. We randomly select the

square matrices from the UF dataset [13] and evaluate the execution time of the sparse matrix

factorization routines to compare the effectiveness of our ABSS module and the TBB method.

Figure 13 shows that using our ABSS, compared with OpenMP, the average performance of the

four routines is improved by 85.3%, 84.5%, 54.6%, and 37.1%, respectively, and compared with TBB,

the average performance is improved by 33.5%, 33.3%, 13.9%, and 11.2%, respectively.

Additionally, we also focus on SpQRF for further experiments to analyze the optimization scope

of our ABSS module. There are 408 square matrices in the UF dataset, and the maximum number

of parallel tasks generated at runtime is 224 and the minimum number is 2. We rank the results of

these 408 tasks according to the optimization range, as shown in Figure 14(a). It can be seen from

the yellow zone in Figure 14(a) that 22.26% of the tasks that use TBB achieve better performance,

but the performance gap is less than 10%. The blue area shows that 77.74% of the tasks that use our

ABSS module achieve better performance. The average optimization range of our ABSS module is

33.54%, and the peak is 165.8%. In Figure 14(b), we further analyze the number of tasks that affect

the optimization scope of ABSS. The results show that when the number of tasks is less than 5,

only 3.86% of the tasks can achieve better performance by using ABSS. However, when the number

of tasks is greater than 5, more than 80% of the tasks achieve better performance by using ABSS.

5 RELATED WORK

Various studies have been continuously exploring the NUMA architecture to reduce the different

effects caused by the NUMA phenomenon [7, 18, 23]. For example, the ForestGOMP solution in

[7] groups threads that share data in the memory hierarchy. In [18], Popov and Jimborean ex-

plored thread mapping, data mapping, and parallelism across stages in different applications and

systems. In [23], Terboven et al. provided hints to the OpenMP compiler and runtime to guide the

assignment of tasks to threads, which improves data placement and memory locality on NUMA. Al-

though the above research has contributed to the distributed processor of the NUMA architecture,

it doesn’t consider the chiplet-based multi-chip system. In the parallelism solutions to dynamic
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Fig. 14. (a) Histogram of time ratio ((TBB/ABSS)-1) by the datasets proportion, where y > 0 represents that

the ABSS module can bring better performance. (b) Histograms of task proportion by the number of tasks.

tasks, the complex interaction between these factors makes it difficult to determine the optimal

task-to-core assignment. In [10], Clet-Ortega et al. evaluated different task scheduling strategies

for OpenMP on large multicore NUMA systems and designed a configurable task scheduler. This

approach is well-suited for scenarios where users possess a clear understanding of the optimal

strategy for each specific application, enabling them to pre-configure the task scheduler statically

prior to execution. However, in the context of applications characterized by dynamic task par-

allelism, the emergence of parallel tasks during runtime can vary based on the actual executing

situation, making it difficult for users to pre-determine an optimal scheduling strategy. To address

this challenge, our work provides the ABSS approach for optimizing dynamic task parallelism.

For the schedulability of DAG tasks executed by a thread pool, various studies have been

conducted on multiprocessors [8, 21]. In [8], Casini et al. focused on the issues when using thread

pools to execute parallel tasks, such as the performance degradation of deadlock and blocking

synchronization mechanism. Schmid and Mottok presented a response time analysis of DAGs,

which did not block the subtask scheduler, nor did it have the possibility to limit the number of

threads per task [21]. To achieve workload balancing between cores or core clusters, Wang et al.

implemented a work-stealing runtime to achieve dynamic task parallelism on heterogeneous

cache-coherent systems [26]. In [24], Tzannes et al. obtained the adaptive task granularity of

parallel loops, and it is necessary to check whether the task queue is empty before executing

the iteration. In [33], Zhang et al. presented an automated HPC batch job scheduler based on

reinforcement learning, which is used to solve the adaptability problem of batch job schedulers.

In [20], Schmid et al. presented a proof-of-concept parallelism framework, which realizes static

memory allocation in a work-stealing environment on the embedded multicore architecture.

The above studies have made outstanding contributions to optimization or implementation from

different perspectives. Different from the existing work, we propose a chiplet-based nearest task

stealing method to automatically and efficiently balance the workload of dynamic tasks and avoid

frequent context switching of threads. We also focus on how to combine the characteristics of

chiplet-based multi-chip systems to generate parallel execution solutions for dynamic task paral-

lelism.

6 DISCUSSION ON SCALABILITY

Most Large-scale HPC programs are characterized by dynamic task parallelism. A prime example

is CitcomCu [32], a widely-used numerical simulation software in the field of geodynamics, which
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includes numerous tasks for simulating the evolution of geological area. These tasks exhibit

both data and temporal dependencies. Similarly, in the realm of machine learning, large-scale

applications utilize computation graphs for training and inference, which essentially function

as task DAGs. Consequently, the optimization of such applications, featuring dynamic task

parallelism in multi-node cluster computing systems, is also the optimization target of the

ABSS module. The ABSS module is capable of scaling from chiplet-based multi-chip systems to

multi-node cluster computing systems. This adaptability is particularly relevant in the context

of complex network topologies within multi-node cluster computing systems. In such systems,

nodes with higher network bandwidth can be grouped as a communication cluster, analogous to

the CCD concept mentioned in the paper. This grouping results in reduced communication delays

within the same cluster, while inter-cluster communications are subject to higher delays. In ABSS

module, both inter-cluster and intra-cluster communication delays can be still quantified via

using a distance matrix. The distance matrix tends to be larger in size, reflecting the complexity

of the network topology. By employing the chiplet-based nearest task stealing method, which

utilizes the distance matrix to establish the searching space, the ABSS module can still effectively

reduce the communication overhead across the entire system.

In such system, the ABSS module can still adopt the adaptive batch-stream scheduling method,

training a GCN classifier to select the most suitable scheduling scheme. The batch scheduling

strategy aims to minimize the costs associated with task allocation and status querying. However,

in multi-node environments, this strategy may lead to load imbalances, thereby increasing the

cost of global synchronization, a challenge that is more pronounced than in the chiplet-based

multi-chip systems. Conversely, the stream scheduling strategy can effectively reduce the global

synchronization overhead within the system. However, it necessitates frequent process state syn-

chronization, potentially increasing the costs of task execution and result collection, and leading

to reduced network bandwidth utilization. Both batch and stream scheduling strategies exhibit

distinct advantages and disadvantages in the context of multi-node cluster computing. The ABSS

module can construct a larger GCN model to automatically and adaptively select the most suitable

scheduling strategy for programs thereby enhancing the efficiency and effectiveness of the

scheduling process in such complex computing environments under multi-node cluster systems.

7 CONCLUSION

In this work, we considered the dynamic task parallelism in the emerging chiplet-based multi-chip

system, and proposed an adaptive batch-stream scheduling (ABSS) module with three optimization

approaches to promote performance improvement. The GCN-based scheduling classifier method

was firstly used to automatically select the best batch-stream scheduling solution for a given appli-

cation. Then, the chiplet-based core-cluster binding mechanism was designed to establish affinity

between CCDs and threads, so as to improve the utilization of computing cores. We further pro-

posed the chiplet-based nearest task stealing method for automatically and efficiently balancing

the workload for chiplet-based multi-chip systems. We implemented the proposed ABSS module

on the HiSilicon Kunpeng-920 chiplet-based multi-chip system. The experimental results show

that ABSS achieves higher performance acceleration than the comparison parallelism solutions.
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