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Abstract
Recent researches introduced fast, compact and efficient convolutional neural networks (CNNs) for offline handwritten
Chinese character recognition (HCCR). However, many of them did not address the problem of network interpretability. We
propose a new architecture of a deep CNN with high recognition performance which is capable of learning deep features
for visualization. A special characteristic of our model is the bottleneck layers which enable us to retain its expressiveness
while reducing the number of multiply-accumulate operations and the required storage. We introduce a modification of global
weighted average pooling (GWAP)—global weighted output average pooling (GWOAP). This paper demonstrates how they
allow us to calculate class activation maps (CAMs) in order to indicate the most relevant input character image regions used
by our CNN to identify a certain class. Evaluating on the ICDAR-2013 offline HCCR competition dataset, we show that
our model enables a relative 0.83% error reduction while having 49% fewer parameters and the same computational cost
compared to the current state-of-the-art single-network method trained only on handwritten data. Our solution outperforms
even recent residual learning approaches.

Keywords Handwritten Chinese character recognition · Convolutional neural network · Global average pooling · Class
activation maps

1 Introduction

Nowadays, advances in intelligent systems are noticeable in
many areas of computer science, e.g., deep learning (Silver
et al. 2016), soft computing (Al-Janabi and Alkaim 2019;
Arqub et al. 2017, 2016), recommender systems (Al-Janabi
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et al. 2018a; Saravanan et al. 2019), data analysis systems
(Al-Janabi and Abaid Mahdi 2019; Al-Janabi et al. 2018b;
Al-Janabi 2018; Kenan Kalajdzic et al. 2015; Ali 2012).

With the rapid development of deep learning technologies,
many tasks regarding pattern recognition have obtained con-
siderable improvements. The tasks vary significantly from
object detection and image generation to spinning articles
and generating poetry. The problem of text recognition is
also a good example of learning discriminative representa-
tions performed by deep learning algorithms.

Text recognition at the character level can be divided into
printed and handwritten character recognition. Automatic
recognition ofmedical forms and processing of other types of
files, such as administrative, postal mail sorting automation
and bank checks identification, are all examples of appli-
cations for handwritten character recognition which may
further be either offline or online.

In this regard, the problem of offline handwritten Chi-
nese character recognition (HCCR) (Liu et al. 2013; Li
et al. 2016) having been studied for more than half a cen-
tury is of particular interest. Offline HCCR involves analysis
and classification of isolated handwritten Chinese character
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Fig. 1 A high-performance method for offline HCCR and visualization by means of CAMs

images. Earlier successfulmethods for offlineHCCR, such as
modified quadratic discriminant functions (MDQF) (Kimura
et al. 1987), were effectively and significantly outperformed
by convolutional neural network (CNN) approaches. Note-
worthy, these days some hybrid methods, such as those
utilizing adversarial feature learning (Zhang et al. 2018) or
an attention-based recurrent neural network (RNN) for iter-
ative refinement of the predictions (Yang et al. 2017), seem
to be the next effective substitution for the traditional CNN
solutions (Cireşan et al. 2012; Yin et al. 2013; Zhong et al.
2015; Zhang et al. 2017).

However, in our study, we create a method based on a pure
CNN architecture, with high recognition performance while
keeping in mind its size and computational cost. Notwith-
standing that different data augmentation as well as feature
handcrafting and spatial-transforming techniques were suc-
cessfully utilized for offline HCCR, we refrain from using
such in order to focus our work mainly on finding optimal
hyperparameters for training only on the raw handwrit-
ten input data. The reasons why we choose the approach
with deep neural networks are their high recognition per-
formance for large-scale classification tasks, the availability
of end-to-end training, and the ongoing research on their
improvements.

One of the main reasons causing shortcomings of the
CNNs is the network interpretability (Qin et al. 2018). This
question is especially interesting for us in terms of such a
large-scale classification problem as offline HCCR. In this
domain, both low-level visual features, such as small strokes,
and their high-level structural concatenations are important
for making correct predictions (Yang et al. 2017).

In order to address this issue, we adopt the knowledge
of class activation maps (CAMs) (Zhou et al. 2016). We
demonstrate how it improves the network interpretability
by performing a visualization of the most relevant character
parts learned by it. Unlike the visualization of the network
layer outputs as was done in the context of offline HCCR by

Zhang (2015), exploiting CAMs allows understanding the
process from the beginning to the end.

The main contributions of our work are summarized in
Fig. 1: (1) We propose a CNN model for offline HCCR,
which achieves state-of-the-art accuracy for single-network
methods trained only on handwritten data; (2) we employ
modified versions of global average pooling (GAP)—global
weighted average pooling (GWAP) and the introduced global
weighted output average pooling (GWOAP) to obtain high
performance and accomplish the visualization.

The rest of the paper is organized as follows: Sect. 2
reviews related research; Sect. 3 describes the proposed
architecture and its effectiveness, introduces our modifica-
tion of GWAP—GWOAP, and also details how CAMs can
be computed when a network is equipped with either; Sect. 4
shares the implementation details and the results of our
experiments including a comparisonwith othermethods; and
Sect. 5 summarizes our work.

2 Related work

2.1 Offline HCCR

The reasons why HCCR is a non-trivial problem can be
mainly formulated as follows:

(1) writing variations;
(2) wide-scale vocabulary—the number of character classes

ranges from6763 to70244 inGB2312-80 andGB18010-
2005 standards, respectively;

(3) similarities between Chinese characters.

Nowadays, achievements in deep learning enable researchers
to successfully utilize CNNs in the HCCR domain (Zhong
et al. 2015; Cheng et al. 2016; Zhong et al. 2016; Xiao et al.
2017; Li et al. 2018), greatly outperformingMDQFmethods
(Kimura et al. 1987; Lu et al. 2015). Such a CNN was first
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applied to this problem by Cireşan et al. (2012). Their sin-
gle multi-column deep neural network (MCDNN) achieves
a 94.47% accuracy.

Later, works were evaluated on the ICDAR-2013 com-
petition (Yin et al. 2013) dataset containing 3755 character
classes, which corresponds to the key official character set
GB2312-80 level-1.

There is a very noticeable trend in the offline HCCR com-
petition: the better deep CNNs perform, the more different
aspects researchers consider for their models. For instance,
the Fujitsu research team created a CNN-based method and
took the winner place in the ICDAR-2013 competition with
an accuracy of 94.77% (Yin et al. 2013) while requiring as
much as 2460 MB for storage.

The first model that outperformed human-level perfor-
mance was introduced by Zhong et al. (2015), which
incorporated traditional directional feature maps. There-
fore, their single HCCR-Gabor-GoogLeNet and ensemble
HCCR-Ensemble-GoogLeNet-10 models achieve a recogni-
tion accuracy of 96.35% and 96.74% and have a size of 27.77
MB and 270.0 MB, respectively.

Cheng et al. (2016) showed how the combination of the
character classification and similarity ranking supervisory
signals increases inter-class variations and reduces intra-class
variations. Their single deep CNN achieves a 97.07% accu-
racy taking 36.80MB for storage. The ensemble of four such
networks has a better performance of 97.64%.

Zhong et al. (2016) introduced a network composed of
two parts: a spatial transformer network to rectify the input
image and a deep residual network to predict the label distri-
bution for the rectified image, which resulted in an accuracy
of 97.37% with a 92.30 MB storage required.

Zhang et al. (2017) used the traditional normalization-
cooperated direction-decomposed feature map (DirectMap)
along with the deep CNNs to obtain an accuracy of 96.95%,
further improved to 97.37% by introducing adaptation layer
aimed at reducing the mismatch between training and test
samples on a particular source layer. Both models have a
size of 23.50 MB. It takes 1.997 ms to calculate DirectMap
and 296.894 ms to perform a forward pass of a deep CNN
for processing a character image on a CPU.

A method using residual blocks (He et al. 2016) and iter-
ative model prediction refinement by means of an attention-
based RNN is a hybrid approach proposed by Yang et al.
(2017). They achieved an accuracy of 97.37%, outperform-
ing previous methods that used raw input data.

A fast and compact CNN was developed by Xiao et al.
(2017) with a speed of 9.7 ms/char on a CPU but only 2.3
MB of storage needed and an accuracy of 97.09%. That was
enabled by employing global supervised low-rank expansion
(GLSRE) and adaptive drop-weight techniques (ADW). In
their experiments, one of the baseline models with a size of
48.7 MB yielded a state-of-the-art accuracy of 97.59%, con-

sidering single-networkmethods trained only on handwritten
data.

Anotherwell-balanced network in terms of the speed, size,
and performance was recently introduced by Li et al. (2018).
Their cascaded single-CNNmodel takes only 6.93ms to clas-
sify a character image on a CPU and achieves an accuracy
of 97.11% requiring only 3.3 MB for storage. They accom-
plished this by utilizingfiremodules and the proposedGWAP
concept along with quantization.

One of the newest methods reported by Zhang et al.
(2018) introduced adversarial feature learning (AFL), which
significantly outperforms traditional deep CNN approaches
by exploiting writer-independent semantic features with the
prior knowledge of standard printed characters, resulting in
a 98.29% test set accuracy and an 18.2 MB model size.

Anew family ofDNNs, namely ordinary differential equa-
tions (ODEs), were recently proposed by Chen et al. (2018).
They can successfully be used as supervised learning and
time-series models. This could very well be a prospective
improvement for the existent HCCR methods. However, at
the time of writing, such approaches were not introduced.

2.2 Class activationmaps

Zhou et al. (2016) presented a method of generating CAMs
showing how GAP proposed by Lin et al. (2013) enables
a CNN trained for the object recognition task to perform
object localization. This technique allows indicating themost
important for classification regions of an input image. The
main idea behind lies in basic knowledge of a CNN structure:
As we move deeper, the height and width of feature maps
shrink, while the number of channels increases.

GAP used instead of the traditional fully connected layer
at the end of the network produces the spatial average of every
channel of the preceding convolution layer output. Later, the
weighted sumof these values is used in order to generate final
output—and perform a logistic regression. Remarkably, it is
easily interpretable: One can think of a feature going into
the logistic regression as a value indicating whether or not
something important for classification appears in the image.

Similarly, a CAM is a weighted sum of the GAP input (the
last convolution layer output), i.e., if we were to look at the
image before the spatial averaging, we would know where
exactly a distinctive region was. It is worth mentioning that
we consider only one class when producing a CAM—the
predicted class.

Let the output of the last convolution layer be a 3-D tensor
F ∈ R

H×W×C , the output of the GAP be a vector fout ∈ R
C ,

and the logistic regression weight matrix be Wout ∈ R
C×K .

In order to calculate the activation map, all one needs to do
is weigh the importance of each H ×W feature of F by mul-
tiplying them by the corresponding elements of the column
of Wout that connects fout to the predicted class output:
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Table 1 The three networks proposed for offline HCCR

Layer name Model A Model B Model C Output shape

Input 96 × 96 grayscale image 96 × 96 × 1

Conv1 3 × 3 conv. 64, BN, ReLU 96 × 96 × 64

Conv2 3 × 3 conv. 64, BN, ReLU 96 × 96 × 64

AvgPool 3 × 3 avg-pool stride 2 48 × 48 × 64

Conv-block1 3 × 3 conv. 96, BN, ReLU 48 × 48 × 96

3 × 3 conv. 64, BN, ReLU 48 × 48 × 64

3 × 3 conv. 96, BN, ReLU 48 × 48 × 96

AvgPool 3 × 3 avg-pool stride 2 24 × 24 × 96

Conv-block2 3 × 3 conv. 128, BN, ReLU 24 × 24 × 128

3 × 3 conv. 96, BN, ReLU 24 × 24 × 96

3 × 3 conv. 128, BN, ReLU 24 × 24 × 128

AvgPool 3 × 3 avg-pool stride 2 12 × 12 × 128

Conv-block3 3 × 3 conv. 256, BN, ReLU 12 × 12 × 256

3 × 3 conv. 192, BN, ReLU 12 × 12 × 192

3 × 3 conv. 256, BN, ReLU 12 × 12 × 256

AvgPool 3 × 3 avg-pool stride 2 6 × 6 × 256

Conv-block4 3 × 3 conv. 448, BN, ReLU 6 × 6 × 448

3 × 3 conv. 256, BN, ReLU 6 × 6 × 256

3 × 3 conv. 448, BN, ReLU 6 × 6 × 448

GAP/ GWOAP/ GWAP Global avg-pool over
6 × 6 spatial dims

Global weighted output
avg-pool over 6 × 6
spatial dims

Global weighted avg-pool
over 6 × 6 spatial dims

448

Output 3755-way Softmax 3755

CAM =
C∑

i=1

wout
k′
i · Fi , (1)

where

H, W, C height,width and number of channels of the feature
map,

K total number of classes,
k’ the predicted class.

One can notice that (1) is a dot-product between the k′th
weight vector of the matrix Wout and the last conv-layer
output feature map F. We can simply zoom the obtained
CAM to the size of the input image and thus identify the
image regions most relevant to the certain category.

Notably, this strategy for visualization is different from the
one exploited byYang et al. (2017). In their multi-scale resid-
ual block cascade, they introduced shortcut connections that
aggregate “lower” and “higher” layer activations with differ-
ent heights and widths but the same number of channels and
defined an aggregation operation as the union of feature vec-
tors. The obtained in this way learned visual representation
was proposed to be fed into the iterative refinement module
to improve the classification performance.

3 Method description

3.1 Proposed architecture

Being inspired by the performance gain enabled by utiliz-
ing the modification of GAP—GWAP proposed by Li et al.
(2018), we employ it and compare its performance with GAP
and our modification—GWOAP. Thus, we could see how
good a single deep CNN without residual connections can
perform for the offline HCCR task and visualize the most
distinctive regions of an input character image. The corre-
sponding networks are further referred to asModel A,Model
BandModelCas shown inTable 1.ThedescriptionofGWAP
and the proposed GWOAP is presented in Sect. 3.3.

Similar to the state-of-the-art method (Xiao et al. 2017),
we resize input images to 96× 96, as smaller samples result
in a poorer accuracy, while bigger, in an expensive computa-
tional cost. Every conv-layer in our network has kernels of a
3× 3 size, a stride parameter of 2, and retains spatial dimen-
sionality of input—performs the “same” mode of padding.
Batch normalization (BN) (Ioffe and Szegedy 2015) is a tech-
nique that was used as a default choice by many researchers
over the past few years and has been proven to be effective
for offline HCCR (Xiao et al. 2017). Therefore, we equip
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Fig. 2 Baseline architecture of the proposed network

every conv-layer with a BN-layer followed by a rectified lin-
ear unit (ReLU). Importantly, we do not use biases for the
conv-layers, because it is redundant due to the presence of
the second location parameters β in BN-layers.

The proposed baseline architecture (ModelA) is presented
in Fig. 2. It consists of 15 layers, counting only convolutional
and fully connected ones.We use average pooling layerswith
3 × 3 windows and a stride parameter of 2. The easiest way
to describe our model is in terms of convolutional blocks—
groups of three convolutional layers with a bottleneck in the
middle. The hyperparameters are shared between the three
conv-layers, except for the number of kernels in the bottle-
neck.We discuss the effectiveness of such conv-blocks in the
next subsection.

The first two conv-layers in our model are followed by a
pooling layer, and thenby4 conv-blocks separated bypooling
layers. Final conv-block produces a feature map of a 6×6×
448 size. Later, it is fed into GAP which outputs a vector of a
448 length. It is further connected to a 3755-softmax output,
where the number of units corresponds to the number of
character classes considered in this work.

Remarkably, smaller sizes of the last conv-layer output
result inmore blurryCAMs, asweneed to upsample themaps
to the size of the input. Through experiments, we observe that
6×6 output featuremaps and 96×96 input images represent a
well-balanced trade-off between the model performance and
the visual clarity of the obtained CAMs.

3.2 Effectiveness of the convolutional block
bottleneck

The effectiveness of bottleneck layers in the proposed model
for offline HCCR is proven empirically: They allow the net-
work to retain its expressiveness while reducing the number
of multiply-accumulate operations and the required storage.

Considering a single conv-layer, let H and W be the size
of the input feature map, C be the number of channels per
input feature map, R and Q be the size of the kernel of the
conv-layer, M , P , S be the number of kernels, the size of
zero-padding and the stride, respectively. Then the number
of multiply-accumulations (MAC) NMAC for the conv-layer
can be calculated as follows:

NMAC = H + 2P − R + S

S
· W + 2P − Q + S

S
· R · Q · C · M .

(2)

Assuming that all conv-layers retain the dimensionality of
input (H ×W ), the total number of MAC in this conv-block
can be found in accordance with (2) as:

NMAC_CB = H+2P−R+S
S · W+2P−Q+S

S

·R · Q · C · M
+2· H+2P−R+S

S · W+2P−Q+S
S

·R · Q · M · M . (3)

Let the middle layer of the conv-block be a bottleneck that
outputs a H × W × MB volume. Then the number of MAC
in such a conv-block can be calculated as:

NMAC_CB∗ = H+2P−R+S
S · W+2P−Q+S

S

·R · Q · C · M
+2· H+2P−R+S

S · W+2P−Q+S
S

·R · Q · MB · M . (4)

Thus, the reduction in computation as well as in storage
can be found as:

NMAC_CB

NMAC_CB∗
= C + 2M

C + 2MB
. (5)

On the other hand, utilizing bottlenecks can be viewed as
a compression–decompression operation, which is kind of
regularization itself.

3.3 Obtaining class activationmaps with GWAP and
GWOAP

GAP (Lin et al. 2013) performs spatial averaging, i.e.,

GAP(F) = 1

HW

H∑

i=1

W∑

j=1

fi jm, 1 ≤ m ≤ C . (6)
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Its modification, GWAP (Li et al. 2018), can be simply
expressed as:

GW AP(F) =
H∑

i=1

W∑

j=1

wGW AP
i jm · fi jm, 1 ≤ m ≤ C . (7)

The proposed modification of GAP is defined as:

GWOAP(F) =
H∑

i=1

W∑

j=1

wGWOAP
m · fi jm, 1 ≤ m ≤ C,

(8)

where

F ∈ R
H×W×C input feature map,

WGW AP ∈ R
H×W×C 3-D trainable kernel of GWAP,

wGWOAP ∈ R
C 1-D trainable kernel of GWOAP.

The difference between the two modifications is the num-
ber of parameters: GWOAP scales the output of spatial
summation, rather than its input, which ismore in the “convo-
lutional” manner, i.e., sharing learnable scaling parameters
channel-wise rather than shape-wise. It also can be seen as
regularization. The process of obtaining CAMs for the net-
work equipped with either GWAP or GWOAP is different
from the one for the network equipped with GAP (1) only by
one additional operation (9). The output of the last conv-layer
F is to be scaled by the trainable kernel—either WGW AP or
wGWOAP :

F∗ =
{

WGW AP � F

WGWOAP � F
, (9)

CAM =
C∑

i=1

wout
k′
i · F∗

i , (10)

where

WGWOAP upsampled 3-D version ofwGWOAP for per-
forming a valid element-wise multiplication
�,

F∗ 3-D scaled feature map,
CAM obtained 2-D class activation map.

The calculation of CAMs is described in Algorithm 1. We
compare how well both modifications of GAP perform in
offline HCCR competition and discuss the CAMs produced
by means of the proposed models for different character
images in Sect. 4.4.

Algorithm 1: Class activation mapping for offline
HCCR with the proposed models

input : A character Im of size 96 × 96
output : A class activation map Im of size 96 × 96

Step 1
character_class = model.predict(input)
// perform a forward pass through the

model and get the prediction

Step 2
f maps = model.get_output(last_conv_layer , input)
// get the output of the last conv-layer

Step 3
if GWOAP or GW AP then

f maps = f maps � WGWOAP/GW AP

// scale feature maps with the
GWOAP/GWAP kernel

end

Step 4
Wout = model.output_layer .get_weights()
wout = Wout[:, character_class]
// get the last layer weights connecting

GAP/GWOAP/GWAP output to the predicted
class

Step 5
CAM = f maps.dot(wout)

CAM = upsample(CAM, si ze = (96, 96),
interpolation = "bilinear")

// compute CAM and upsample it to the size
of input using bilinear interpolation

return CAM

4 Experiments

In this section, we share the implementation details and
demonstrate the effectiveness of the proposed models not
only in terms of recognition performance, but also from the
visualization perspective.

4.1 Datasets

In order to train the proposed networks, we use CASIA-
HWDB1.0-1.1 (Liu et al. 2011) datasets collectedbyNational
Laboratory of Pattern Recognition (NLPR) and Institute of
Automation ofChineseAcademyof Sciences (CASIA),writ-
ten by 420 and 300 persons, respectively.

The overall training dataset contains 2,678,424 samples
belonging to 3755 different character classes. We evalu-
ate our models on the most common benchmark for offline
HCCR—the ICDAR-2013 competition dataset (Yin et al.
2013), containing 224,419 samples written by 60 persons.

It is worth mentioning that we do not use the test set as
validation data for finding hyperparameters. The validation
set of a 60,000 samples size is randomly selected from the
training data. After finding optimal settings for our models,
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we merge validation and training sets and conduct further
experiments.

We use raw images: The only data preprocessing wemake
is normalization to 96 × 96 size and inversion of the pixel
intensity.

4.2 Training strategy

First, we shuffle the training data. The parameters of all conv-
layers are set with the He-normal initialization (He et al.
2015). The classification layer weights are randomly ini-
tialized by drawing from a Gaussian distribution with the
standard deviation of 0.001, while the bias term is initially
set to 0. The parameters of GWAP and GWOAP are initial-
ized with 1.

We use stochastic gradient descent (SGD) with the
momentum term of 0.9 for training, which is a common
choice for pretty much every CNN proposed for this compe-
tition over the past few years. The mini-batch size is set to
be 256, and the maximum number of epochs is 40.

Exploiting batch normalization allows us to choose a
higher learning rate value. Initially, we set the learning rate
to 0.1 and train our models for one epoch. Then we decrease
it by a factor of 10 and keep decreasing after every epoch
when training accuracy stops improving.

To deal with overfitting for all models in our work, we
use L2-regularization with the multiplier equal to 0.001, and
a dropout (Srivastava et al. 2014) before the softmax layer,
where the probability of dropping, pdrop, is set to 0.5. Also,
we do not use any data augmentation method for generating
distorted images during training.

We implement the proposed CNNs using the amazing
Keras deep learning library (Chollet et al. 2015) with the
TensorFlow (Abadi et al. 2016) backend and conduct all
experiments on NVIDIA GeForce GTX 1080 Ti with 11 GB
of memory. A single experiment takes 2 days on average.

4.3 Results

The performances of the proposed models are demonstrated
in Table 2.

Obtaining CAMs with Model A is pretty straightforward,
since it is equipped with GAP and can be done in accor-
dance with (1). As for Model B and Model C, we use the
additional operation (9). Similar to the original source (Zhou
et al. 2016), we ignore the bias of the softmax, when comput-
ing CAMs, as it has little to no impact on the classification
accuracy as shown in the rightmost column in Table 2. After
that, we upsample the obtained 6×6maps to the input image
size using bilinear upsampling and plot them together with
the input to visualize its most relevant regions. The CAMs
produced by means of each model are shown in Fig. 4. The
first two rows display one of the most confusing handwritten

Table 2 Comparison of the proposed networks’ performance

Model Parameters Accuracy (%) Accuracy drop (%)

A 6,507,691 97.38 0.00045

B 6,508,139 97.55 0.00045

C 6,523,819 97.61 0.00045

The last column shows the absolute difference between a trained model
accuracy and its accuracy when the input bias term for the softmax layer
is reset to 0

97.61

99.57 99.77 99.89

TOP-1 TOP-3 TOP-5 TOP-10

Accuracy, %

Fig. 3 Model C top-k classification performance on the ICDAR-2013
competition dataset

Chinese character pairs—“ ” (yi) and “ ” (ji). The last two
rows show the most distinctive parts of “ ” (bao) and “ ”
(ma).

4.4 Comparison of the proposedmodels

Model C utilizing GWAP outperforms the other two. Com-
pared to the baseline model (Model A), its number of
parameters is bigger only by less than 0.25%, while it results
in a relative performance gain of 0.24%. The top-k accura-
cies of Model C are demonstrated in Fig. 3. It takes 4.15 ms
averagely to classify a character image on the GPU.

Despite the fact that GWOAP has 36 times fewer parame-
ters than GWAP, Model B is outperformed by Model C with
a rather small margin. Nevertheless, as the result suggests,
the more attention parameters for global spatial averaging at
the end of the network we use, the better it performs on the
unseen data.

It is very noticeable that not only do Model B and Model
C yield the best classification performance, but also by using
them, we obtain a comparatively more accurate mechanism
for visualization as demonstrated in Fig. 4.

4.5 Comparison with other methods

The comparison of the ICDAR-2013 offline HCCR compe-
tition methods is shown in Table 3.

Two of the proposed models, namely Model B and Model
C, show a competition with the state-of-the-art single-CNN
method (Xiao et al. 2017) classification performance, while
it has the same computational cost of 1.2GFLOPs (multiply-
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7984 P. Melnyk et al.

Fig. 4 Class activation maps for correctly classified character images
and the respective softmax outputs. The first three columns correspond
to the class activation maps produced using deep features of Model A,

Model B and Model C, respectively. The last column contains original
input images from the ICDAR-2013 competition dataset
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Table 3 Comparison of the ICDAR-2013 offline HCCR competition methods

Method Size (MB) Accuracy (%) Ensemble Raw data Ref.

Human-level performance n/a 96.13 n/a n/a Yin et al. (2013)

HCCR-Gabor-GoogLeNet 27.7 96.35 No Yes Zhong et al. (2015)

HCCR-GoogLeNet-Ensemble-10 270.0 96.74 Yes (10) Yes

Residual-34 92.2 97.36 No Yes Zhong et al. (2016)

STN-Residual-34 92.3 97.37 No Yes

DCNN-Similarity ranking 36.2 97.07 No Yes Cheng et al. (2016)

Ensemble DCNN-Similarity ranking 144.8 97.64 Yes (4) Yes

DirectMap + ConvNet 23.5 96.95 No No

DirectMap + ConvNet + Ensemble-3 70.5 97.12 Yes (3) No Zhang et al. (2017)

DirectMap + ConvNet + Adaptation 23.5 97.37 No No

M-RBC + IR n/a 97.37 No Yes Yang et al. (2017)

HCCR-CNN9Layer+GSLRE 4X +ADW 2.3 97.09 No Yes

HCCR-CNN12Layer+GSLRE 4X+ADW 3.0 97.40 No Yes Xiao et al. (2017)

HCCR-CNN12Layer 48.7 97.59 No Yes

Cascaded model (quantization) 3.3 97.11 No Yes Li et al. (2018)

Cascaded model 20.4 97.14 No Yes

AFL 18.2 98.29 No Yes Zhang et al. (2018)

Model A 24.8 97.38 No Yes

Model B 24.8 97.55 No Yes Ours

Melnyk-Net (Model C) 24.9 97.61 No Yes

“Raw data” shows whether manually preprocessed or raw input images are used. All displayedmethods except for human-level performance include
CASIA HWDB1.0-1.1 in training datasets. Bold indicates the best model

accumulations) and is almost twice as small in size. But we
do not use a fully connected layer before the classification
layer, because it would not allow us to compute CAMs.

Remarkably, even our baseline network (Model A) of 15
layers of depth outperforms some recent approaches with
residual learning (Zhong et al. 2016; Yang et al. 2017). Even
though the model proposed by Zhong et al. (2016) uses the
spatial transformation of the input images at the network
level. It is also worth mentioning that similar to our work,
the method described by Yang et al. (2017) allows visualiz-
ing distinctive regions of input character images. However,
it utilizes a multi-scale residual block cascade that learns a
hierarchy of visual features from the input for iterative refine-
ment of the predictions.

As for the cascaded model (Li et al. 2018) which uses
GWAP, it is built with the efficiency criteria in mind in order
to balance the accuracy, speed and number of parameters and
is not aimed to perform the visualization as we do.

Unlike Cheng et al. (2016), we do not use data augmenta-
tion to generate more samples. All our networks outperform
their deepCNNwith largemargins requiring a 31.5% smaller
storage. However, the ensemble of four such CNNs achieves
a 0.03% relatively higher accuracy being almost 6 times big-
ger in size compared to the proposed Model C. It is included
in our comparison to show a complete picture of the compe-
tition.

The AFL method (Zhang et al. 2018) that achieves the
state-of-the-art result in offline HCCR competition is hard
to compare to our work since their model involves a dis-
criminator guiding the feature extractor to learn the prior
knowledge of standard printed characters. On the contrary,
we use only handwritten data for training. Additionally, the
feature extractor in their network is followed by a fully con-
nected layer, which does not allow to utilize the visualization
method exploited in our work.

4.6 Advantages and limitations

Model C performing the best among the proposed three
networks is called Melnyk-Net. The main advantages of
Melnyk-Net are its high recognition performance and size.
Even without applying novel comprising techniques, it has
almost twice as few parameters and the same computational
cost compared to the previous state-of-the-art single-CNN
method trained only on handwritten character samples.
Moreover, our model is equipped with GWAP which allows
us to perform class activation mapping in order to indicate
the most relevant input character image regions. Thus, we
make a step toward interpreting the CNN built for character
recognition. However, the assessment of CAMs in terms of
offline HCCR is very subjective since there is no numerical
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measure for this unlike the object localization task (e.g., the
Jaccard index).

5 Conclusion

In this paper,we propose a high-performanceCNN for offline
HCCR called Melnyk-Net. To the best of our knowledge, it
yields state-of-the-art accuracy for single-network methods
trained only on handwritten data. Compared to the previous
state-of-the-art model, Melnyk-Net is 0.02% more accurate,
while having the same computational cost and requiring
almost twice as small storage.We accomplish this by exploit-
ing convolutional layers with bottlenecks and the variation
of the global averaging operation. Importantly, Melnyk-Net
being 15 layers deep and having no residual connections
outperforms recent ResNet-based methods. Moreover, we
show how utilizing GAP and its modifications including the
proposedGWOAPenables calculatingCAMs in order to per-
form visualization of the most distinctive regions of an input
character image. It improves the network interpretability and
can serve as a good tool for classification error analysis in
such a large-scale recognition problem as offline HCCR.

In future work, modern comprising methods can be used
to reduce the model size and speed up the computational pro-
cess. Adding printed data to the training set in conjunction
with new samples, e.g., generated by generative adversarial
networks (GANs), may be a promising way to further boost
the performance. Also, the visualization obtained by means
of CAMs can be exploited in order to learn from and con-
sequently refine the prediction for misclassified samples. In
addition, although increasing the number of character classes
may cause classification performance loss, it will broaden the
applicability of the offline HCCR model. Finally, the newly
developed ODE networks must be an advantageous choice
for developing much more efficient solutions for the HCCR
task.
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