
Journal of Grid Computing           (2023) 21:75 
https://doi.org/10.1007/s10723-023-09711-9

RESEARCH

Efficient Prediction of Makespan Matrix Workflow
Scheduling Algorithm for Heterogeneous Cloud
Environments

Longxin Zhang · Minghui Ai · Runti Tan ·
Junfeng Man · Xiaojun Deng · Keqin Li

Received: 23 June 2023 / Accepted: 29 October 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract Leveraging a cloud computing environ-
ment for executing workflow applications offers high
flexibility and strong scalability, thereby significantly
improving resource utilization. Current scholarly dis-
cussions heavily focus on effectively reducing the
scheduling length (makespan) of parallel task sets and
improving the efficiency of large workflow applica-
tions in cloud computing environments. Effectively
managing task dependencies and execution sequences
plays a crucial role in designing efficient workflow
scheduling algorithms. This study forwards a high-
efficiency workflow scheduling algorithm based on
predict makespan matrix (PMMS) for heterogeneous
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cloud computing environments. First, PMMS calcu-
lates the priority of each task based on the predict
makespan (PM) matrix and obtains the task schedul-
ing list. Second, the optimistic scheduling length (OSL)
value of each task is calculated based on the PM matrix
and the earliest finish time. Third, the best virtual
machine is selected for each task according to the min-
imum OSL value. A large number of substantial exper-
iments show that the scheduling length of workflow for
PMMS, compared with state-of-the-art HEFT, PEFT,
and PPTS algorithms, is reduced by 6.84%–15.17%,
5.47%–11.39%, and 4.74%–17.27%, respectively. This
hinges on the premise of ensuring priority constraints
and not increasing the time complexity.

Keywords Cloud computing · Priority constraints ·
Predict makespan matrix · Scheduling length ·
Workflow scheduling

1 Introduction

Cloud computing can store, integrate related resources,
and customize them on demand to provide users with
personalized services. A cloud computing center is
an excellent platform capable of running large-scale
workflow applications and provides robust services to
users through its powerful computing system, which is
widely used in contexts such as smart cities, Internet of
Things (IoT), weather forecasting, and other fields [1].
Many scientific studies are even cloud based computing
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platforms, for instance, molecular dynamics [2], green
IoT [3], etc. Heterogeneous cloud computing system
(HCS) is a computing platform composed of multiple
groups of resources and is interconnected through a
high-speed network.

Task scheduling in HCS can be divided into either
dynamic or static task scheduling [4,5]. Dynamic task
scheduling is suitable for cases where the system envi-
ronment and application parameters are unknown at
the time of compilation, thus requiring decisions to be
made during algorithm runs while bringing additional
overhead. Static task scheduling means that informa-
tion, such as communication time between tasks, has
been predetermined before a task is started. This type of
scheduling is usually divided into two phases [6]: task
priority calculation and virtual machine (VM) selec-
tion. The task scheduling problem in cloud comput-
ing system [7] essentially designs appropriate schedul-
ing strategies for the workflow application submitted
to the cloud center. Afterward, it assigns each task in
the application to the appropriate VM according to the
kind of constraints (such as priority constraints, budget
constraints, etc.), thereby completing the entire appli-
cation scheduling in a short time (or at a low cost, etc.).

Existing algorithms, such as heterogeneous earliest
finish time (HEFT) algorithm [8] and high performance
task scheduling algorithm [9], overlook the character-
istics of the successor tasks of the current task when
selecting VM for a task. This ultimately affects (to
some extent) the efficiency of these algorithms. It is
worth mentioning that the predict earliest finish time
(PEFT) algorithm [10] and the algorithm that calcu-
lates the priority of tasks and selects VMs on the basis
of a predict cost matrix (PPTS) [11] can maintain the
same time complexity as HEFT, however, PEFT does
not care about the relative importance of each task,
and PPTS may have priority order violations in work-
flows with minor computational costs. All of the above
may result in reducing the efficiency of these algo-
rithms. Hence, an efficient workflow scheduling algo-
rithm based on the predict makespan matrix (PMMS)
is proposed herein to minimize the makespan of work-
flow tasks in HCS. The reported predict makespan (PM)
matrix generates an efficient task scheduling list in the
task prioritizing phase and positively guides VM selec-
tion corresponding to tasks. PMMS considers both the
impact of immediate successor tasks and the impor-
tance of the current task, thus making the task-VM allo-
cation more reasonable. PMMS minimizes the schedul-

ing length (makespan) [12] of workflow applications
without sacrificing the algorithm’s time complexity.

The contributions of the paper are as follows:

• It develops a priority calculation algorithm based on
a PM matrix to minimize the makespan of workflow
applications while satisfying priority constraints.
The PM matrix considers the impact of the cur-
rent task and predicts the impact of its successor on
the whole workflow application, thus reducing the
scheduling length.

• It also designs a novel task rank calculation rule in
the priority calculation phase. Due to the “forward-
looking” feature of the PM matrix, the priority cal-
culation of tasks is more reasonable, and high pri-
ority tasks would be unscheduled after low priority
tasks, thus improving the efficiency of the entire
algorithm.

• It validates the superiority of the PMMS algorithm
against the advanced HEFT, PEFT, and PPTS algo-
rithms by comparing the parallel application of four
kinds of randomly generated real world workflows
of varying sizes.

The rest of the study is summarized as follows.
Section 2 introduces the related work on heuristic task
scheduling algorithms. Section 3 describes the work-
flow application model, the system model of cloud
computing, and formalizes the problem. Section 4 elab-
orates on the concept of PM matrix and describes the
PMMS algorithm in detail, including the specific strate-
gies for the task priority and VM selection phases. We
then show experimental results to evaluate the perfor-
mance of the PMMS algorithm in Section 5. Finally,
Section 6 concludes the current study.

2 Related Works

The efficiency of executing parallel applications in
HCS relies heavily on the chosen scheduling method
[13]. Many studies aim at minimizing the makespan
of the entire workflow application. The task schedul-
ing problem in HCS [14] is more complex compared
to homogeneous computing systems. Following differ-
ent optimization objectives, the existing heuristic algo-
rithms can be classified into various objectives such
as minimizing scheduling length, minimizing mone-
tary cost, minimizing energy consumption, maximiz-
ing reliability algorithms, etc.
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Topcuoglu et al. [8] presented the HEFT algorithm,
which is a classic heuristic algorithm to minimize the
scheduling length. HEFT assigns a VM with the mini-
mum value of earliest finish time (EFT) to the candidate
task without considering the computational overhead
of any successor node of the current task. If there is a
large disparity between the computational cost of the
current task node and its direct successor node, there is
not an optimal priority queue generated by the HEFT
algorithm. Therefore, HEFT in HCS may lead to the
algorithm’s low scheduling efficiency. Arabnejad et al.
[10] reported the PEFT algorithm according to an opti-
mistic cost table, aiming to reduce the completion time
of the entire workflow and decrease the time complexity
of the algorithm. However, it focuses on reducing the
earliest start time (EST) of succeeding tasks and does
not pay attention to the relative importance of each task.
The assignment results of tasks are not directly related
to their own priority level, and tasks with higher priority
may be scheduled after those with lower priority, which
will lead to an increase in the scheduling length and
an unreasonable assignment strategy for tasks. Djigal
et al. [11] introduced an algorithm named PPTS to ulti-
mately minimize the makespan of the workflow. How-
ever, it is not applicable to all workflow applications.
For workflow applications with minor computational
costs, PPTS may have problems in calculating the pri-
ority of tasks that violate the priority order specified
in task scheduling. Zhang et al. [6] described an algo-
rithm for relative distance. It maps a VM using the
relative distance of tasks to improve the efficiency of
VM utilization and reduce the makespan of applica-
tions while satisfying the deadline constraint. While
the algorithm prioritizes enhancing the utilization effi-
ciency of VMs, it may result in the issue of imbal-
anced resource allocation. Meanwhile, Kelefouras and
Djemame [15] explored a strategy that can minimize
the scheduling length of the task set by recognizing
whether a task is executed either single-threaded or
multithreaded. This approach can substantially reduce
the scheduling lenghth and enhance the utilization of
resources in task sets. Nonetheless, it may prove inad-
equate for accommodating intricate task dependencies
and resource contention. Youness et al. [16] presented
two fault-tolerant scheduling algorithms, namely the
typical heuristic algorithm and the weighted mean com-
pletion time optimization algorithm, based on simu-
lated annealing method. By introducing a weighted
average maximum completion time and adding posi-

tion based on task replication, makespan is decreased
and system reliability is improved.

Arabnejad et al. [17] developed a deadline-budget-
constrained-aware strategy, which introduces an adjust-
able cost-time trade-off to determine the optimal
scheduling under the condition that both deadline
and budget constraints are satisfied. The algorithm
takes into account multiple factors, including cost,
time, deadline, and budget constraints. Accordingly, it
exhibits a high level of complexity, thereby demanding
additional computing resources and time for its execu-
tion. In HCS, large workflow scheduling strategies usu-
ally take budget cost into account, and many classical
algorithms are based on task scheduling lists computed
by the HEFT algorithm. Arabnejad et al. [18] also pro-
posed the heterogeneous budget constrained schedul-
ing (HBCS) algorithm. HBCS minimizes the execution
time of submitted applications within the user-budget
cost specified by users. The budget allocation method
of HBCS may be biased against low-priority tasks,
resulting in extended workflow completion times. Chen
et al. [19] improved HBCS and subsequently devised
the budget level minimized scheduling length algo-
rithm, which adopts the strategy of divide and conquer,
changes the budget constraint of each subtask using
the budget level, and achieves makespan minimization.
This strategy can achieve a balance between the budgets
of low and high priority tasks, while simultaneously
reducing the scheduling length of workflow applica-
tions. Because other algorithms tend to consider energy
consumption, Quan et al. [20] studied an algorithm via
a weight-based mechanism to pre-allocate energy for
unscheduled tasks to address the unfairness of tradi-
tional energy allocation methods for low-priority tasks.
However, the time complexity of the algorithm is rela-
tively high.

Recently, the goal of workflow scheduling in HCS
has gradually focused on optimizing monetary cost,
and either reducing energy consumption or improv-
ing scheduling reliability [21]. Chen et al. [22] focused
on monetary cost optimization algorithms, such as the
downward cost optimization algorithm, with “down-
ward” referring to minimizing the cost of upward rank
values from the entry to the exit tasks in descending
order. Meanwhile, the downward upward cost opti-
mization refers to minimizing the cost of upward rank-
ing values from the exit to the entry tasks in ascend-
ing order. Liu et al. [23] proposed an online multi-
workflow scheduling algorithm, NOSF, for schedul-
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ing multiple workflows in a manner that not only pre-
dicts and dynamically adjusts task execution times to
meet deadline constraints but also optimizes resource
utilization and system performance. NOSF exhibits
scalability and adaptability, accommodating various
workflow scheduling problems with diverse types and
scales. However, one limitation of NOSF is its fail-
ure to account for the variability in task execution
times, thereby potentially leading to resource ineffi-
ciency and additional costs. Chen et al. [24] suggested
an energy consumption minimization algorithm named
MECABP based on the available budget preassignment
policy and dynamic voltage-frequency scaling tech-
nique, thereby minimizing energy consumption while
complying with cost constraints. The equitable dis-
tribution of budget costs among subtasks may prove
inequitable for lower priority tasks, leading to increased
energy consumption and extended completion times.
Zhang et al. [25] meanwhile investigated a method
that uses a mission-critical remapping (RMREC) strat-
egy to decrease energy consumption under budget
cost constraints. However, unlike the MECABP algo-
rithm, RMREC uses critical task mapping to ensure
that the energy consumption of tasks during schedul-
ing does not exceed the given budget, avoids the waste

of resources, and improves the efficiency of algo-
rithm scheduling. Based on shared recovery technol-
ogy, Zhang et al. [26] devised an algorithm to minimize
energy consumption while maintaining the original
reliability of the system without violating the deadline
and priority constraints of the tasks. The algorithm’s
time complexity increases due to the consideration
of multiple constraints. Saeedizade and Ashtiani [27]
developed a dynamic deadline and budget-aware work-
flow scheduling algorithm (DDBWS), tailored for the
workflow as a service environment. DDBWS uses dual
factors to balance cost and resource utilization, ensur-
ing a high success rate and effective planning of the
algorithm. For the scheduling problem of parallel tasks
in heterogeneous computer systems, Zhang et al. [28]
examined a competition-aware reliability management
algorithm with deadline and energy budget constraints,
improving the reliability of task scheduling through
redundant recycling. Redundancy recovery necessi-
tates extra computing and communication resources,
which leads to an increase in the system’s overhead and
energy consumption. Rodriguez and Buyya [29] intro-
duced a multi-workflow elastic resource allocation and
scheduling algorithm (EPSM) designed for WaaS plat-
form. The algorithm is capable of adapting to environ-

Table 1 Summary of the reviewed algorithms

Literature Behavior Methods

Topcuoglu et al. [8] Static List scheduling

Arabnejad et al. [10] Static Optimistic cost table

Djigal et al. [11] Static Predict cost matrix

Zhang et al. [6] Static VMs mapping by the relative distance of tasks

Kelefouras and Djemame [15] Static Single/multithreaded identification

Youness et al. [16] Static Simulated annealing method

Arabnejad et al. [17] Dynamic Deadline-budget-constrained-aware strategy

Arabnejad et al. [18] Static Remaining cheapest budget

Chen et al. [19] Static Budget level factor

Quan et al. [20] Static Weight-based mechanism to pre-allocate energy

Chen et al. [22] Static Downward/upward cost optimization

Liu et al. [23] Dynamic Predicting and dynamically adjusting task execution time

Chen et al. [24] Static The average allocation of budget cost

Zhang et al. [25] Static Mission-critical remapping

Zhang et al. [26] Static Solving the multi-resource packing problem

Saeedizade and Ashtiani [27] Dynamic Dynamic deadline and budget-aware

Zhang et al. [28] Static Redundant recycling

Rodriguez and Buyya [29] Dynamic Containers, Scalable resource
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mental and workload changes while still meeting the
deadline constraint, reducing the cost of a workflow
application. However, EPSM does not consider factors
such as task priority, data transmission, and associated
aspects. Table 1 summarizes the primary features and
distinctions of the algorithms discussed in Section 2.

VMs are the fundamental resource units in cloud
environments. Employing a finite number of VMs
can ensure the efficient allocation and utilization of
resources, preventing needless resource squandering
and avoiding additional costs in accordance with the
size of the workflow and the budgetary limitations spec-
ified upon the user. In practical scenarios, there are
often constraints on the number of VMs, such as hard-
ware resources and energy costs. Moreover, from the
user’s perspective, renting a limited number of VMs can
satisfy their requirements while also reducing rental
expenses. The current study only considers the task pri-

ority constraint and explores the workflow scheduling
length minimization problem in HCS using a limited
number of VMs.

3 Models

This section introduces the application and system
models. Afterward, it formally describes the problem
found herein.

3.1 Application Model

The directed acyclic graph (DAG) can be used to
depict workflow applications running on VMs [30,31],
expressed here as G = 〈N , E,C,W 〉, where N is the
set of tasks, with each task ξi (ξi ∈ N ) varying in exe-
cution time on different VMs. E is the set of edges

Table 2 Description of notations

Notation Definition

VM Virtual machines

DAG Directed Acyclic Graph

V The set of VMs, and |V | is the number of VMs

ξi The i-th task

vm j The j-th VM

ei, j Communication edge connecting task ξi and task ξ j

ci, j Communication time between tasks ξi and ξ j

wi, j Execution cost of ξi on vm j

ci, j The average communication time between tasks ξi and ξ j

wi, j The average execution cost of ξi on |V | VMs

avail(vm j ) The earliest time when vm j gets ready

AFT (ξk) The actual finish time of task ξ j ’s predecessors

CP The set of critical path nodes in the DAG

pre (ξi ) The set of immediate predecessor nodes for task ξi

succ (ξi ) The set of immediate successors of task ξi

EST
(
ξi, vmj

)
Earliest start time of task ξi on vm j

EFT
(
ξi, vmj

)
Earliest finish time of task ξi on vm j

PM
(
ξi, vmj

)
Predict makespan value of task ξi on vm j

rankPM (ξi ) The rank value of ξi

θ A constant that takes the value of 1.0

OSL
(
ξi, vmj

)
Optimistic schedule length value of task ξi on vm j

Makespan Actual finish time of the exit task (scheduling length)

SLR Scheduling length ratio

CCR Communication computing ratio

123



   75 Page 6 of 21 Journal of Grid Computing            (2023) 21:75 

Fig. 1 Motivational example diagram of a DAG parallel appli-
cation

directly connecting two tasks in the DAG. Each edge
ei, j (ei, j ∈ E) indicates the priority constraint between
tasks ξi and ξ j , where ξ j cannot be executed before task
ξi . C is the set of communication costs between two
tasks that are directly connected, where ci, j (ci, j ∈ C)
represents the communication time of ei, j . ci, j = 0 if
and only if ξi and ξ j are executed on the same VM. W
is the set of the computational cost of tasks on different
VMs. wi, j (wi, j ∈ W ) is the computing cost of the task
ξi assigned to execute on VM vm j (vm j ∈ V ), where j
denotes the j-th VM. pre (ξi ) refers to the set of direct
predecessor nodes of task ξi and succ (ξi ) denotes the
set of direct successor nodes of task ξi . A task without

any predecessor can be represented as ξentr y , while a
task without a successor is represented as ξexi t . It is
agreed herein that the studied DAG workflow applica-
tion has a unique entry/exit task. For simplicity, Table
Table 2 summarizes the descriptions of notations used
herein.

As an example of a typical DAG parallel application,
Table 3 presents the computation cost of each task on
three different sets of VMs seen in Fig. 1.

Task ξ3 may enter the ready state only when its
immediate predecessor task ξ1 is finished. In Table 3,
the computational cost of the second row in the second
column indicates that the execution time of task ξ2 on
vm1 is 68. When tasks ξ1 and ξ3 are not executed on
the same VM, the communication cost between them
is c1,3 = 12.

The computation time of ξi on vm j is denoted by
wi, j . The average computation time wi, j for ξi can be
defined by

wi, j = (

|V |∑

j=1

wi, j )

/

|V |, (1)

where
∣
∣V

∣
∣ is the number of VMs.

ci, j is the communication cost required to transmit
data datai, j from tasks ξi to ξ j . The average commu-
nication time ci, j is estimated as follows:

ci, j=L + datai, j
B

, (2)

Table 3 Computational time of the task nodes in Fig. 1

Taski vm1 vm2 vm3

ξ1 51 21 36

ξ2 68 71 9

ξ3 84 31 13

ξ4 27 16 35

ξ5 22 43 34

ξ6 16 54 13

ξ7 33 22 31

ξ8 51 20 35

ξ9 48 60 31

ξ10 47 78 63
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where L is the average latency time of all VMs and B
is the average transmission rate between VMs.

The EST of ξi on vm j is the actual finish time of the
direct predecessor tasks that ξi follows. Its expression
can be calculated as

EST
(
ξi , vm j

) =
⎧
⎨

⎩

0, i f ξi = ξentr y;
max

{
avail

(
vm j

)
, max
ξk∈pred(ξi )

{
AFT (ξk) + ck,i

}}
, otherwise,

(3)

where avail
(
vm j

)
is the earliest time when vm j gets

ready, and AFT (ξk) is the actual finish time of ξi ’s
predecessors.

Therefore, the earliest finish time EFT
(
ξi , vm j

)
of

task ξi on vm j is defined by

EFT
(
ξi , vm j

) = EST
(
ξi , vm j

) + w
(
ξi , vm j

)
. (4)

After all tasks in the DAG are scheduled and exe-
cuted, the scheduling length (also name makespan) is
the actual completion time of the exit task. Therefore,
makespan can be expressed as

Makespan = max
{
AFT (ξexi t )

}
. (5)

3.2 System Model

The HCS model used herein is shown in Fig. 2. An
HCS consists of three modules, namely users, resource
deployment, and resource management. End users
upload requirements and applications to the cloud cen-
ter through user modules. The resource deployment
module serves as a bridge between the users and the
resource management module. The requests submit-
ted by end users are then preprocessed by the resource
deployment module, which includes the processing of
applications and the design of scheduling strategies,
etc. The task scheduler then transmits the user sub-
mitted tasks to the resource management module. In
the resource deployment module, the resource man-
ager sends the node status information obtained by
the resource management module to the job sched-
uler and the task scheduler. Meanwhile, the job sched-
uler receives the request from the users module and
the information sent by the resource manager, then
transforms the application into the corresponding DAG
and transmits it to the task scheduler. The task sched-
uler then assigns the user-submitted applications to the
resource management module through the scheduling
policy. The resource management module contains |V |
heterogeneous VMs and allocates appropriate VMs in
accordance with different tasks to meet the personal-

Fig. 2 HCS model
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ized needs of users to save resources and reduce energy
consumption.

3.3 Problem Definition

Workflow scheduling in HCS is the assignment of tasks
to VMs for execution. This study posits that cloud com-
puting center reasonably schedules each task in work-
flow G to VMs only when the priority constraint of
workflow application submitted by users is satisfied to
realize the shortest scheduling length of G. Its formal-
ization is as follows:

Minimize : Makespan, (6)

Subject to : ∀ξi ∈ N ,∀vm j ∈ V . (7)

4 The PMMS Algorithm

The core idea of PMMS is to use the PM(·) function
to calculate the PM matrix of each task, thereby deter-
mining the priority order of tasks and affecting the cor-
responding VM allocation of each one. This section
introduces the definition of the PM matrix, elaborates
the task priority calculation phase and VM selection
phase of PMMS, analyzes the PMMS’s time complex-
ity, and finally selects the DAG diagram shown in Fig. 1
to describe the flow of the PMMS algorithm.

4.1 Predict Makespan Matrix

ThePM(·) function is used to construct a matrix named
PM containing the values corresponding to each task-
VM pair. The predicted completion time of the different
task-VM pairs is expressed as a PM matrix, with the
rows and columns representing tasks and VMs, respec-
tively. The PM matrix has two important functions: (1)
determine the rank value of each task to accordingly
generate the task scheduling list in the task priority
stage; and (2) select the most appropriate VM for each
task in the scheduling list to minimize the makespan of
the entire application.

Definition 1 PM(·) function PM
(
ξi , vm j

)
denotes

the PM value when ξi is executed on vm j . Calculated

sequentially from down to up starting from the exit
task, the PM value of ξi on vm j is related to three
properties: (1) the PM value of the successor task ξk
on vmγ ; (2) the computational cost of the current task
ξi on vmγ ; and (3) the average communication cost ci,k
between the current task ξi and its direct successor task
ξk . PM

(
ξi , vm j

)
is calculated as

PM
(
ξi , vm j

) =
⎧
⎨

⎩

0, if ξi = ξexit;
max

ξk∈succ(ξi )

{
min

vmγ ∈V

{
PM

(
ξk, vmγ

) + w
(
ξi , vmγ

) + ci,k

}}
, otherwise,

(8)

for the entry task, PM
(
ξexi t , vm j

)=w
(
ξexi t , vm j

)
,

when vm j = vmγ , ci,k=0.

4.2 Task Prioritizing Phase

Definition 2 Task rank value rankPM (ξi ) The
scheduling sequence of tasks in DAG is determined
according to the value of task predict matrix priority
rankPM . The expression rankPM (ξi ) for the rankPM
value of ξi is defined as follows:

rankPM(ξi ) =
∑|V |

i=1 PM(ξi , vm j )∣∣V
∣∣ . (9)

When the value is calculated only in accordance
with (8) and (9), the rankPM value of the successor
node for the current task may be greater than its own
rankPM value. If the tasks are sorted by rankPM val-
ues only, the precedence constraint of task set may be
violated. To solve this problem, a scaling-down pol-
icy inspired by the scaling-up method in the list-based
heuristic makespan minimization scheduling algorithm
called HMDS-Bl [32] is thus designed. (The scaling-
up method of HMDS-Bl is that when the rank value
of a task is less than or equal to the maximum of the
rank values of all its successor tasks, the rank value of
that task is scaled up in a specified proportion until it
is greater than the maximum of the rank values of all
its successor tasks.)

Definition 3 Scaling-down policy When the task
node ξi and its direct successor node ξγ (ξγ ∈
succ (ξi )) meet the condition rankPM

(
ξi

) ≤ rankPM(
ξγ

)
, the PM

(
ξγ , vm j

)
value of the successor node is

scaled down in accordance with (10), thereby reducing
the corresponding rankPM

(
ξγ

)
of the successor node
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to satisfy the priority constraint. This is expressed as
the following:

PM
(
ξγ , vm j

) =PM
(
ξγ , vm j

) × rankPM (ξi )

rankPM
(
ξγ

)+θ
,

(10)

where θ is a constant that takes the value of 1.0. This
value was chosen after conducting a large number of
tuning trials and carefully comparing the experimental
results.

Algorithm 1 The TP Algorithm.
Input: G = {N , E,C,W }, V .
Output: PM(ξi , vm j ), rankPM (ξi ), and the priority list
taskList.
1: for each task ξi in N do
2: for each vm j in V do
3: Calculate PM(ξi , vm j ) by (8);
4: end for
5: Calculate rankPM (ξi) by (9);
6: end for
7: for each task ξi in N do
8: if rankPM (ξi) ≤ rankPM

(
ξγ

)
&& ξγ ∈ succ(ξi) then

9: for each vm j in V do
10: Recalculate PM

(
ξγ , vm j

)
by (10);

11: end for
12: Recalculate rankPM

(
ξi

)
by (9);

13: end if
14: end for
15: Sort the task in a taskList according to the descending order

of rankPM (ξi ) values;
16: return PM

(
ξi , vm j

)
, rankPM

(
ξi

)
, taskList.

The task priority (TP) algorithm is shown in Algo-
rithm 1. Lines 1–14 above recursively calculate the
rankPM value of each task. Lines 2–4 calculate the
PM

(
ξi , vm j

)
value of each task on different VMs. Line

5 obtains the initial rankPM value of each task. When
the rankPM

(
ξi

)
value of the ξi is less than or equal to

the rankPM
(
ξγ

)
value of its direct successor node ξγ ,(

i.e., rankPM
(
ξi

) ≤ rankPM
(
ξγ

)
and ξγ ∈ succ

(
ξi

))
,

thenPM
(
ξγ , vm j

)
and the rankPM

(
ξγ

)
of ξγ is updated

in accordance with (10) in lines 7-14. Line 15 obtains
the task priority queue taskList based on the updated
rankPM

(
ξγ

)
values in descending order. Line 16 returns

the updated PM
(
ξi , vm j

)
, rankPM

(
ξγ

)
and taskList.

Table 4 shows the PM
(
ξi , vm j

)
matrix of differ-

ent task nodes calculated in accordance with (8) under
Algorithm 1 and the priority rankPM

(
ξi

)
of each task as

calculated by (9). The priority list taskList in descend-

ing order of rankPM is {ξ1, ξ4, ξ5, ξ3, ξ2, ξ6, ξ9, ξ8, ξ7,
ξ10}.

4.3 VM Selection Phase

Definition 4 Optimistic schedule length (OSL) OSL
is the sum of EFT

(
ξi , vm j

)
and PM

(
ξi , vm j

)
. The

OSL
(
ξi , vm j

)
value of ξi on vm j can be calculated

by

OSL
(
ξi , vm j

) = EFT
(
ξi , vm j

) + PM
(
ξi , vm j

)
.

(11)

Each task-VM assignment is associated with three
attributes of the task on the corresponding VM, includ-
ing EST , EFT , and OSL. In this section, the OSL value
of each task ξi on vm j is first computed. The VM with
the smallest OSL value is selected to execute the cor-
responding task.

4.4 PMMS

The pseudo code of PMMS is shown in Algorithm 2.
Line 1 calls Algorithm 1. Lines 2–13 are the core part
of PMMS. In lines 4–10, every VM is traversed for
each candidate task. Line 5 calculates the EFT of the
candidate task on the current VM. Line 6 calculates
the OSL value of the task on the current VM. Lines
7–9 then select the VM with the smallest OSL value
and obtain the EFT of the task on the VM that meets
task priority constraints. Line 12 updates the taskList.
When all task nodes are finished, the actual makespan
of G is calculated in line 14.

4.5 Time Complexity Analysis

When a user submits a G with
∣∣N

∣∣ task to a cloud cen-
ter with a resource pool,

∣∣V
∣∣ VMs are thus obtained.

In Algorithm 1, the time complexity for comput-
ing the PM matrix in lines 2–4 is O

(∣∣N
∣∣ × ∣∣V

∣∣).
Thus, the time complexity of lines 1-6 should be

O
(∣∣N

∣∣2 × ∣∣V
∣∣
)

. In lines 7–14, the algorithm com-

pares the rankPM values between tasks and updates
the PM

(
ξγ , vm j

)
and rankPM (ξi ) values, whose run-

ning time is O
(∣∣N

∣∣2 × ∣∣V
∣∣
)

. Therefore, Algorithm 1

has a time complexity of order O
(∣∣N

∣∣2 × ∣∣V
∣∣
)

. In
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Table 4 PM matrix of each task in Fig. 1 under PMMS

Taski PM (ξi , vm1) PM (ξi , vm2) PM (ξi , vm3) rankPM (ξi )

ξ1 161 147 147 151.67

ξ2 126 126 107 119.67

ξ3 130 128 107 121.67

ξ4 125 123 133 127.00

ξ5 117 130 128 125.00

ξ6 114 126 111 117.00

ξ7 80 97 94 90.33

ξ8 98 107 94 98.00

ξ9 95 107 94 98.67

ξ10 47 78 63 62.67

Algorithm 2 PMMS.
Input: PM

(
ξi , vm j

)
, rankPM

(
ξi

)
, G = {N , E,C,W }, V .

Output: Makespan
1: Call the Algorithm 1;
2: while taskList is not empty do
3: vm′ ← vm0
4: for each vm j in V do
5: Calculate EFT

(
ξi , vm j

)
by (4);

6: Calculate OSL
(
ξi , vm j

)
by (11);

7: if OSL
(
ξi , vm j

) ≤OSL
(
ξi , vm′) then

8: OSL
(
ξi , vm′) ← OSL

(
ξi , vm j

)
;

9: end if
10: end for
11: Assign ξi to vm′;
12: Update taskList;
13: end while
14: Makespan ← EFT

(
ξexi t , vm j

)
;

15: return Makespan.

Algorithm 2, lines 4–10 take the most time to calculate
the EFT value and OSL value with a time complexity
of O

(∣∣N
∣∣ × ∣∣V

∣∣). The total time complexity for Algo-

rithm 2 is also O
(∣∣N

∣∣2 × ∣∣V
∣∣
)

. Hence, PMMS’ time

complexity is O
(∣∣N

∣∣2 × ∣∣V
∣∣
)

.

4.6 Motivational Example

For the DAG in Fig. 1, PMMS works as follows. Step 1
calculates the PM value of each task node on different
VMs using (8). Step 2 then calculates the rankPM (ξi )

value of each task using (9). Step 3 compares the initial
rankPM (ξi ) of the task node and updates the corre-
sponding PM and rankPM values according to (10) and

(9), respectively. For Fig. 1, the rankPM value of the
immediate successor node of each task is smaller than
its predecessor node, hence no update is needed. Step
4 sorts the tasks by the rankPM (ξi ) value obtained in
Step 3 in decreasing order and obtains the task priority
list

{
ξ1, ξ4, ξ5, ξ3, ξ2, ξ6, ξ9, ξ8, ξ7, ξ10

}
. Step 5 com-

putes the EFT of each task on the available VM node
according to (3) and (4). Step 6 calculates the value of
OSL for each task on the VM. Step 7 assigns each task
to the VM with the smallest OSL value. The results of
Fig. 1 under PMMS are shown in Table 5.

Task ξ3 has the smallest OSL value on vm3 with
OSL (ξ3, vm3) = 153. Therefore, ξ3 is assigned to
vm3, at which point ξ3 runs on vm3 withEFT (ξ3, vm3)

= 46. Task ξ8 has the smallest OSL value on vm2

with OSL (ξ8, vm2) = 201, so ξ8 runs on vm2 as well
with EFT (ξ8, vm2) = 103. The scheduling results of
the DAG shown in Fig. 1 under HEFT, PEFT, PPTS,
and PMMS are shown in Fig. 3, with corresponding
makespans of 183, 168, 186, and 161, respectively.
Compared with HEFT, PEFT and PPTS, the PMMS
algorithm reduces the makespan by 12.02%, 4.17%,
and 13.44%, respectively.

5 Experiments

This section presents in detail the three algorithms to be
compared, the experimental environment, experimen-
tal setting, and evaluation metrics of workflow algo-
rithms. Four real scientific workflows are selected to
test the performance of PMMS with HEFT, PEFT, and
PPTS algorithms.
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Table 5 Intermediate results of each task in Fig. 1 under PMMS

Taski EFT OSL vm assigned
vm1 vm2 vm3 vm1 vm2 vm3

ξ1 51 21 36 212 168 183 vm2

ξ4 57 37 65 182 160 198 vm2

ξ5 54 80 66 171 210 194 vm1

ξ3 138 68 46 268 196 153 vm3

ξ2 122 108 55 248 234 162 vm3

ξ6 70 91 68 184 217 179 vm3

ξ9 119 131 99 214 238 193 vm3

ξ8 134 103 134 232 201 232 vm2

ξ7 102 125 130 182 222 224 vm1

ξ10 161 197 182 208 275 245 vm1

Bold values indicate the best results obtained by PMMS in terms of EFT/OSL

5.1 Comparative Algorithms

Because the PMMS, HEFT, PEFT, and PPTS algo-
rithms have the same application and system models
(with the goal being to minimize the makespan), all
algorithms are compared herein. Their working princi-
ple can be briefly summarized as follows.

HEFT This is a well-known and the most classi-
cal heuristic list scheduling strategy. First, HEFT starts
from the exit task, traverses upward to the entry task,
and computes the upward rank values of task nodes in
turn. Second, the task priority queue is generated based

on the result of the descending order of the upward rank
values. Third, the EFT of the task on each VM is com-
puted according to the order of the task priority queue.
Fourth, the VM with the smallest EFT value is selected
to schedule the corresponding task.

PEFT The highlight of PEFT is an Optimistic Cost
Table (OCT) based policy. In the task prioritization
phase, theOCT(ξi , vm j ) value of task ξi on vm j is first
computed as in (12). Then the rank value rankoct (ξi )
of each task is calculated using (13) and ranked in
descending order of rankoct (ξi ). In the VM selection
phase, the optimistic EFT (OEFT ) of each task is cal-

Fig. 3 Scheduling result of
the workflow Fig. 1
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culated using (14), and the task is assigned to the VM
with the smallest OEFT value.

OCT
(
ξi, vmj

) = max
ξk∈succ(ξi )

{
min

vmγ ∈P

{
OCT

(
ξk, vmγ

)

+ w
(
ξk, vmγ

) + ci,k
}}

.

(12)

rankoct(ξi ) =
∑|V |

j=1 OCT(ξi , vm j )

|V | . (13)

OEFT
(
ξi , vm j

) = EFT
(
ξi , vm j

) + OCT(ξi , vm j ).

(14)

PPTS PPTS improves both the task priority phase
and the VM selection phase. In the task priority
phase, (15) and (16) are used to calculate the rank
value rankPCM(ξi ) of task ξi . For the exit task in
(15), PCM(ξexi t , vm j ) = w(ξexi t , vm j ). Then, the
tasks are ranked in descending order according to the
rankPCM(ξi ) value. In the VM selection phase, the
LAEFT (ξi , vm j ) is calculated in (17) and the VM with
the smallest LAEFT (ξi , vm j ) value is selected to sched-
ule corresponding tasks.

PCM
(
ξi , vm j

) = max
ξk∈succ(ξi )

{
min

vmγ ∈P

{
PCM

(
ξk, vmγ

)

+ w
(
ξk, vmγ

) + w
(
ξi , vmγ

)

+ ci,k
}}

.

(15)

rankPCM(ξi ) =
∑|V |

j=1 PCM(ξi , vm j )

|V | . (16)

LAEFT (ξi , vm j ) = EFT(ξi , vm j ) + PCM(ξi , vm j ).

(17)

5.2 Experimental Environment

The experimental environment is similar to that in
extant literature [33–35] to simulate real application

scenarios. Said experiments are conducted based on
the Amazon EC2 instance, thus providing users with
more than 35 different instance types and 8 zones. We
applied for 21 VMs in the Amazon EC2 cloud to test
the algorithm’s performance. Each VM can be con-
figured with a different type and frequency of CPU,
2 to 16 GB memory, a CentOS 7.3 operating system,
and Python as the experimental development language.
The experimental environmental parameters are as fol-
lows: 0.01 h ≤ wi,k ≤ 192 h, 0.01 h ≤ ci, j ≤ 30 h,
B = 20 Mb/s, and the average latency of VMs to
obtain services is 97 s [15].

In order to evaluate the performance of PMMS and
the compared algorithms, four typical real scientific
workflows are used whose structures are illustrated in
Fig. 4. Figure 4(a) presents an example of the appli-
cation of simple Epigenomics (EP) [36] in biogenet-
ics. EP is typically a highly-parallel application with
multiple communication channels operating different
blocks of data that are not directly connected to each
other. Figure 4(b) shows a Gaussian Elimination (GE)
[8] parallel workflow application with μ = 5, where
μ is the dimension of the GE matrix. The number of
task nodes (Sμ) and μ in GE satisfy the following
equation: Sμ = (μ2 + μ − 2)/2. Figure 4(c) illustrates
the LIGO inspiral Analysis Workflow, while Fig. 4(d)
shows an example of the Montage workflow, usually
applied in astronomy [36]. Without loss of generality,
these four different types of real scientific workflows
are randomly generated using a number of tasks rang-
ing from 18 to 1,084.

5.3 Experimental Evaluation and Settings

5.3.1 Evaluation Metrics

The scheduling length ratio (SLR) [37,38], makespan
[7,21], and execution time [39] are used in the experi-
ments as performance metrics to evaluate PMMS and
compared algorithms. The SLR is defined as:

SLR = Makespan
∑

ξi∈CP minvm j∈V {wi, j } , (18)

where the denominator of (18) is the sum of the tasks
with the minimum computational costs in G and ξi ∈
CP (CP refers to the critical path of G). As the denomi-
nator stays the same for different scheduling algorithms
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Fig. 4 Architecture
diagram of four scientific
workflow applications

when considering the same application and the set of
VMs, the smaller the makespan is, the smaller SLR is.
Consequently, a smaller value of SLR indicates a better
performance of the algorithm.

The execution time of workflow is calculated as the
total computational time taken by all tasks running on
the respective VM.

To avoid occasionality, the communication comput-
ing ratio (CCR) [8], which is the ratio of the average
cost of communication to computation, is also noted
when selecting the task set. In a DAG, a smaller CCR
value means that it is a computation intensive applica-
tion, while a larger CCR value means that it is a commu-
nication intensive application. In the experiment, dif-

ferent results are obtained by adjusting the value of
CCR and averaging all experimental results.

5.3.2 Experimental Settings

The following three sets of experiments with different
variables are set in EP, GE, LIGO, and Montage parallel
application workflows:

(1) The scale of tasks is variable. The workflow varies
in size while the number of VMs is kept at 3 and
other parameters remain consistent to test the aver-
age SLR of the four algorithms. The scale of tasks
for each real-world workflow used in this section
is as follows:
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(i) EP: 19, 51, 103, 523, 1,003.
(ii) GE: 27, 53, 298, 494, 1,033.
(iii) LIGO: 40, 94, 274, 544, 1,084.
(iv) Montage: 18, 66, 126, 606, 1,056.

(2) The scale of VMs is variable. The number of tasks
of EP, GE, LIGO, and Montage parallel work-
flows is 1,003, 1,033, 1,084, and 1,056, respec-
tively. The experiments utilize the following num-
bers of VMs: 3, 6, 9, 12, 15, 18, and 21. We assess
the average SLR and execution time of the four
algorithms.

(3) The scale of tasks and the value of CCR are vari-
able. The workflow’s size varies while maintaining
the number of VMs at 21, and all other parame-
ters remain constant to assess the SLR of the four
algorithms. The scale of tasks for each real-world
workflow employed in this scenario is identical to
that mentioned in (1). The experiments utilize the
following values of CCR: 0.5, 1.0, 2.0, 5.0.

5.4 Experimental Results

5.4.1 Varying Number of Tasks

We compare the average SLR of PMMS, PEFT, HEFT,
and PPTS algorithms in four kinds of workflow appli-
cations with a diverse number of tasks. By adjusting
the CCR values, the number of tasks of the five differ-
ent sizes is tested 10 times, subsequently averaging the
results thereafter. All experimental data in this section
are obtained by testing various sizes of the application
while keeping the number of VMs at 3. Figure 5 shows
the compared results.

Taking the number of tasks in EP as a variable,
Fig. 5(a) depicts the average SLR values of the four
algorithms in parallel application of EP with five dif-
ferent task numbers. It shows that the average SLR
of PEFT, HEFT, and PPTS algorithms is greater than
that of PMMS. For |N | = 19, then the average SLR
of PMMS, compared with PEFT, HEFT, and PPTS, is
reduced by 14.18%, 4.72%, and 4.72%, respectively.
Meanwhile, for |N | = 51, the SLR values of all four
algorithms are greater than 8.0. In the remaining exper-
iments with different size of tasks, the SLR values of
the four algorithms are all less than 2.5. It is due to
the fact that the sum of the minimum computational
costs of the tasks on the critical path in G is tiny for the
four algorithms when processing a workflow applica-

tion with |N | = 51. PMMS algorithm has a good per-
formance in reducing completion time – this is because
when PMMS algorithm calculates the PM matrix, the
PM value of each task considers communication costs
for the task and its successor nodes, thereby making the
task scheduling sequence more reasonable. This fully
considers the relative importance of each task, thus
effectively improving the scheduling efficiency. How-
ever, the HEFT algorithm overlooks the characteristics
of each task’s successor node, while PEFT ignores the
relative importance of each task.

Five GE parallel applications of different scales
are tested in this experiment. Experimental results are
shown in Fig. 5(b). It shows that when the scale of the
task node is less than or equal to 53, there is less than
1% difference between the average SLR of PMMS,
PEFT, HEFT, and PPTS algorithms, and that their aver-
age SLR value is less than 1.5 due to the characteris-
tic of GE, which is composed of GE matrices. Espe-
cially in small-scale GE applications, the difference is
indistinct. However, with the continuous expansion of
task scale, the average SLR of the four algorithms also
keeps increasing and presents significant differences.
For example, with a size of 494 nodes, the average
SLR of PMMS, compared to the PEFT, HEFT, and
PPTS algorithms, is 7.83%, 7.17%, and 8.48% lower,
respectively. The PMMS algorithm therefore evidently
improves makespan reduction.

Figure 5(c) depicts the experimental results of LIGO
parallel applications with five different sizes of under
the four algorithms. When |N | = 94, the SLR value
of all three algorithms is less than 2.5. The reason for
this result may be that the sum of the minimum com-
putational costs of the tasks on the critical path in G
is relatively large. In the remaining experiments with
different sizes of tasks, the SLR values of the four algo-
rithms are all greater than 6.5. When the number of task
nodes is 544, of PMMS is superior than PEFT, HEFT,
and PPTS by 6.04%, 4.20%, and 6.12%, respectively
in terms of the average SLR. The PMMS algorithm
therefore effectively decreases the makespan of LIGO
applications.

Figure 5(d) presents the experimental results of five
different tasks with the Montage applications under the
four compared algorithms. When the number of tasks
in the Montage application equals to 1,056, the average
SLR of the four algorithms reaches maximum and is
all greater than 85.0. For the Montage application with
606 tasks however, the proposed PMMS outperforms
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Fig. 5 Average SLR comparison of four workflows with different numbers of tasks

PEFT, HEFT, and PPTS in terms of the average SLR
by 11.52%, 6.62%, and 5.86%, respectively. Clearly,
PMMS is superior to PEFT, HEFT, and PPTS algo-
rithms in decreasing the makespan.

In all workflow parallel applications, the makespan
of workflows increases following the scale of the work-
flow.

5.4.2 Different Number of VM

To reflect the rigor and rationality of the experiment
setting used, the number of VMs is used as the variable

while the execution cost of each task on different VMs
remained unchanged.

(1) Average SLR
The experimental results depicted in Fig. 6 illus-

trates the average SLR of the four algorithms across
four workflow applications, with the number of VMs
as a variable. The average SLR is influenced by both
the makespan and the minimum computational over-
head sum at the critical path task of the workflow.
As the number of VMs increases, there is a gradual
decrease in the makespan of the workflow application.
However, the critical path of the workflow applica-
tion experiences irregular variations when the number
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of VMs is altered. Consequently, irrespective of the
specific workflow application, the average SLR value
exhibits an inconsistent trend. Figure 6(a) shows the
experimental results of the average SLR for four algo-
rithms, while altering the number of VMs with a task
quantity of 1,003 for EP. Notably, PMMS consistently
outperforms the other three algorithms in terms of aver-
age SLR, regardless of the VM count employed. When
|V | = 6, the PMMS algorithm achieves a noteworthy
reduction in average SLR by 5.70%, 2.52%, and 3.12%
when compared to HEFT, PEFT, and PPTS, respec-
tively. The average SLR experimental results of the
four algorithms on the GE workflow are depicted in

Fig. 6(b). For |V | = 9, achieves significant reductions
in average SLR, outperforming HEFT, PEFT, and PPTS
by 9.25%, 11.34%, and 5.80%, respectively. Hence,
PMMS excels in effectively reducing the average SLR
on GE. The average SLR results for the four algorithms
applied to LIGO with varying VM quantities are shown
in Fig. 6(c). When |V | =3, 6, and 15, PMMS demon-
strates substantial superiority over the other three algo-
rithms in reducing average SLR. For |V | values of 9,
12, 18, and 21, PMMS exhibits a slight advantage over
PEFT and PPTS in reducing average SLR, while clearly
surpassing HEFT. In Fig. 6(d), the average SLR of
the four algorithms on Montage is depicted for vary-

Fig. 6 Average SLR comparison of four workflows with different numbers of VMs
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Fig. 7 Execution Time comparison of four workflows with different numbers of VMs

Fig. 8 Makespan comparison of four algorithms with different values of CCR in EP
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ing quantities of VMs. When the number of VMs is
3, PMMS outperforms the PEFT, HEFT, and PPTS
algorithms by 24.91%, 28.16%, and 13.31%, respec-
tively, in terms of SLR. Furthermore, when the VM
scale reaches 6, the average SLR of PMMS decreases
by 14.76%, 18.13%, and 8.11% when compared to the
PEFT, HEFT, and PPTS algorithms, respectively.

It can be concluded that PMMS surpasses the other
comparative algorithms in reducing the average SLR.
For workflows of identical size and with the same num-
ber of VMs, the minimum computational overhead
of the critical path nodes remains constant. Conse-
quently, the PMMS algorithm excels in reducing the
makespan of the workflow application, outperforming
the HEFT, PEFT, and PPTS algorithms. Additionally,
PMMS stands out with exceptional performance, par-
ticularly in the Montage workflow application.

(2) Execution Time
As shown in Fig. 7(a), we conduct experiments with

a fixed number of 1,003 EP tasks while varying the
number of VMs. As the number of VMs increases,
the execution time of all four algorithms consistently
decreases. Notably, PMMS exhibits the shortest execu-
tion times. For |V | = 6, PMMS achieves a reduction in
execution time by 5.10%, 8.01%, and 5.52% compared
to HEFT, PEFT, and PPTS, respectively. This demon-
strates that PMMS significantly contributes to saving
execution time and enhancing scheduling efficiency in
EP. Figure 7(b) illustrates the execution times of the
four algorithms on GE for various numbers of VMs. It
is evident that as the number of VMs increases, there
is a consistent decrease in the execution time. Notably,
at |V | = 12, PMMS achieves a reduction in execu-
tion time by 3.95%, 11.04%, and 7.52% compared
to HEFT, PEFT, and PPTS, respectively. The execu-
tion time of the four algorithms on LIGO for various
numbers of VMs is depicted in Fig. 7(c), where it is

evident that the execution time of the workflow con-
sistently decreases as the number of VMs increases.
Notably, PMMS stands out as significantly superior
to the other three comparison algorithms in reducing
execution time. When |V | = 9, the PMMS algorithm
achieves execution times that are 3.44%, 5.53%, and
3.04% lower than those of HEFT, PEFT, and PPTS,
respectively. The execution time of the four algorithms
in Montage for various numbers of VMs is illustrated
in Fig. 7(d), demonstrating a decrease in execution
time as the number of VMs increases. Although the
execution time of the PMMS algorithm is lower than
that of PPTS, it surpasses HEFT and PEFT. This out-
come signifies the practical applicability of the PMMS
algorithm. PMMS demonstrates superior performance
across EP, GE, and LIGO workflows.

In summary, regardless of the type of workflow
application, the rate of decline in execution time slows
down after reaching |V | = 15. This indicates that as the
number of VMs increases, its impact on execution time
diminishes. The PMMS algorithm consistently outper-
forms HEFT, PEFT, and PPTS in reducing execution
time and enhancing scheduling efficiency.

5.4.3 Different Value of CCR

Figure 8 illustrates the makespan of the four algo-
rithms as the CCR value of the EP workflow is altered,
with |V | = 21. Based on a comprehensive obser-
vation, it can be deduced that there is a decreasing
trend in the peak (maximum) makespan of the four
algorithms as the CCR value increases from 0.5 to
5.0. In the case of |N | = 1, 003, the makespan of
PMMS in Fig. 8(a) is 29,568, while the makespan
of PMMS in Fig. 8(b), (c), and (d) is 14,695, 9,735,
and 7,447, respectively. Figure 9 shows the makespan
of GE across four algorithms. Notably, as the CCR

Fig. 9 Makespan comparison of four algorithms with different values of CCR in GE
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Fig. 10 Makespan comparison of four algorithms with different values of CCR in LIGO

value ascends from 0.5 to 5.0, the peak makespan
of all four algorithms undergoes a gradual reduc-
tion. For |N | = 1, 033, the makespan of PMMS in
Fig. 9(a) reaches 28,556, while the makespan of PMMS
in Fig. 9(b), (c), and (d) achieve values of 14,677,
9,544, and 7,035, respectively. Figure 10 illustrates the
makespan of the four algorithms as the CCR value
of the LIGO workflow varies, with |V | = 21. When
|N | = 544, the makespan of PMMS in Fig. 10(a) is
15,514, whereas the makespan of PMMS in Fig. 10(b),
(c), and (d) amounts to 7,675, 4,957, and 3,713 corre-
spondingly. Figure 11 depicts the makespan of the four
algorithms in Montage. When considering |N | = 606,
the makespan of PMMS in Fig. 11(a) is 9,917. In con-
trast, the makespan of PMMS in Fig. 11(b), (c), and (d)
stands at 5,399, 3,441, and 2,650, respectively. A lower
CCR value signifies a computation intensive applica-
tion, whereas a higher CCR value indicates a commu-
nication intensive application. While keeping all other
variables constant, it is generally observed that compu-
tation intensive applications tend to demonstrate higher
makespans compared to their communication intensive
counterparts. Furthermore, it is evident from Figs. 9–11
that regardless of variations in CCR and the number of
tasks, the makespan of PMMS remains lower than that
of the other three comparison algorithms. The PMMS

algorithm performs well in reducing the scheduling
length of workflow applications. Additionally, when
comparing the makespan values of EP, GE, LIGO, and
Montage in the four algorithms, it becomes apparent
that the makespan of EP and LIGO, which are charac-
terized by high parallelism and intricate task dependen-
cies, tends to be higher than that of GE and Montage,
which exhibit lows parallelism and simple task depen-
dencies.

6 Conclusions

We design an efficient workflow scheduling algo-
rithm (called PMMS) to promote efficiency in HCS.
The PMMS algorithm includes a task priority calcu-
lation phase and a VM selection phase and calcu-
lates the rankPM value of each task by using PM
matrix in the task priority calculation phase and there-
after obtains the task scheduling list in descending
order according to rankPM . In the VM selection phase,
OSL is computed for each task according to the PM
matrix. Afterwards, the VM with the minimum OSL
is selected for it, thereby minimizing the makespan
of workflow applications. Through extensive compar-
ison experiments of EP, GE, LIGO, and Montage with

Fig. 11 Makespan comparison of four algorithms with different values of CCR in Montage
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different scales, PMMS greatly reduces SLR compared
with the advanced HEFT, PEFT, and PPTS algorithms.
Compared with the advanced HEFT, PEFT, and PPTS
algorithms, the makespan of PMMS algorithm in the
Montage workflow application is reduced by 11.60%,
7.47%, and 8.09%, respectively, thereby significantly
improving the scheduling efficiency of workflow par-
allel application. Future succeeding studies are encour-
aged to explore the impact of different θ values on
the performance of our proposed method and focus on
combining the idea of designing a heuristic scheduling
algorithm by using predict matrix with task offloading
and energy consumption reduction in edge computing.
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