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Abstract—As the backbone of Industry 4.0, Cyber-Physical
Systems (CPSs) have attracted extensive attention from industry,
academia, and government. Missing data is a common problem
in CPS data processing and may cause incorrect results and even-
tually serious malfunction. Existing data availability optimization
methods either rely on a large amount of complete training data
or suffer from poor performance. To solve these problems, this
paper proposes an iterative data availability optimization method
for CPSs. Specifically, the proposed method first pre-processes
the raw dataset by using a Singular Value Decomposition-based
feature selection approach to identify crucial features and reduce
computation overheads. It then makes an initial guess for missing
values via a designed K-Means-based imputation approach. The
appropriate initial estimation decreases the probability of the
proposed method falling into the local optimum. Finally, the
proposed method iteratively estimates missing data based on the
Orthogonal Matching Pursuit algorithm. The proposed method
optimizes data availability by accurately imputing missing values.
Simulation results on two datasets demonstrate that compared
to multiple state-of-the-art approaches, the proposed data avail-
ability optimization method can reduce imputation error by up
to 99.65%.

Index Terms—Cyber-Physical System, Data Availability Opti-
mization, Missing Data Imputation.

I. INTRODUCTION

A. Motivation

As a new generation of digital system of Industry 4.0,
Cyber-Physical System (CPS) has attracted more and more
attention due to its significant impacts on society, environment,
and economy [1], [2]. Typically, a CPS tightly integrates
the cyber world of computing and communication with the
physical world of sensing and actuation to improve the avail-
ability and functionality of various applications [3]–[5]. In
CPS, cyber components like cloud servers compute results
and make decisions according to data collected or generated by
physical components such as sensors. If the availability/quality
of these data is insufficient, more than 41% of relevant CPS
applications will generate unexpected intermediate results and
eventually result in severe failures (“garbage in, garbage out”)
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[6]. Therefore, data availability/quality is crucial for process
control and decision-making activities in CPSs.

In general, four measurements are considered important
factors impacting data availability: completeness, accuracy,
validity, and timeliness [7], [8]. Among various potential
problems in data processing, missing data is one of the
most important factors that have a significant impact on
completeness, accuracy, and validity simultaneously [9]. In
reality, raw data in CPSs are collected and/or generated from
various CPS sensors which are often tiny and fragile and are
usually deployed in complicated and even harsh environments
[10]. Hence, missing data are prevalent in CPS due to sensor
malfunction. Moreover, some sensors are powered by unstable
and uncertain renewable energy. Power-off and other energy
supply-related factors may also lead to data missing [11].
Further, when transmitting data to the cyber world, due to
the volatility and instability of wireless transmission protocols,
data will also be missing during transmission [12].

Three potential problems may be induced by missing data:
waste of data resources, meaningless computation results, and
misleading computation results [9], [13], [14]. Specifically,
i) most applications handle missing data by automatically
discarding samples containing missing values, which may
lead to insufficient data volumes for analysis. In addition,
deleting the whole sample is essentially a waste of valuable
data resources, and applications may eventually malfunction
because of the shortage of important information. ii) Mean-
ingless computation results may be derived due to insufficient
data especially when the missing rate is high. iii) When data
missing occurs in important features, misleading computation
results are possibly generated and may disturb the process
control and decision-making in CPSs, affecting the quality of
service of CPSs.

B. Related Work

Existing methodologies for handling missing data can be
in general divided into ignoring, discard, and imputation [15].
Ignoring methods simply neglect missing values and directly
process raw datasets containing missing data for computation.
Discard methods delete the whole sample with one or more
missing values and continue the data analysis. Imputation
methods replace missing values with estimated values to
improve data availability. Among the three options, ignoring
and discard methods essentially optimize data processing
efficiency by reducing the amount of data. For instance, Wang
et al. [16] designed a novel tensor-based Long Short-Term



Memory with edge plane and cloud plane to process big data
with high-efficiency via reducing parameters and distributed
computing strategy. Ignoring and discard methods are simple
but may lead to insignificant even wrong computation results
if the data missing rate is high, and waste data resources [17].
In practice, high data missing rate would cause deviation in
data analysis results. Therefore, it is more practical to optimize
data availability using imputation methods.

Recently, numerous imputation methods are developed to
optimize data availability. Shrestha et al. [18] proposed an
imputation method to enhance the data availability for sepsis
prediction. This method first combines information gain and
the Chi-square to select appropriate features in raw datasets.
It then estimates missing values in the raw dataset by using
the mean value of the non-missing parts. Liao et al. [19]
introduced a slide window technology into the data availability
optimization procedure. They designed a fuzzy K-Means im-
putation algorithm over a sliding window to estimate missing
values. In [20], the authors combined Bayesian kernelized
matrix factorization with Markov chain Monte Carlo sampling
to estimate missing values. The aforementioned methods are
simple and easy to implement. However, they suffer from poor
performance especially when the data missing rate is high.

To improve the imputation performance, more and more
research efforts are devoted to estimating missing values via
learning-based methods. Gong et al. [21] designed a learning
model consisting of multiple spatial kernels for missing data
imputation. This learning-based method considers regional
similarities, positions, and correlations among multiple views
to impute missing values. Khan et al. [22] combined three
machine learning algorithms (i.e., extreme gradient boosting,
categorical boosting, and random forest) and proposed a
data imputation approach for energy data estimation. In [23],
the authors utilized the long short-term memory network to
recover missing data in time series sensor datasets in CPSs.
The above-mentioned learning-based imputation methods can
overcome the shortcoming of poor imputation performance.
However, they usually need a large amount of complete data
to train an accurate learning algorithm. Besides, different
application scenarios and/or datasets usually need different
learning models. This would bring a dramatic computation
overhead inevitably.

C. Contribution

In this paper, we propose an effective data availability opti-
mization method for CPSs. Our key idea is to replace missing
values in raw datasets by using accurate estimated values via
incomplete datasets without high computation overheads. The
major contributions of this paper are summarized as follows.

• We first propose a feature selection method to pre-
process the raw dataset based on the Singular Value
Decomposition (SVD) algorithm. Based on the selected
features, we make an initial guess for missing data via
K-Means algorithm to improve the data availability.

• We further design an iterative data availability opti-
mization method based on Orthogonal Matching Pur-
suit (OMP) algorithm. The proposed method iteratively

adjusts the accuracy of the initial guess to improve
imputation performance.

• We carry out extensive simulation experiments on two
datasets. Results show that the imputation error can be
decreased by up to 99.65% by using our proposed data
availability optimization method, compared to several
state-of-the-art (SOTA) imputation approaches.

The rest of the paper is organized as follows. Section II gives
the definition of the problem to be tackled and an overview of
the proposed approach. Section III introduces the details of the
proposed iterative data availability optimization method. The
effectiveness of the proposed approach is shown by extensive
experiments in Section IV. Section V concludes the paper.

II. PROBLEM DEFINITION AND METHODOLOGY
OVERVIEW

This section defines the studied problem and gives an
overview of our data availability optimization approach.

A. Problem Definition

In the scenario of our interests, multiple CPS sensors collect
and generate data simultaneously. Ideally, these sensor data are
complete and accurate. However, due to reasons such as sensor
malfunction and transmission error, the generated raw dataset
always contains missing values. We assume that there are N
CPS sensors and collect M samples. Let an M × N matrix
XR be the raw data collected by the N sensors. XR can be
represented as

XR =



x11 x12 · · · x1j · · · x1N

x21 x22 · · · x2j · · · x2N

...
...

...
...

xi1 xi2 · · · xij · · · xiN

...
...

...
...

xM1 xM2 · · · xMj · · · xMN


. (1)

The ith (1 ≤ i ≤ M ) sample in XR is denoted by xi where
xij is the value in ith row jth (1 ≤ j ≤ N ) column of XR.

Our goal is to accurately estimate missing values according
to the observed parts of XR. We assume the data of one sensor
can be approximately derived by using data generated from the
rest sensors. Let W denote an N × N coefficient parameter
matrix and wij (1 ≤ i, j ≤ N ) denote the ith row jth column
of W, xij can be represented as

xij =
∑N

n=1
xin ·wnj . (2)

Let wn (1 ≤ n ≤ N ) be the nth column of W, then Eq. (2)
is rewritten as

xij = xi ·wj . (3)

Let X̂, x̂i, and x̂ij (1 ≤ i ≤ M, 1 ≤ j ≤ N ) represent
the estimation for XR, xi, and xij , respectively. We use
Mean Squared Error (MSE) to measure the performance of
the imputation. In application of our interests, the MSE is
defined as

MSE =

∑M
i=1

∑N
j=1 (xij − x̂ij)

2

M ·N
. (4)



To reduce the imputation impact on the non-missing parts in
XR, we define a mask matrix Z of M rows and N columns.
Assume the ith row jth column value in Z is denoted by zij
(1 ≤ i ≤ M, 1 ≤ j ≤ N ):

zij =

ß
1, xij is not missing
0, xij is missing

. (5)

The problem to be tackled can be formulated as

Minimize: MSE,

Subject to: Diag(W) = 0,

zij · (xij − x̂ij) = 0,

(6)

where Diag(•) represents the diagonal elements of matrix •.
The first constraint of Eq. (6) guarantees that each diagonal
element in the coefficient parameter matrix W is 0. This is
because it is meaningless to estimate a value by itself. The
second constraint ensures that the imputation only changes the
values of missing parts. That is, if the value is non-missing
(i.e., zij = 1), xij = x̂ij holds.

B. Overview

We consider the general architecture of CPS that consists
of a cyber and a physical world, and uses control, commu-
nication, and computation to achieve various functionalities.
In the physical world, devices such as sensors collect and
generate raw CPS data. These data are sent to the cyber
world for further processing, and usually contain missing
values. The cyber world usually contains components like
cloud servers. These cyber components compute results and
make decisions according to the data from the physical world.
Cyber components return information such as computation
results and control commands to physical components.
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Figure 1: Methodology overview.

Fig. 1 shows an overview of the proposed CPS data avail-
ability optimization method which is implemented at three
steps: feature selection, initial guess, and iterative imputation.
In the feature selection step, we design a SVD algorithm
based approach that selects crucial features from raw CPS
datasets from the physical world to reduce the volume of the

datasets and computation overheads. In the initial guess step,
we develop a K-Means algorithm based imputation method
that makes an initial estimation for missing values in selected
datasets from the first step. An appropriate initial guess will
speed up the convergence of the whole iterative imputation
process and reduce the probability of the proposed method
falling into the local optimum. In the last step, we propose
an OMP-based imputation approach that iteratively adjusts
estimation to further optimize data availability.

III. THE PROPOSED METHODOLOGY

In this section, we introduce the proposed data availability
optimization methodology in detail.

A. SVD-based Feature Selection

To reduce the volume of the CPS raw dataset and computa-
tion overheads, we propose a feature selection method based
on SVD algorithm. Specifically, an M ×N CPS raw dataset
XR is decomposed by

XR = UΣV T , (7)

where U is an M × M unitary matrix, Σ is an M × N
matrix whose diagonal elements are all positive, and V T is
the transposition of an N ×N unitary matrix V . Note that the
conjugate transpose of a unitary matrix is in fact the inverse
of the matrix. That is, in Eq. (7), UTU = E and V TV = E
holds where E is a identity matrix.

XR can be calculated by XR = XS + XN where XS

and XN represent the set of selected and unselected features,
respectively. We can reform XR as

XR = [US , UN ]

ï
ΣS 0
0 ΣN

ò ï
VS

VN

ò
,

= USΣSV
T
S + UNΣNV T

N .

(8)

XS and XN contain S selected and M−S unselected features
in XR, respectively. ΣS and ΣN are the matrix containing S
and M − S selected and rest singular values of Σ derived
in Eq. (7), respectively. The diagonal elements in Σ are
actually the singular values of matrix XR, which measures
the importance of each feature. Note that the selected values
are actually the largest S singular values in Σ. US , UN , VS ,
and VN can be similarly defined.

After decomposing the raw dataset, we select crucial fea-
tures according to corresponding singular values:

XS = USΣSV
T
S . (9)

Algorithm 1: SVD-based Feature Selection
Input: The raw CPS dataset XR, the number of selected features S.
Output: The selected dataset XS .

1 Decompose the raw dataset XR by using Eq. (7);
2 Select the largest S singular values in Σ to form ΣS ;
3 Obtain the corresponding US and VS ;
4 Reform XR by using Eq. (8);
5 Calculate the selected dataset XS by using Eq. (9);
6 return XS ;



The pseudo-code of the proposed feature selection method
is given in Alg. 1. It takes the raw CPS dataset XR and
the number of selected features S as inputs, and outputs the
selected dataset XS . The algorithm first decomposes the raw
CPS dataset XR and obtains matrix U , Σ, and V by using
Eq. (7) (line 1). It then selects the largest S singular values in
Σ from ΣS (line 2). The algorithm obtains the corresponding
US and VS according to ΣS and reforms XR by using Eq.
(8) (lines 3-4). It finally calculates the selected dataset XS by
using Eq. (9) (line 5).

B. K-Means-based Initial Guess

To enhance the utility of the proposed data availability
optimization approach, it is important to make a proper initial
guess for each missing value. Otherwise, the convergence
speed of the proposed iterative imputation method may be
degraded. Besides, inappropriate initial may stick the proposed
approach into a locally optimal solution.

We design an initial imputation based on K-Means algo-
rithm. Specifically, we pre-process the selected dataset XS by
using the normalization below:

x∗
ij =

zij
σj

(xij − µj) , (10)

where µj and σj (i ≤ j ≤ S) are the mean and standard
deviation value of the jth column in XS , respectively. zij
denotes the mask value defined in Eq. (5). The normalized ith
(1 ≤ i ≤ M ) sample and selected dataset are represented by
x∗
i and X∗

S , respectively.
Assume there are MCOM samples in X∗

S . The MCOM

samples are complete while other M−MCOM samples contain
missing values. These MCOM complete samples form dataset
X∗

COM while other incomplete samples form dataset X∗
IN .

We first randomly select K samples from X∗
COM as clustering

centers, denoted by c∗1, c
∗
2, · · · , c∗K where c∗k (1 ≤ k ≤ K) is

the center of cluster Ck. For the rest samples in X∗
COM , we

try to find which cluster they belong to. Specifically, for a
rest sample x∗

i ∈ X∗
COM , we calculate the Euclidean distance

between x∗
i and each clustering center Ck by using

dik =

…∑S

s=1
(x∗

is − x∗
ks)

2
, (11)

where S is the number of selected features. According to the
distance calculated above, x∗

i is clustered into the class with
the smallest distance from the clustering center.

After all samples in X∗
COM are clustered, we update the

clustering center of each cluster by using

c∗k =
1

|Ck|
∑

x∗
i ∈Ck

S∑
s=1

x∗
is. (12)

The process above repeats until the predefined converge crite-
rion of solutions is met.

We obtain an initial guess for each missing value according
to the clustered samples. Specifically, we calculate the distance
of each sample in dataset X∗

IN and each clustering center
by using Eq. (11). Then we use the corresponding values in
the clustering center of the nearest cluster to estimate missing

values. The normalized estimation for missing value x∗
ij is

denoted by x̂∗
ij . Finally, the initial estimation is obtained by

using affine transformation to the normalized estimation, i.e.,

x̂ij = x∗
ij ·σj + µj . (13)

Note that the non-missing values whose corresponding mask
value is 1, will not be changed.

The pseudo-code of the K-Means-based initial guess is
summarized in Alg. 2. The algorithm takes the selected dataset
XS , the number of cluster K as inputs, and outputs the initial
estimated dataset, denoted by X̂ini. It first normalizes the
selected dataset XS by using Eq. (10) (line 1). It then divides
the normalized dataset X∗

S into X∗
COM and X∗

IN which
consist of complete and incomplete samples, respectively (line
2). The algorithm randomly selects K samples from X∗

COM

as clustering center for K clusters, and initializes the iteration
number iter as 1 (lines 3-4). In each iteration, for each
sample x∗

i ∈ X∗
COM except the selected clustering center, the

algorithm first calculates the Euclidean distance between x∗
i

and each clustering center Ck by Eq. (11), and then clusters
x∗
i into the class with the smallest distance from the clustering

center (lines 7-10). After all samples in X∗
COM are clustered,

the algorithm updates K clustering centers by using Eq. (12)
and increment iter (lines 12-15). For each incomplete sample
in X∗

IN , the algorithm first calculates the distance between x∗
i

and each clustering center by using Eq. (11) (line 18). Then
the algorithm uses the corresponding values in the clustering
center of the nearest cluster to estimate missing values (line
19). Finally, affine transformation given in Eq. (13) is used to
obtain the initial guess (line 20).

Algorithm 2: K-Means-based Initial Guess
Input: The selected dataset XS , the number of cluster K.
Output: The initial estimated dataset X̂ini.

1 Normalize the selected dataset XS by using Eq. (10);
2 Divide the normalized dataset X∗

S into X∗
COM and X∗

IN according
to whether samples containing missing values;

3 Randomly select K samples from X∗
COM as clustering center for

K clusters;
4 iter = 1;
5 while iter ≤ ITER do
6 for each rest sample x∗

i ∈ X∗
COM do

7 for each clustering center c∗k do
8 Calculate the Euclidean distance between x∗

i and each
clustering center Ck by Eq. (11);

9 end
10 Cluster x∗

i into the class with the smallest distance from
the clustering center;

11 end
12 for each cluster Ck do
13 Update the clustering center by using Eq. (12);
14 end
15 iter++;
16 end
17 for each sample x∗

i ∈ X∗
IN do

18 Calculate the distance between x∗
i and each clustering center by

using Eq. (11);
19 Use the corresponding values in the clustering center of the

nearest cluster to estimate missing values;
20 Use affine transformation in Eq. (13) to obtain the initial guess;
21 end
22 return X̂ini;

The proposed K-Means-based initial guess is simple yet



effective. However, the performance of the initial imputation
highly relies on the selection of K and initial clustering
centers. Different K values and initial clustering centers
always lead to different imputation results. Therefore, Alg. 2
is only used to obtain the initial guess. We also propose an
iterative data availability optimization method in Section III-C
to further improve the accuracy of the initial guess.

C. OMP-based Data Availability Optimization

After making an initial guess for each missing value, we
obtain an estimated dataset (X̂ini). However, the accuracy of
the initial guess can be further improved. In addition, the
problem to be tackled in Eq. (6) is NP-hard [24], which is
extremely difficult to solve. Below, we introduce a heuristic
data availability optimization method based on OMP to tackle
this problem.

OMP is a classic greedy algorithm that can be used to
iteratively derive the coefficient parameter matrix W. To
intuitively understand the OMP algorithm, we provide an
example as follows. Define a residual matrix, denoted by Res.
OMP algorithm first initializes the residual matrix Res to
the selected dataset XS . Then it calculates the inner product
values, denoted by ξi (1 ≤ i ≤ S), between Res and X̂ to
measure the importance of each column in X̂:

ξi = ĉTi Res, (14)

where ĉTi is the transposition of the ith column in X̂. Note that
in the first iteration, the given estimated dataset X̂ is actually
the initial guess from Alg. 2 (i.e., X̂ini). The inner product
values derived by Eq. (14) are only used to identify important
columns in XS . Let ĉm (1 ≤ m ≤ LOOP ) be the column with
the largest inner product in the mth iteration, where LOOP
denotes the number of iterations. Once ĉm is determined in
each iteration, it is added to a set named Ω. Then we can
estimate X̂ in the direction of the columns already selected:

X̂ ≈
∑

ĉm∈Ω

ĉmWm. (15)

Wm is the coefficient parameter matrix in the mth iteration,
which can be consequently obtained by solving

Minimize:
Wm

(X̂−
∑

ĉm∈Ω

ĉmWm)
2
. (16)

Then we update Res for the next iteration by

Res = X̂−
∑

ĉm∈Ω

ĉmWm. (17)

After coefficient parameter matrix W is obtained by using
the above process, we use the least-squares fitting to derive the
estimated dataset X̂ which contains complete and incomplete
samples. Assume XCOM and X̂IN represent subsets of X̂
containing all complete and incomplete samples, respectively.
Since W is known and each sample is independent, our
problem can be rewritten as

Minimize:
ĉi

(X̂−
∑

ĉi∈X̂IN

ĉiwi −
∑

cj∈XCOM

cjwj)
2, (18)

where wi and wj are the column in W corresponding to ĉi
and cj , respectively. Note that

∑
cj∈XCOM

cjwj is a constant,
thus this problem can be solved by using least-squares fitting.
The above process repeats until the number of iterations
reaches a predefined value LOOP .

Algorithm 3: OMP-based Iterative Data Availability
Optimization

Input: The selected dataset XS , the initial estimated dataset X̂ini,
the number of iterations LOOP .

Output: The estimated dataset X̂, the corresponding coefficient
parameter matrix W.

// Initialization.
1 Set the residual matrix Res = XS , X̂ = X̂ini, and Ω = ∅;
2 for m = 1;m ≤ LOOP ;m++ do

// Fix X̂ to calculate W.
3 for each ĉi ∈ X̂ do
4 Calculate inner product ξi between Res and ĉi by using

Eq. (14);
5 end
6 Select the column ĉm with the largest inner product ξ;
7 Add column ĉm into Ω;
8 Estimate X̂ based on Ω by using Eq. (15);
9 Update residual matrix Res by using Eq. (17);

// Fix W to calculate X̂.
10 Calculate X̂ by using least-squares fitting in Eq. (18);
11 end
12 return X̂ and W;

We summarize the proposed OMP-based imputation al-
gorithm in Alg. 3. It takes the selected dataset XS , the
initial estimated dataset X̂ini, and the number of iterations
LOOP as inputs, and outputs the estimated dataset X̂ and
the corresponding coefficient parameter matrix W. Alg. 3 first
initializes the residual matrix Res = XS , X̂ = X̂ini, and
Ω = ∅ (line 1). Then in each iteration, for each column ĉi
in X̂, the algorithm calculates inner product ξi between Res
and ĉi using Eq. (14) (lines 3-5). The column ĉm with the
largest inner product is selected and added into Ω (lines 6-
7). The algorithm estimates X̂ based on Ω using Eq. (15), and
updates Res using Eq. (17) (lines 8-9). Finally, Alg. 3 derives
X̂ using the least-squares fitting in Eq. (18) (line 10).

IV. EVALUATION

This section verifies the effectiveness of the proposed data
availability optimization method using two different datasets.
For each dataset, we inject missing values by randomly remov-
ing a fixed percentage of data from the complete dataset. For
evaluation, we compare and analyze the performance of the
proposed method and SOTA approaches in multiple aspects.

A. Experimental Settings

We conduct numerical experiments on an NVIDIA Tesla
equipped with P100 GPU and 16GB DDR4 memory. The
machine runs a Windows version of Matlab x64. We employ
two datasets to conduct our experiments. One is the air
quality (AQ) dataset which contains data such as PM2.5,
PM10, and air pressure collected by a wireless sensor network
deployed across Krakow, Poland [25]. The sensor network
consists of 56 low-cost sensors whose sampling rates are



all 1 sample/hour. In the applications of our interests, we
use normalized air quality data of 720 hours. The other
is the environmental sensor telemetry (EST) dataset which
contains environment data such as temperature and humidity
from multiple identical, custom-built, breadboard-based sensor
arrays [26]. EST dataset consists of 405,184 rows and 31
columns of data spanning the period from 07/12/2020 00:00:00
UTC to 07/19/2020 23:59:59 UTC.

In the validation of our scheme, we set K values and other
related parameters in the initial guess procedure as in [19]. We
set 40 and 20 as the number of selected features for AQ and
EST datasets, respectively. The proposed method is compared
to a baseline method NI and two SOTA approaches IKNN [27]
and ITIM [9] which are described as follows.

• NI (No Imputation) is a baseline method that does
not execute any imputation mechanism to improve data
availability when data missing occurs.

• IKNN (Iterative K Nearest Neighbors) [27] is an imputa-
tion approach that iteratively utilizes K Nearest Neighbors
algorithm to estimate missing values and improve data
availability.

• ITIM (Iterative Imputation) [9] is an iterative data avail-
ability optimization approach that uses least-squares fit-
ting to impute missing values in raw datasets.

We use MSE (given in Eq. (4)) and COST to measure the
performance of the proposed scheme and other three compara-
tive algorithms. MSE indicates the accuracy of the imputation,
which is actually the difference between the estimated values
and the corresponding real values on missing parts. COST
is defined as the MSE between the estimated values and the
corresponding real values on non-missing parts of the dataset.
COST quantifies the impact of the imputation on non-missing
parts of the dataset.

B. Results of Air Quality Dataset

Fig. 2 and Fig. 3 plot the MSE and COST of the proposed
approach on the AQ dataset when varying the data missing
rate, respectively. Note that MSE and COST values in the
first iteration are in fact the performance of the initial guess
based on K-Means. From the figures, we can obtain some
important observations. Firstly, the MSE and COST of the
proposed approach are high in the first iteration, then with
more iterations, both MSE and COST decrease. This reveals
that the imputation accuracy of the initial guess can be
further improved by the OMP-based imputation. Secondly,
with missing rate increases, both MSE and COST increase, and
the number of iterations needed for convergence also increases.
This indicates that the imputation becomes harder when the
data missing rate increases. Note that as the data missing rate
increases, the optimization problem given in Eq. (6) is less
constrained, and overfit may occur. Therefore, a small COST
is not necessarily equivalent to a more accurate imputation.

Fig. 4 and Fig. 5 compare the proposed approach with a
baseline method NI and two SOTA approaches IKNN [27]
and ITIM [9] in terms of MSE and COST on the AQ dataset,
respectively. Since the method NI does not change any values
in datasets with missing values, it has no COST value. It
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Figure 2: MSE of the proposed approach under varying data
missing rates on the AQ dataset.

0 5 10 15 20
3.0

3.5

4.0

4.5

 Missing rate = 0.1%
 Missing rate = 1%
 Missing rate = 10%

CO
ST

Iteration index

iter=6

iter=9 iter=19

×10-5

 

 

Figure 3: COST of the proposed approach under varying data
missing rates on the AQ dataset.

can be seen from the figures that the proposed method can
achieve the smallest MSE and COST values under different
data missing rates. Compared to NI, IKNN, and ITIM, the
proposed data availability optimization approach can reduce
MSE by up to 99.59%, 94.4%, and 50.6%, respectively. This
is because the proposed approach first uses an initial guess to
obtain a preliminary estimation and then utilizes OMP-based
imputation to iteratively improve the imputation accuracy.

Specifically, compared to NI, the proposed method uses
estimated values to replace missing values such that data avail-
ability is increased. Compared to IKNN, the proposed method
utilizes the relationship between multiple features in datasets
and therefore can estimate missing values more accurately.
Compared to ITIM, the proposed method exploits the OMP
algorithm to efficiently solve the optimization problem and
hence derive accurate estimation.
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Figure 4: Compare MSE of the proposed approach with NI,
IKNN [27] and ITIM [9] on the AQ dataset.
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Figure 5: Compare COST of the proposed approach with NI,
IKNN [27] and ITIM [9] on the AQ dataset.

Table I further compares the proposed approach with the
other 3 benchmarking methods in terms of runtime (s) under
different data missing rates on the AQ dataset. It can be seen
from the table that the runtime of the NI method is 0. This is
because the NI method does not execute any imputation when
data missing occurs. The IKNN method is less time-consuming
compared to the ITIM and the proposed method. The runtime
of the proposed method and the ITIM method is similar. The
reason is these two methods need multiple iterations for highly
accurate estimation. However, the runtime remains affordable
in practice, since in this case, the maximum runtime is 13.21s.

Table I: Runtime (s) of 4 methods on the AQ dataset when
data missing rate is 0.1%, 1%, and 10%, respectively.

Runtime (s) NI IKNN [27] ITIM [9] Proposed

0.10% 0 0.29 4.62 4.83
1% 0 1.93 6.68 6.72
10% 0 2.94 13.08 13.21

C. Results of Environmental Sensor Telemetry Dataset

Fig. 6 and Fig. 7 present the MSE and COST of the
proposed approach on the EST dataset when varying the data
missing rate, respectively. From these figures, we can see
that similar to the situation in the AQ dataset, the MSE and
COST of the proposed approach are high in the first iteration.
With more iterations, both MSE and COST then decrease.
In other words, the proposed method obtains an initial guess
and iteratively improves the imputation accuracy by using the
OMP-based method.

With missing rate increases, both MSE and COST increase,
and the number of iterations needed for convergence also
increases. This reveals that the imputation becomes harder
when the data missing rate increases. In addition, compared to
the number of needed iterations for processing the AQ dataset,
that of processing the EST dataset is more. This is because
the EST dataset is more complicated and more difficult to
impute. Estimating missing values in the EST dataset needs
more iterations for computation.

Fig. 8 and Fig. 9 compare the proposed approach with
NI, IKNN [27] and ITIM [9] in terms of MSE and COST
on the EST dataset, respectively. Since NI does not change
any values in datasets with missing values, it has no COST
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Figure 6: MSE of the proposed approach under varying data
missing rates on the EST dataset.
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Figure 7: COST of the proposed approach under varying data
missing rates on the EST dataset.

value. It can be seen from the figures that similar to the
case of the AQ dataset, the proposed method can achieve
the smallest MSE and COST values under different data
missing rates on the EST dataset. Compared to NI, IKNN, and
ITIM, the proposed data availability optimization can reduce
MSE by up to 99.65%, 96.73%, and 61.2%, respectively. In
addition, compared to NI and IKNN, with the increasing data
missing rate, the performance improvement becomes more
significant. This is because when the number of missing values
increases, there are fewer complete samples for NI and IKNN
to utilize. Compared to ITIM, the proposed imputation method
obtains an appropriate initial guess and iteratively improves the
imputation accuracy using the OMP-based imputation.
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Figure 8: Compare MSE of the proposed approach with NI,
IKNN [27] and ITIM [9] on the EST dataset.

Table II lists the runtime (s) of the proposed approach and
other three comparative methods under varying data missing
rates on the EST dataset. Since NI does not execute any
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Figure 9: Compare COST of the proposed approach with NI,
IKNN [27] and ITIM [9] on the EST dataset.

imputation when data missing occurs, its runtime is 0. The
runtimes of the proposed approach and ITIM are higher than
that of IKNN since these two methods need multiple iterations
for highly accurate estimation. However, the runtime of the
proposed method remains affordable in practice, since in this
case, the maximum runtime is 17.54s.

Table II: Compare the proposed method with NI, IKNN [27]
and ITIM [9] in terms of Runtime (s) on the EST dataset.

Runtime (s) NI IKNN [27] ITIM [9] Proposed

0.10% 0 0.68 9.88 9.79
1% 0 4.82 12.39 12.4
10% 0 8.32 17.58 17.54

V. CONCLUSION

In this paper, we aim to solve the problem of improving
CPS data availability by accurately imputing missing values in
raw datasets. Considering that using raw data for computation
may bring huge computation overheads, we design an SVD-
based approach to select crucial features from raw data. To
speed up the convergence and reduce the probability of falling
to the local optimum, we make an appropriate initial guess
for each missing value by using a K-Means-based imputation
approach. We further propose an OMP-based data availability
optimization method to iteratively adjust the initial guess and
improve the imputation accuracy. Results on two datasets show
that compared to three benchmarking methods, the proposed
scheme can effectively reduce imputation error without incur-
ring huge computation overheads.
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