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A B S T R A C T

Federated transfer learning (FTL) can effectively address the data silos and domain shift that exist in data-
driven rotating machinery fault diagnosis (RMFD). However, in FTL used for RMFD, the huge communication
overhead, idle waiting between the source clients and the target client, and negative transfer caused by
model aggregation are all pressing challenges. Therefore, a ring-based decentralized federated transfer learning
(RDFTL) method for intelligent fault diagnosis is proposed. Firstly, a ring-based decentralized federated
transfer learning framework is designed, which can be fully integrated with the bandwidth-optimal Ring-
AllReduce algorithm, thereby greatly reducing the communication overhead. Secondly, an asynchronous
domain adaptation strategy is proposed, which can effectively avoid idle waiting between the source clients
and the target client in the collaborative model training, thereby improving the overall training efficiency
of FTL. Thirdly, a multi-perspective distribution discrepancy aggregation (MPDDA) strategy is proposed to
alleviate the negative transfer caused by model aggregation. The diagnosis performance of the local model of
a source client on the target domain is evaluated from the three perspectives of statistical distance, domain
adversarial, and stability, and these three evaluation metrics are jointly used to determine the aggregation
weights, which can effectively improve the diagnosis performance of the global model. Finally, a series of
experiments are carried out to verify the effectiveness of the proposed method. The results demonstrate that
the proposed method can obtain a cross-domain fault diagnosis model with excellent performance in RMFD
with data privacy at a fast training speed.
1. Introduction

Rolling bearing is a critical component in many pieces of rotating
machinery, and its failure often leads to the shutdown of the equip-
ment, thereby affecting production efficiency [1]. Through the accurate
fault diagnosis, the reliability of equipment and operation safety can
be improved, while the maintenance costs can be reduced. In recent
years, the data-driven deep learning methods [2] have been extensively
applied in the field of RMFD, achieving superior diagnosis performance
due to their robust feature learning and representation capabilities.
The data-driven deep learning methods usually require a large amount
of labeled fault data and only perform well in the specific diagnosis
scenarios. Once there is a lack of large amounts of high-quality labeled
training data or when switching diagnosis scenarios, the diagnosis
performance will be significantly affected.

In actual industrial productions, although the long-term condition
monitoring can be performed on rotating machinery, the monitoring
data are typically acquired under normal conditions. Only a minuscule
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amount of data are acquired under fault conditions, and the manually
labeled fault data are even scarcer. This results in a single client (i.e., an
enterprise or factory that generates the data) typically being unable
to utilize a large amount of high-quality training data to construct
a fault diagnosis model. In such a scenario, a promising approach is
to collect labeled fault data from multiple clients that have similar
machinery equipment, thereby collaboratively constructing a superior-
performance fault diagnosis model. However, due to potential conflicts
of interest and privacy concerns, enterprises or factories are often
reluctant to share their private data, which is known as the data silos.

To address the data silos, federated learning [3] emerged as a
solution. Federated learning can utilize the private data of different
clients to train a global model collaboratively, and it can guarantee the
data security of each client. Specifically, each client that participates
in federated learning trains a local model using its private data, and
exchanges the local model in plaintext or encrypted form to obtain
a global model. Federated learning reduces the risk of private data
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leakage while improving model performance, and has been widely
studied and applied in the field of fault diagnosis. Zhang et al. [4]
designed a federated learning method for RMFD, which uses self-
supervised learning and a dynamic verification strategy to construct
an effective global RMFD model. Ma et al. [5] implemented real-time
updates of local models and asynchronous update of the global model
in federated learning for RMFD, which enhances real-time diagnosis. Yu
et al. [6] designed a federated learning framework for rolling bearing
fault diagnosis (RBFD) suitable for cloud–edge environments. A shallow
convolutional autoencoder is trained within each client, and a global
fault classifier is trained on the server, which effectively alleviates the
computational burden of each client. Geng et al. [7] put forward a
weighted aggregation strategy based on F1-scores and accuracy dif-
ferences for the problem of imbalanced fault categories in RBFD. Lin
et al. [8] put forward a federated learning approach for transformer
fault classification, which utilizes a hierarchical aggregation strategy to
provide a personalized model that is more tailored to the local diagnosis
task for each client. The above studies indicate that federated learning
has been successfully applied in fault diagnosis with data privacy. How-
ever, the existing research often assumes that the data distributions of
multiple clients are the same. In actual industrial productions, the data
from different clients are typically collected from various equipment
or under different working conditions, which means that there are
usually distribution discrepancies between data from different clients.
The above problem is termed domain shift, which restricts the diagnosis
performance of the global model.

Transfer learning [9] can well deal with domain shift, and its core
goal is to apply the knowledge learned from the source domain to
the target domain. Domain adaptation is one of the most popular
methods in transfer learning, and can effectively alleviate the problem
of inconsistent data distributions between domains. The local maximum
mean discrepancy (LMMD), margin disparity discrepancy (MDD), and
weighted conditional MMD are adopted in [10,11], and [12] to mea-
sure the distribution discrepancies between domains respectively, so
as to make the source domain and target domain have more similar
distributions in the feature space. Wan et al. [13] introduced multiple
domain discriminators to achieve adversarial training, which can ex-
tract domain-invariant features with stronger representation ability. He
et al. [14] designed an adversarial domain adaptation framework com-
bining manifold learning and similar structure discrimination, which
can effectively alleviate the negative transfer and improve the target
classification accuracy. He et al. [15] put forward an asymmetrical
MDD approach to effectively extract the common features between
domains, and adopted an outlier sample extraction algorithm to re-
duce the negative transfer caused by outlier samples in the source
domain. Han et al. [16] utilized the gradients and weights of the
model in each iteration to dynamically determine transferable and
non-transferable parameters aiming at the problem of parameter trans-
ferability in domain adaptation, which achieves robust unsupervised
domain adaptation. The aforementioned studies can effectively improve
the performance of domain adaptation. However, similar to traditional
deep learning, transfer learning requires a large amount of data from
source and target domains, and it assumes that these data are publicly
available. This implies that transfer learning also faces the data silos in
practical applications.

Federated transfer learning [17], as an integration of federated
learning and transfer learning, can well deal with domain shift while
protecting data privacy. FTL has been widely applied in the field of
mechanical fault diagnosis. Yang et al. [18] designed an FTL approach
for RBFD, which employs a federated averaging aggregation strategy
based on shared layers to enhance diagnosis performance. Zhang and
Li [19] put forward an adversarial networks-based FTL approach, which
effectively improves the accuracy of cross-domain RMFD in federated
learning. Zhang and Li [20] utilized prior distributions in FTL to mini-
mize domain discrepancies, which can better extract domain-invariant
2

features for RBFD while protecting data privacy. Zhao et al. [21]
combined multi-source domain adaptation with federated learning to
develop an FTL framework, which performs well in cross-domain RMFD
with data privacy. Liu et al. [22] proposed an FTL approach based on
broad learning and active learning for addressing domain shift and in-
cremental domain adaptation problems in cross-domain RMFD, which
can effectively select high-quality target domain data and incrementally
update the global model. Chen et al. [23] put forward a discrepancy-
based weighted federated averaging (DWFA) method for the problem
of performance differences of local models in FTL-based RMFD, which
reduces the impact of low-quality local models on the global model by
weighing the contributions of different local models. Zhang et al. [24]
presented a decentralized FTL method based on blockchain for RMFD,
which employs a committee consensus strategy for optimizing the
aggregation of local models. Wang et al. [25] devised an FTL approach
considering that some clients have low-quality data, which effectively
mitigates the negative effect of low-quality data using a low-quality
knowledge filtering strategy.

The existing research has successfully explored the application of
FTL in the mechanical fault diagnosis with data privacy, but the re-
search on the following problems is still insufficient.

The first problem is the negative transfer caused by model aggre-
gation. In practical applications, due to the distribution discrepancies
in data provided by different clients, the diagnosis performance of
local models from different source clients may vary significantly on
the target client. This requires accurate measurement of the diagnosis
performance of local models from different source clients during the
aggregation process, aiming to fully enhance the diagnosis performance
of the global model.

The second problem is the idle waiting between clients in the
collaborative model training. In the existing research on FTL, the high-
level features of the target domain are usually utilized for domain
adaptation. The two processes of local training on the source clients
and feature extraction on the target client cannot be executed in
parallel due to dependencies, namely there is idle waiting between the
source clients and the target client, which reduces the overall training
efficiency of FTL.

The third problem is the huge communication overhead of FTL.
In the actual industrial environment, the clients that participate in
federated learning usually have limited bandwidth and cross-regional
distribution. To cope with the complex and changeable working condi-
tions as well as potential new fault patterns in industrial productions,
the client models often have complex network structures, which results
in the need to transmit a large number of weight vectors in FTL. In the
traditional federated learning based on client–server architecture, the
communication overhead increases linearly with the number of clients,
and the communication efficiency is also limited to the network and
memory bandwidth of the server. The huge communication overhead
would seriously affect the rapid training and updating of RMFD models,
thereby reducing the real-time performance and reliability of RMFD
models.

In summary, FTL can effectively address the data silos and domain
shift that exist in data-driven RMFD. However, in FTL used for RMFD,
the huge communication overhead, idle waiting, and negative transfer
are pressing challenges. Therefore, a ring-based decentralized federated
transfer learning approach for intelligent fault diagnosis is proposed.

The main contributions of this paper are as follows.

(1) A ring-based decentralized federated transfer learning frame-
work is designed, which is characterized by weighting before
transmitting and aggregating while transmitting. The proposed
framework can be fully integrated with the bandwidth-optimal
Ring-AllReduce algorithm, which can greatly reduce the com-
munication overhead and avoid the problem that the model
transmission overhead grows linearly with the number of clients.

(2) An asynchronous domain adaptation strategy is proposed, which
can effectively avoid idle waiting between the source clients and
the target client in the collaborative model training, thereby

improving the overall training efficiency of FTL.
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(3) A multi-perspective distribution discrepancy aggregation strat-
egy is proposed to alleviate the negative transfer caused by
model aggregation. The diagnosis performance of the local
model of a source client on the target domain is evaluated from
the three perspectives of statistical distance, domain adversarial,
and stability, and these three evaluation metrics are jointly used
to determine the aggregation weights, which can effectively
improve the diagnosis performance of the global model.

(4) A series of experiments are carried out to verify the effectiveness
of the proposed method. The results demonstrate that the pro-
posed method can obtain a cross-domain fault diagnosis model
with excellent performance in RMFD with data privacy at a fast
training speed.

The rest of the paper is organized as follows. Section 2 intro-
uces the basic theory. Section 3 describes the proposed method.
ection 4 presents the experimental results and analysis. Section 5 gives
onclusions and future work.

. Basic theory

.1. Federated learning

Federated learning [3] is a distributed machine learning paradigm
hat considers data privacy protection, and its goal is to train a global
odel with strong generalization from the data provided by different

lients. In federated learning, model-related information can be ex-
hanged among participants in the form of plaintext, encryption or
dding noise, but the training data do not leave the local area. This
xchange method does not expose the local data to other participants,
educing the risk of data leakage. The three steps of local training,
odel transmission, and model aggregation will be executed iteratively

fter each participant obtains an initialized model until the preset
topping condition is reached.

In federated learning, there are usually two or more participants to
ollaboratively train a shared global model, and the performance of the
lobal model should be as close as possible to that of the ideal model.
he ideal model is the model obtained through the centralized training
ithout data privacy restrictions. Assuming that 𝑉sum and 𝑉fed are the

performance measures (e.g., accuracy) of the centralized training model
𝑀sum and federated training model 𝑀fed, respectively, the performance
loss of the federated model can be defined as

𝛿 = |

|

𝑉sum − 𝑉fed|| , (1)

where 𝛿 is usually a small non-negative floating-point number. In
particular, when 𝛿 = 0, it indicates that 𝑀fed and 𝑀sum have the same
erformance.

.2. Transfer learning

The main goal of transfer learning [9] is to transfer knowledge
earned from the source task to the target task to solve domain shift and
he lack of labeled data in the target domain. The three key concepts
n transfer learning are domain, task, and domain adaptation.

Domain: The domain D consists of the feature space X and the
marginal probability distribution 𝑃 (𝑋), and different domains usually
have different marginal probability distributions, where 𝑋 is the set of
samples and it is defined as 𝑋 =

{

x1, x2, … , x𝑛
}

∈ X .
Task: In a specific domain D = {X , 𝑃 (𝑋)}, the task T = {𝑦, 𝑓 (⋅)}

consists of the label space 𝑦 and the mapping function 𝑓 (⋅), where 𝑓 (⋅)
can predict the labels of the samples.

Domain adaptation: The goal of domain adaptation is to make the
distributions of source and target domain data as close as possible in
the feature space by learning the domain adaptation function 𝐺 (⋅) to
3

map the source and target domain data. i
Fig. 1. Illustration of domain adaptation.

As shown in Fig. 1, if the source domain classifier is directly applied
to the target domain without performing domain adaptation, some pre-
diction errors will be generated due to domain shift. The classifier can
be gradually adjusted and optimized by performing domain adaptation,
thereby significantly improving the classification accuracy of the source
domain model on the target domain.

In RBFD based on domain adaptation, assuming that there are 𝑁
bearing vibration datasets, where 𝑁 −1 labeled datasets 𝐷𝑆1 , 𝐷𝑆2 , … ,
𝐷𝑆𝑁−1 are regarded as 𝑁 −1 source domains and one unlabeled dataset
s regard as the target domain. The 𝑖th source domain dataset can be
epresented as 𝐷𝑆𝑖 =

{

𝑋𝑆𝑖 , 𝑌 𝑆𝑖
}

, where 𝑋𝑆𝑖 =
{

x𝑆𝑖
𝑗

}𝑛𝑆𝑖

𝑗=1
and 𝑌 𝑆𝑖 =

y𝑆𝑖
𝑗

}𝑛𝑆𝑖

𝑗=1
denote the 𝑛𝑆𝑖

samples and labels of the 𝑖th source domain
espectively, and 𝑌 𝑆𝑖 ∈ {1, 2, … , 𝐶} represents the 𝐶 different
earing health conditions. The unlabeled target domain dataset can be
enoted as 𝐷𝑇 =

{

𝑋𝑇 }, where 𝑋𝑇 =
{

x𝑇𝑗
}𝑛𝑇

𝑗=1
denotes the 𝑛𝑇 samples

f the target domain. 𝑃
(

𝑋𝑆𝑖
)

denotes the marginal distribution of the
th source domain, 𝑄

(

𝑌 𝑆𝑖 |
|

|

𝑋𝑆𝑖
)

denotes the conditional distribution

f the 𝑖th source domain, 𝑃
(

𝑋𝑇 ) denotes the marginal distribution
f the target domain, and 𝑄

(

𝑌 𝑇 |
|

|

𝑋𝑇
)

denotes the conditional distri-

bution of the target domain. In actual RBFD scenarios, 𝐷𝑆𝑖 and 𝐷𝑇

usually come from different types of bearings or different working
conditions, implying that 𝐷𝑆𝑖 ≠ 𝐷𝑇 , 𝐷𝑆𝑖 ≠ 𝐷𝑆𝑗 , 𝑃

(

𝑋𝑆𝑖
)

≠ 𝑃
(

𝑋𝑇 ),
(

𝑋𝑆𝑖
)

≠ 𝑃
(

𝑋𝑆𝑗
)

, 𝑄
(

𝑌 𝑆𝑖 |
|

|

𝑋𝑆𝑖
)

≠ 𝑄
(

𝑌 𝑇 |
|

|

𝑋𝑇
)

, and 𝑄
(

𝑌 𝑆𝑖 |
|

|

𝑋𝑆𝑖
)

≠
(

𝑌 𝑆𝑗 |
|

|

𝑋𝑆𝑗
)

, where 1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1. The optimization objective of
omain adaptation can be represented as

min
{

Dist
(

𝑃
(

𝑋𝑆𝑖
)

, 𝑃
(

𝑋𝑇 )) + Dist
(

𝑄
(

𝑌 𝑆𝑖 ∣ 𝑋𝑆𝑖
)

, 𝑄
(

𝑌 𝑇 ∣ 𝑋𝑇 ))}, (2)

where Dist(⋅) is a function used to measure the inter-domain distribu-
tion discrepancy. By minimizing the discrepancy between 𝑄

(

𝑌 𝑆𝑖 |
|

|

𝑋𝑆𝑖
)

nd 𝑄
(

𝑌 𝑇 |
|

|

𝑋𝑇
)

and the discrepancy between 𝑃
(

𝑋𝑆𝑖
)

and 𝑃
(

𝑋𝑇 ), it
nsures that the knowledge learned from the source domain performs
ell on the target domain.

. Proposed method

.1. Design of RDFTL framework

Under the premise of ensuring the accuracy of collaborative fault
iagnosis based on FTL for rotating machinery, a ring-based decentral-

zed federated transfer learning framework is designed to reduce the
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Fig. 2. Illustration of the proposed RDFTL framework.
communication overhead of FTL, as shown in Fig. 2. In the proposed
framework, each source client consists of a local training module and
an aggregation module, and the target client consists of a feature
extraction module and an aggregation module. The local training mod-
ule is responsible for training and optimizing the local model. The
aggregation module is responsible for aggregating the local models
of all clients to obtain a global model. The local training module of
each source client consists of a feature extractor, a global domain
discriminator, a sub-domain aligner, and a classifier, where both the
global domain discriminator and the sub-domain aligner require to
utilize the features from source and target domains 𝑓𝑆,𝑇 to reduce inter-
domain distribution discrepancies, and the classifier utilizes the source
domain features 𝑓𝑆 for predicting faults. The feature extraction module
of the target client is composed of a feature extractor and a classifier,
where the target domain features 𝑓𝑇 are input into the classifier.
The bandwidth-optimal Ring-AllReduce algorithm [26] is adopted in
RDFTL framework, where each client only needs to perform model
transmission with two adjacent clients, which can effectively avoid the
problem that the model transmission overhead grows linearly with the
number of clients.

The traditional aggregation process in FTL is as follows.
Step 1: Transmit local models. In the traditional client–server archi-

tecture [23], the local models are typically transmitted to the server.
Step 2: Calculate aggregation weights. The aggregation weight of

each local model is calculated on the server.
Step 3: Model aggregation. Each local model is weighted and aggre-

gated on the server to obtain a global model.
In the traditional aggregation process, all local models need to be

transmitted to the server, so the communication efficiency is limited
to the network and memory bandwidth of the server, and the com-
munication overhead increases linearly with the number of clients.
The traditional aggregation process is changed in the proposed RDFTL
framework, which is characterized by weighting before transmitting
and aggregating while transmitting. Specifically, first, the aggregation
weights are calculated, the local models are weighted, and then the
model aggregation is completed in the process of transmitting the
local models. The proposed framework can be fully integrated with
the bandwidth-optimal Ring-AllReduce algorithm, which can greatly
reduce the communication overhead and avoid the problem that the
model transmission overhead increases linearly with the number of
clients.
4

The model aggregation process of the proposed RDFTL framework
is as follows.

Step 1: Calculate aggregation weights. The aggregation weights
of the local models are calculated on each client using the MPDDA
strategy proposed in Section 3.4.

Step 2: Weight local models. The local model of each client is
weighted by

𝑊 weight
𝑖 = 𝑟𝑖𝑊

local
𝑖 , (3)

where 𝑊 local
𝑖 denotes the local model of the 𝑖th source client, 𝑟𝑖

is the corresponding aggregation weight, and 𝑊 weight
𝑖 represents the

weighted local model.
Step 3: Aggregating while transmitting. The process of aggregat-

ing local models while transmitting local models includes two stages:
Scatter-Reduce and Allgather.

Step 3.1: Scatter-Reduce stage. The model parameters of each client
are equally divided into 𝑁 blocks. During the 𝑗th communication, the
𝑖th client sends its ((𝑖− 𝑗)%𝑁 +1)th block to its right neighbor, receives
the ((𝑖 − 𝑗 − 1)%𝑁 + 1)th block from its left neighbor, and accumulates
the received block to its own ((𝑖 − 𝑗)%𝑁 + 1)th block, where 1 ≤ 𝑖 ≤ 𝑁
and 1 ≤ 𝑗 ≤ 𝑁 −1. After 𝑁 −1 Scatter-Reduce operations, the 𝑖th client
merges the ((𝑖 −𝑁)%𝑁 + 1)th block from each other client to obtain a
complete block. Note that during each Scatter-Reduce operation, each
client will accumulate the received block to the corresponding block to
obtain a new block, meaning that each client only needs to transmit
the data of one block size each time.

Step 3.2: Allgather stage. During each Allgather operation, the
clients exchange complete blocks with each other. During the 𝑗th
communication, the 𝑖th client sends its ((𝑖 − 𝑗)%𝑁 + 1)th block to its
right neighbor, receives the ((𝑖 − 𝑗 − 1)%𝑁 + 1)th block from its left
neighbor, and replaces its own ((𝑖 − 𝑗 − 1)%𝑁 + 1)th block with the
received block, where 1 ≤ 𝑖 ≤ 𝑁 and 𝑁 ≤ 𝑗 ≤ 2(𝑁 − 1). After 𝑁 − 1
Allgather operations, all clients will have 𝑁 complete blocks, forming
a complete global model.

As illustrated in Fig. 3, there are one target client and two source
clients, and the local model parameters of each client are equally
divided into three blocks. During the Scatter-Reduce stage, the clients
gradually exchange and merge the blocks of each other. After two
Scatter-Reduce operations, the first client collects the second block
from each other client, the second client collects the third block from
each other client, and the third client collects the first block from each
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ther client. During the Allgather stage, the clients exchange their own
omplete blocks. After two Allgather operations, each client has all
omplete blocks.

Suppose that there are 𝑁 clients, the size of the local model is 𝐷,
he network bandwidth is 𝐵, and the network latency can be ignored.
nder the client–server architecture, the size of data transmitted from
ll the clients to the server is 𝐷×𝑁 , and the size of the data transmitted
rom the server to all the clients is 𝐷×𝑁 . Therefore, the total commu-

nication overhead is (2×𝐷×𝑁)∕𝐵. In the proposed RDFTL framework,
the Scatter-Reduce stage and the Allgather stage require 𝑁 − 1 data
transmissions respectively, and the size of data transmitted each time is
𝐷∕𝑁 . Hence, the total communication overhead is 2 𝐷

𝑁 (𝑁 − 1)∕𝐵. It is
evident that the communication overhead of RDFTL framework is much
smaller than that of the client–server architecture. More significantly,
when 𝑁 is large, the communication overhead of RDFTL framework
can be approximately 2𝐷∕𝐵, which means that the communication
verhead does not increase linearly with the number of clients.

.2. Local training

The local training based on RDFTL framework is shown in Fig. 4.
he bearing vibration signals are first input into the feature extractor
𝑓 to obtain the high-level features, and then the high-level features are

ent to the classifier 𝐺𝑐 for fault classification. To ensure that the model
as excellent diagnosis performance on different data distributions, the
ub-domain aligner and the global domain discriminator 𝐺𝑑 are used

for domain adaptation.
Taking the 𝑖th source client as an example, the feature 𝐺𝑓 (x

𝑆𝑖
𝑗 ) and

he fault classification result 𝐺𝑐 (𝐺𝑓 (x
𝑆𝑖
𝑗 )) can be obtained by forward-

propagation of the training data. According to the fault classification
results and the true labels, the classification loss 𝐿𝑐 can be calculated
by

𝐿𝑐 = − 1
𝑛𝑆𝑖

𝑛𝑆𝑖
∑

𝑗=1
y𝑆𝑖
𝑗 log

(

𝐺𝑐

(

𝐺𝑓

(

x𝑆𝑖
𝑗

)))

, (4)

where x𝑆𝑖
𝑗 denotes the 𝑗th sample of the 𝑖th source domain, y𝑆𝑖

𝑗 is the
corresponding true label, and 𝑛𝑆𝑖

denotes the number of samples of the
5

𝑖th source domain. m
Due to the distribution discrepancies of vibration signals in differ-
ent domains, the diagnosis performance of the source domain model
on the target domain is reduced. To improve the cross-domain fault
diagnosis performance of the model, a global domain discriminator is
set between each pair of source and target domains. As shown in Fig. 4,
a gradient reversal layer (GRL) is inserted between the feature extractor
and the global domain discriminator. GRL will not affect the forward-
propagation in training, but will reverse the symbols of the gradients
received from the global domain discriminator. The original intention
of the global domain discriminator is to back-propagate the gradients
to the feature extractor to further improve the domain discrimination
ability. However, due to the effect of the GRL, these gradients will be
reversed, which makes the feature extractor generate the inter-domain
invariant features that are more difficult to be distinguished, greatly
increasing the difficulty of domain discrimination. The aforementioned
process is the domain adversarial training process, which is actually a
kind of minimax game. The forward-propagation and back-propagation
of the GRL can be defined as
𝑅(𝑥) = 𝑥,

𝑑𝑅(𝑥)
𝑑𝑥

= −𝜆𝐼,
(5)

where 𝑅(𝑥) represents the GRL, 𝐼 indicates the identity matrix, and 𝜆
is the scale parameter.

Through the adversarial training between the feature extractor and
the global domain discriminator, the feature extractor can extract
domain-invariant features with excellent performance on both the
source and target domains. The global domain discrimination loss 𝐿𝑔

𝑑
can be calculated by

𝐿𝑔
𝑑 = − 1

𝑛𝑆𝑖
+ 𝑛𝑇

𝑛𝑆𝑖+𝑛𝑇
∑

𝑗=1
y𝑑𝑗 log

(

𝐺𝑑

(

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑖 ,𝑇
𝑗

))

, (6)

here 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑖 ,𝑇
𝑗 denotes the high-level feature of the 𝑗th sample from

he mixture of the target domain and the 𝑖th source domain, y𝑑𝑗 denotes
he true domain label of the 𝑗th sample, and y𝑑𝑗 ∈ {0, 1}.

Only performing the marginal distribution alignment (i.e., global
omain alignment) may lead to the problem of sub-domain misalign-

ent in complex transfer diagnosis tasks. Therefore, it is necessary
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Fig. 4. Illustration of the local training based on RDFTL framework.
to further reduce the conditional distribution discrepancy. Unlike the
global domain alignment, in the conditional distribution alignment,
the multi-kernel MMD (MK-MMD) distance is adopted to minimize the
distribution discrepancy of each fault category (i.e., sub-domain) of
different domains. Since the data of the target domain are not labeled,
the global model is used to set the pseudo-labels 𝑌 𝑇 for all samples of
the target domain:

𝑌 𝑇 = argmax
𝑘∈{1, 2, …, 𝐶}

(

𝑒𝑧𝑘
∑𝐶

𝑐=1 𝑒
𝑧𝑐

)

, (7)

where 𝑧𝑘 denotes the output result of the 𝑘th neuron in the last layer
of the model, and 𝐶 denotes the total number of fault categories. The
sub-domain alignment loss 𝐿sub

𝑑 can be calculated by

𝐿sub
𝑑 = 1

𝐶

𝐶
∑

𝑐=1

‖

‖

‖

𝐸
𝑃
(

𝑋𝑆𝑖
𝑐

)

[

𝜙
(

𝐺𝑓

(

𝑋𝑆𝑖
𝑐

))]

− 𝐸𝑃
(

𝑋𝑇
𝑐
)

[

𝜙
(

𝐺𝑓
(

𝑋𝑇
𝑐
))]

‖

‖

‖

2

H𝑘
,

(8)

where 𝜙(⋅) represents the kernel function that can map data to a high-
level feature space, H𝑘 is the reproducing kernel Hilbert space, 𝑋𝑇

𝑐 and
𝑋𝑆𝑖

𝑐 represent the sample set belonging to the 𝑐th fault category on the
target domain and the 𝑖th source domain respectively, and 𝑃

(

𝑋𝑇
𝑐
)

and
𝑃
(

𝑋𝑆𝑖
𝑐

)

represent the probability distribution of the 𝑐th fault category
on the target domain and the 𝑖th source domain respectively. The
pseudo-labels can be set for 𝑋𝑇

𝑐 by Eq. (7).
The total loss function of the local model after using the GRL is

calculated by

𝐿 = 𝐿𝑐 − 𝛼𝐿𝑔
𝑑 + 𝛽𝐿sub

𝑑 , (9)

where 𝛼 and 𝛽 are the adjustable weights, 0 ≤ 𝛼, 𝛽 ≤ 1, and 𝛼 + 𝛽 = 1.
The purpose of the classifier is to accurately identify fault cate-

gories, therefore its optimization objective is to minimize the classi-
fication loss, which is defined as

�̂�𝐺𝑐 = argmin𝐿𝑐 . (10)
6

𝜃𝐺𝑐
The purpose of the global domain discriminator is to accurately iden-
tify which domain the features come from, therefore its optimization
objective is to minimize the global domain discrimination loss, which
is defined as

�̂�𝐺𝑑 = argmin
𝜃𝐺𝑑

𝐿𝑔
𝑑 , (11)

As the training goes on, it becomes increasingly difficult for the global
domain discriminator to identify the features, because the distributions
of the features extracted from the source domains and those of the
features extracted from the target domain become increasingly similar.
Due to the gradients of domain discrimination received by the feature
extractor are reversed, one of the purposes of the feature extractor is
to maximize 𝐿𝑔

𝑑 . Therefore, the optimization objective of the feature
extractor is defined as

�̂�𝐺𝑓 = arg
{

min
𝜃𝐺𝑓

𝐿𝑐 + 𝐿sub
𝑑 , max

𝜃𝐺𝑓
𝐿𝑔
𝑑
}

, (12)

where 𝜃𝐺𝑐 denotes the classifier parameter, 𝜃𝐺𝑑 denotes the global
domain discriminator parameter, and 𝜃𝐺𝑓 denotes the feature extractor
parameter. The parameter update of the classifier is defined as

𝜃𝐺𝑐 = 𝜃𝐺𝑐 − 𝛾
(

𝜕𝐿𝑐

𝜕𝜃𝐺𝑐

)

, (13)

the parameter update of the global domain discriminator is defined as

𝜃𝐺𝑑 = 𝜃𝐺𝑑 − 𝛾

(

𝛼
𝜕𝐿𝑔

𝑑

𝜕𝜃𝐺𝑑

)

, (14)

and the parameter update of the feature extractor is defined as

𝜃𝐺𝑓 = 𝜃𝐺𝑓 − 𝛾

(

𝜕𝐿𝑐

𝜕𝜃𝐺𝑓
− 𝛼

𝜕𝐿𝑔
𝑑

𝜕𝜃𝐺𝑓
+ 𝛽

𝜕𝐿sub
𝑑

𝜕𝜃𝐺𝑓

)

, (15)

where 𝛾 represents the learning rate.

3.3. Asynchronous domain adaptation strategy

The model training process of the traditional FTL is shown in Fig. 5.
Firstly, the local models of the source clients are forwarded to the target



Knowledge-Based Systems 284 (2024) 111288L. Wan et al.

u

c
t
s
t
s
c
n
c
t
T
e
t
c

a
F
t
t

Fig. 5. Model training process of the traditional FTL.
Fig. 6. Model training process based on asynchronous domain adaptation strategy in the proposed RDFTL framework.
Fig. 7. Feature discrepancy of the target domain between two consecutive global
pdates.

lient via the server to extract the target domain features. Secondly,
he target client transmits the extracted target domain features to the
erver. Finally, the server performs model aggregation and transmits
he global model to all clients. This will lead to idle waiting among the
ource clients, the target client, and the server, and will produce huge
ommunication overhead. In the proposed RDFTL framework, there is
o idle waiting between the clients and the server because there is no
entral server. To avoid idle waiting between the source clients and the
arget client, an asynchronous domain adaptation strategy is proposed.
he basic idea of this strategy is to use the target domain features
xtracted by the global model obtained from the previous epoch as the
arget domain features that need to be used on the source clients at the
urrent epoch.

The model training process based on the asynchronous domain
daptation strategy in the proposed RDFTL framework is shown in
ig. 6. At the 𝑡th epoch, all source clients perform local training. At
he same time, the target client uses the global model obtained from
he (𝑡 − 1)th epoch to extract the target domain features and use them

as the target domain features that need to be used on the source
clients at the 𝑡th epoch. This allows the local training of the source
7

clients and the feature extraction of the target client to be executed
in parallel, which can effectively avoid idle waiting between clients in
collaborative model training. In addition, there is no need to transmit
the local models of the source clients to the target client, and it only
needs to transmit the features extracted by one global model instead
of the features extracted by all the local models. This reduces the
additional communication overhead and improves the overall training
efficiency of FTL. In the proposed asynchronous domain adaptation
strategy, the source clients do not perform domain adaptation at the
first two epochs of local training, and only local classification loss is
considered. Starting from the third epoch, the source clients perform
domain adaptation using the target domain features obtained from the
previous epoch.

In the proposed asynchronous domain adaptation strategy, the tar-
get domain features obtained from the previous epoch are used at
the current epoch, which does not affect the domain adaptation. This
is because the discrepancy of target domain features between two
consecutive global updates in FTL is usually tiny. Experiments are
conducted on the task T5 listed in Table 5 to obtain the discrepancy of
target domain features between two consecutive global updates. The
MK-MMD distance-based feature discrepancy 𝑑𝑖𝑠𝑐feature between the
target domain features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡−1𝑇 obtained from the (𝑡−1)th epoch and
the target domain features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑇 obtained from the 𝑡th epoch can
be calculated by

𝑑𝑖𝑠𝑐feature = ‖𝐸[𝜙(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡−1𝑇 )] − 𝐸[𝜙(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑇 )]‖
2
H𝑘

. (16)

Fig. 7 shows the feature discrepancy of the target domain between
two consecutive global updates during 100 epochs of training. Except
for the discrepancies in the first five epochs are significant, the average
discrepancy for all other epochs is 0.03, and the maximum discrepancy
is only 0.12. The results indicate that the discrepancy of target domain
features between two consecutive global updates is tiny. Therefore,
the asynchronous domain adaptation strategy does not affect domain
adaptation.

3.4. Multi-perspective distribution discrepancy aggregation strategy

The model aggregation strategy of FTL has a significant impact on
the diagnosis performance of the global model, and an inappropriate
model aggregation strategy usually leads to serious negative transfer.
The most classical model aggregation strategy is the federated averag-

ing (FedAvg) strategy [27]. This strategy weights the local models of 𝑁
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Fig. 8. The proposed multi-perspective distribution discrepancy aggregation strategy.
clients on average and aggregates them into a global model according
to

𝑊 𝑡
global =

𝑁
∑

𝑖=1

1
𝑁

𝑊 𝑡
𝑖 , (17)

where 𝑊 𝑡
𝑖 denotes the local model of the 𝑖th client obtained from the

𝑡th epoch, and 𝑊 𝑡
global denotes the global model obtained from the 𝑡th

epoch.
The FedAvg strategy has the advantages of being simple in design

and easy to use. However, it has an obvious drawback of assuming
that all clients make the same contribution during federation train-
ing. In the FTL-based RMFD, the diagnosis performance of the local
models from different source clients on the target domain may be
significantly different due to the discrepancy in the distribution of data
provided by different clients. To avoid negative transfer caused by
model aggregation, it is essential to accurately evaluate the diagnosis
performance of the local models from different source clients during the
model aggregation process. Therefore, a multi-perspective distribution
discrepancy aggregation strategy is proposed. As shown in Fig. 8,
the proposed MPDDA strategy evaluates the diagnosis performance of
the local models from different source clients on the target domain
from three perspectives: statistical distance, domain adversarial, and
stability, and jointly determines the aggregation weights according to
these three evaluation metrics.

Statistical distance: The inter-domain distribution discrepancy is an
important reason that affects the diagnosis performance of the local
models from different source clients on the target domain. In general,
the smaller the inter-domain distribution discrepancy, the better the di-
agnosis performance of the local models from different source clients on
the target domain. The MK-MMD distance can reflect the inter-domain
distribution discrepancy to some extent. Generally, the smaller the MK-
MMD distance, the smaller the inter-domain distribution discrepancy.
Therefore, the MK-MMD distance is adopted as an evaluation metric
to determine the aggregation weights. The MK-MMD distance 𝑑𝑖𝑠𝑡𝑖 of
the high-level features between the 𝑖th source domain and the target
domain can be calculated by

𝑑𝑖𝑠𝑡𝑖 =
‖

‖

‖

𝐸𝑃 (𝑋𝑆𝑖 )
[

𝜙(𝐺𝑓 (𝑋𝑆𝑖 ))
]

− 𝐸𝑃 (𝑋𝑇 )
[

𝜙(𝐺𝑓 (𝑋𝑇 ))
]

‖

‖

‖

2

H𝑘
. (18)

The smaller 𝑑𝑖𝑠𝑡𝑖, the smaller the distribution discrepancy between
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the 𝑖th source domain and the target domain, which means that the
aggregation weight assigned to the local model of the 𝑖th source client
should be increased.

Domain adversarial: The adversarial training is introduced in [28]
to reduce the inter-domain distribution discrepancy. The domain ad-
versarial involves two components of RDFTL framework: the global
domain discriminator and the feature extractor. The global domain
discriminator is employed to discriminate whether a feature comes
from the target or source domain. The feature extractor is used to
extract features that are difficult to be discriminated by the global
domain discriminator. Inspired by this idea, the domain adversarial is
introduced into the model aggregation strategy and used as another
evaluation metric to determine aggregation weights. Typically, the
more difficult it is for the domain discriminator to discriminate whether
features come from the target or source domain, the more similar the
feature representations of the source and target domains are, that is,
the better the performance of domain adaptation is. Therefore, the
domain discriminator accuracy can be used to evaluate the performance
of domain adaptation. The domain discrimination accuracy of the 𝑖th
source client 𝑎𝑐𝑐𝑖 can be calculated by

𝑎𝑐𝑐𝑖 =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑁𝑖
, (19)

where 𝑇𝑃 𝑖, 𝑇𝑁 𝑖, 𝐹𝑃 𝑖, and 𝐹𝑁 𝑖 denote the number of true positives,
true negatives, false positives, and false negatives, respectively. The do-
main discrimination deviation 𝑑𝑒𝑣𝑖 between 𝑎𝑐𝑐𝑖 and the ideal domain
discrimination accuracy of 0.5 can be calculated by

𝑑𝑒𝑣𝑖 = |

|

𝑎𝑐𝑐𝑖 − 0.5|
|

. (20)

The smaller the domain discrimination deviation, the better the per-
formance of domain adaptation, which implies that the aggregation
weight should be increased.

Stability: The stability of the domain adaptation process can also
reflect the diagnosis performance of the local models from different
source clients on the target domain. The source domains with smaller
distribution discrepancies from the target domain can usually align
with the target domain faster and more stably during the domain
adaptation process. Furthermore, since the 𝑑𝑖𝑠𝑡𝑖 and 𝑑𝑒𝑣𝑖 obtained from
each epoch have a certain fluctuation, the local models with poor per-
formance may be assigned larger aggregation weights. Therefore, the
variances of 𝑑𝑖𝑠𝑡 and 𝑑𝑒𝑣 are introduced into the model aggregation
𝑖 𝑖
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strategy, which enables the diagnosis performance of the local models
from the source clients to be evaluated from a periodic perspective,
thus avoiding the negative transfer caused by a single fluctuation.
After completing the 𝑡th epoch of training, the variance of 𝑑𝑖𝑠𝑡𝑖 can
be calculated by

𝑣𝑎𝑟𝑡𝑑𝑖𝑠𝑡𝑖 =
1

𝓁 − 1

𝑡
∑

𝑘=𝑡−𝓁

[

𝑑𝑖𝑠𝑡𝑘𝑖 −

( 𝑡
∑

𝑗=𝑡−𝓁
𝑑𝑖𝑠𝑡𝑗𝑖 ∕𝓁

)]2

, (21)

and the variance of 𝑑𝑒𝑣𝑖 can be calculated by

𝑣𝑎𝑟𝑡𝑑𝑒𝑣𝑖 =
1

𝓁 − 1

𝑡
∑

𝑘=𝑡−𝓁

[

𝑑𝑒𝑣𝑘𝑖 −

( 𝑡
∑

𝑗=𝑡−𝓁
𝑑𝑒𝑣𝑗𝑖 ∕𝓁

)]2

, (22)

where 𝓁 is the length of the sliding window used to calculate the
variance.

The proposed MPDDA strategy is described in Algorithm 1. The
model aggregation during the 𝑡th epoch of training is taken as an
example, and the aggregation process is as follows, where 𝑡 ≥ 𝓁.

Algorithm 1 The proposed MPDDA strategy

Input: The source domain datasets
{

𝐷𝑆𝑖
}𝑁−1
𝑖=1 , the target domain

dataset 𝐷𝑇 , the maximum number of epochs 𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑠, and
the length of sliding window for calculating the variance 𝓁.

Output: A global model 𝑊 𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑠
global .

1: The target client initializes the global model 𝑊 0
global and send

it to all source clients;
2: for 𝑡 = 1 to 𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑠 do
3: do in parallel
4: Perform the source client operation(

{

𝐷𝑆𝑖
}𝑁−1
𝑖=1 );

5: Perform the target client operation(𝐷𝑇 );
6: end in parallel
7: end for
8: Perform the source client operation(

{

𝐷𝑆𝑖
}𝑁−1
𝑖=1 ):

9: for source client 𝑖, 1 ≤ 𝑖 ≤ 𝑁 − 1, in parallel do
10: Use the global model 𝑊 𝑡−1

global as the local model 𝑊 𝑡
𝑖 ;

11: Train the local model 𝑊 𝑡
𝑖 using the dataset 𝐷𝑆𝑖 and

calculate the domain discrimination accuracy 𝑎𝑐𝑐𝑡𝑖 by
Eq. (19);

12: Extract the source domain features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑆𝑖
by 𝑊 𝑡

𝑖 ;
13: Transmit 𝑎𝑐𝑐𝑡𝑖 and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑆𝑖

;
14: if 𝑡 < 𝓁 then
15: Set the aggregation weight 𝑟𝑡𝑖 to 1∕(𝑁 − 1);
16: else
17: Calculate 𝑑𝑖𝑠𝑡𝑡𝑖 and 𝑑𝑒𝑣𝑡𝑖 by Eqs. (18) and (20),

respectively;
18: Calculate 𝑣𝑎𝑟𝑡𝑑𝑖𝑠𝑡𝑖 and 𝑣𝑎𝑟𝑡𝑑𝑒𝑣𝑖 by Eqs. (21) and (22),

respectively;
19: Calculate 𝑠𝑐𝑜𝑟𝑒𝑡𝑖 and 𝑟𝑡𝑖 by Eqs. (23) and (24),

respectively;
20: end if
21: Perform the model aggregation to obtain the global model

𝑊 𝑡
global by Eq. (25);

22: end for
23: Perform the target client operation(𝐷𝑇 ):
24: Use the global model 𝑊 𝑡−1

global as the local model 𝑊 𝑡
𝑁 ;

25: Extract the target domain features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡−1𝑇 by 𝑊 𝑡
𝑁 ;

26: Transmit 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡−1𝑇 ;
27: Set the aggregation weight 𝑟𝑡𝑁 of the target client to zero;
28: Perform the model aggregation to obtain the global model

𝑊 𝑡
global by Eq. (25);

Step 1: Use the 𝑖th source client to extract the source domain
features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑆𝑖

, at the same time, the target client is used to extract
the target domain features 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡−1𝑇 , where 𝑖 ∈ {1, 2, … , 𝑁 − 1}.

Step 2: Calculate the MK-MMD distance 𝑑𝑖𝑠𝑡𝑡𝑖 between 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡𝑆𝑖
and

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑡−1 by Eq. (18).
9

𝑇

Fig. 9. CWRU bearing test rig [29].

Step 3: Calculate the domain discrimination accuracy 𝑎𝑐𝑐𝑡𝑖 and the
domain discrimination deviation 𝑑𝑒𝑣𝑡𝑖 by Eqs. (19) and (20), respec-
tively.

Step 4: Calculate the variances 𝑣𝑎𝑟𝑡𝑑𝑖𝑠𝑡𝑖 and 𝑣𝑎𝑟𝑡𝑑𝑒𝑣𝑖 by Eqs. (21) and
(22), respectively.

Step 5: Calculate the score 𝑠𝑐𝑜𝑟𝑒𝑡𝑖 used to evaluate the diagnosis
performance of the local model from the 𝑖th source client by

𝑠𝑐𝑜𝑟𝑒𝑡𝑖 =
𝜂 log

(

1
𝑑𝑖𝑠𝑡𝑡𝑖+𝜀

)

+ (1 − 𝜂) log
(

1
𝑑𝑒𝑣𝑡𝑖+𝜀

)

𝜑𝑣𝑎𝑟𝑡𝑑𝑖𝑠𝑡𝑖 + (1 − 𝜑)𝑣𝑎𝑟𝑡𝑑𝑒𝑣𝑖
, (23)

where 𝜂 and 𝜑 are the adjustable parameters and 𝜀 is a smoothing
factor. 𝜂 and 𝜑 are used to weight different evaluation metrics to ensure
the optimal performance of the MPDDA strategy. 𝜂 is used to balance
the relative importance of MK-MMD distance and the domain discrim-
ination deviation. 𝜑 is used to balance the relative importance of the
variance of MK-MMD distance and that of the domain discrimination
deviation. The aggregation weight 𝑟𝑡𝑖 of the local model from the 𝑖th
source client can be calculated by

𝑟𝑡𝑖 = 𝑠𝑐𝑜𝑟𝑒𝑡𝑖∕
𝑁−1
∑

𝑖=1
𝑠𝑐𝑜𝑟𝑒𝑡𝑖. (24)

Step 6: Weight and aggregate the local models of all clients to obtain
the global model 𝑊 𝑡

global by

𝑊 𝑡
global =

𝑁
∑

𝑖=1
𝑟𝑡𝑖𝑊

𝑡
𝑖 , (25)

where the aggregation weight 𝑟𝑡𝑁 of the target client is set to zero.
𝑊 𝑡

global is taken as the local model of each client that will be used at
the (𝑡 + 1)th epoch.

4. Experiments

4.1. Experimental setup

The datasets used in the experiment include the Case Western
Reserve University (CWRU) bearing dataset [29] and the Paderborn
University (PU) bearing dataset [30].

The CWRU bearing test rig is shown in Fig. 9. The dataset used
in this experiment consists of vibration signals collected at the drive
end with a sampling frequency of 12 kHz. The vibration data under
different health conditions listed in Table 1 are collected under four
different working conditions, namely, four different rotating speeds
including 1797, 1772, 1750, and 1730 rpm. The datasets under the
four different working conditions are named A1, A2, A3, and A4,
respectively. Each dataset contains 2000 samples, and each sample
contains 1024 consecutive sample points, where a sample point is a
vibration signal. There are 200 samples under each health condition.
The ratio of the training set and test set is 8:2.
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Table 1
Details of the CWRU bearing dataset.

Health condition Fault diameter (in.) Label

N – 0
IF1 0.007 1
IF2 0.014 2
IF3 0.021 3
BF1 0.007 4
BF2 0.014 5
BF3 0.021 6
OF1 0.007 7
OF2 0.014 8
OF3 0.021 9

Table 2
Details of the PU bearing dataset.

Health condition Damage mode Damage degree Bearing code Label

N – – K004 0
IF1 Pitting 1 KI21 1
IF2 Pitting 2 KI18 2
IF3 Pitting 3 KI16 3
OF1 Pitting 1 KA04 4
OF2 Indentations 1 KA15 5
OF3 Pitting 2 KA16 6
IF + OF1 Indentations 1 KB27 7
IF + OF2 Pitting 2 KB23 8
IF + OF3 Pitting 3 KB24 9

Table 3
Network structure of the model.

Module Layer type Kernel/Channels/Stride Output

Feature extractor

Convolution 7 × 1∕64∕2 64, 512
Max-pooling 3 × 1∕64∕2 64, 256

Residual-block1
[

3 × 1∕64∕1
3 × 1∕64∕1

]

× 2 64, 256

Residual-block2
[

3 × 1∕128∕2
3 × 1∕128∕1

]

× 2 128, 128

Residual-block3
[

3 × 1∕256∕2
3 × 1∕256∕1

]

× 2 256, 64

Residual-block4
[

3 × 1∕512∕2
3 × 1∕512∕1

]

× 2 512, 32

Avg-pooling 32 × 1∕512∕32 512, 1

Flatten – 512

Classifier FC1 – 256
FC2 – 10

Global domain
discriminator

FC1 – 256
FC2 – 2

Table 4
Setting of hyper-parameters used in model training.

Parameter name Description Value

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 Momentum used in SGD 0.9
𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 Number of samples used in each iteration 64
𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑠 Maximum number of epochs 100
𝛾 Learning rate 0.001
𝛼 Weight of global domain alignment loss 0.65
𝛽 Weight of sub-domain alignment loss 0.35
𝓁 Length of the sliding window for calculating variances 10
𝜂 Weight of the statistical distance 0.7
𝜑 Weight of the variance of the statistical distance 0.3
𝜀 Smoothing factor of MPDDA strategy 0.001

The PU bearing test rig is shown in Fig. 10. The data used in this ex-
periment include the healthy and real damaged bearing data collected
under four different working conditions with a sampling frequency of
64 kHz. According to different radial forces, load torques, and rotating
speeds, the four different working conditions are as follows: 1000 N/0.7
N m/1500 rpm, 1000 N/0.7 N m/900 rpm, 1000 N/0.1 N m/1500
10
Fig. 10. PU bearing test rig [30].

rpm, and 400 N/0.7 N m/1500 rpm. The vibration data under different
health conditions listed in Table 2 are collected under the four different
working conditions. The datasets under the four different working
conditions are named B1, B2, B3, and B4, respectively. Each dataset
contains 4000 samples, and each sample contains 2048 consecutive
sample points. There are 400 samples under each health condition. The
ratio of the training set and test set is 8:2.

In the RMFD based on RDFTL, the network structure of each client
model is the same, as shown in Table 3. The model uses a deep residual
network as the feature extractor, which can better extract inter-domain
invariant features from the original signals. The ELU activation function
is used after each convolutional layer and each fully connected layer in
the model. The stochastic gradient descent (SGD) algorithm is used in
model training. The setting of hyper-parameters used in model training
is shown in Table 4. Note that the parameters 𝛼, 𝛽, 𝜂, and 𝜑 adopted in
this paper are chosen using the grid-search method. The influences of
changes in the values of 𝛼, 𝛽, 𝜂, and 𝜑 on the diagnosis performance are
observed through a series of experiments, and the optimal combination
pairs are selected as the experimental parameters.

The experimental platform includes three source clients and one
target client. The hardware configurations of each client mainly include
64 GB of RAM, an Intel i7-9700K CPU with eight cores @ 3.6 GHz,
8 GB of GPU memory, and an NVIDIA RTX 2070 SUPER GPU with 2560
CUDA cores. The software configurations of each client mainly include
Horovod 0.27.0, PyTorch 1.12.1, and CentOS 8.1.

4.2. Validation of the effectiveness of the proposed RDFTL framework and
asynchronous domain adaptation strategy

The computational and communication overheads are the two main
factors that affect the efficiency of model training in FTL. To verify
the effectiveness of the proposed RDFTL framework and asynchronous
domain adaptation strategy in improving training efficiency, the three
methods of CSFTL, CSFTL-ASYNC, and RDFTL are compared in this
experiment. The CSFTL method employs the client–server architecture
without incorporating the proposed asynchronous domain adaptation
strategy. The CSFTL-ASYNC method adopts the client–server architec-
ture that incorporates the proposed asynchronous domain adaptation
strategy. The RDFTL method uses the proposed decentralized architec-
ture based on Ring-AllReduce and the proposed asynchronous domain
adaptation strategy. Four cross-working condition RMFD tasks are de-
signed on the CWRU and PU bearing datasets respectively, as shown
in Table 5. Note that the data of the three source clients are labeled,
whereas the data of the target client are set to be unlabeled.

Fig. 11 presents the average computation time and communication
time of the three different FTL methods on the eight cross-working
condition RMFD tasks listed in Table 5. The computation time includes
the local training time of the source clients and the feature extraction
time of the target client, and the communication time includes the
feature transmission time and the model transmission time. As shown
in Fig. 11, RDFTL has the least total time. The total time of RDFTL is
reduced by 44.09% and 11.60% than that of CSFTL and CSFTL-ASYNC,
respectively. The computation time and communication time of RDFTL
are reduced by 30.92% and 58.77% than those of CSFTL, respectively.
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Table 5
Description of the cross-working condition RMFD tasks.

Task name Source client #1 Source client #2 Source client #3 Target client

T1 A2 A3 A4 A1
T2 A1 A3 A4 A2
T3 A1 A2 A4 A3
T4 A1 A2 A3 A4
T5 B2 B3 B4 B1
T6 B1 B3 B4 B2
T7 B1 B2 B4 B3
T8 B1 B2 B3 B4

Table 6
Comparison of the local training time, feature extraction time, and total computation
time of different FTL methods used for RMFD.

FTL method Local training
time (s)

Feature extraction
time (s)

Total computation
time (s)

CSFTL 327.54 148.94 476.48
CSFTL-ASYNC 332.77 53.21 332.77
RDFTL 329.15 50.47 329.15

Fig. 11. Comparisons of the average computation time and communication time of
different FTL methods used for RMFD.

The computation time of RDFTL is basically the same as that of CSFTL-
ASYNC, but the communication time of RDFTL is reduced by 26.25%
than that of CSFTL-ASYNC.

Fig. 12 illustrates the feature transmission time and model transmis-
sion time of the three different FTL methods. As shown in Fig. 12, the
model transmission time of RDFTL is reduced by 80.41% and 70.55%
than that of CSFTL and CSFTL-ASYNC, respectively. This is because
RDFTL adopts the proposed decentralized architecture based on Ring-
AllReduce, which can greatly reduce the model transmission time. The
model transmission time of CSFTL-ASYNC is reduced by 33.48% than
that of CSFTL, which is because there is no need to transmit the local
models from the server to the target client when adopting the asyn-
chronous domain adaptation strategy in the client–server architecture.
Compared with CSFTL, the feature transmission time of RDFTL and that
of CSFTL-ASYNC are reduced by 49.46% and 48.67%, respectively. This
is because only one global model is needed instead of multiple local
models to extract the target domain features when the asynchronous
domain adaptation strategy is adopted in RDFTL and CSFTL-ASYNC,
which helps to reduce the additional feature transmission time.

Table 6 gives the comparison of the local training time, feature
extraction time, and total computation time of different FTL methods
used for RMFD. The total computation time of CSFTL is the sum of the
maximum local training time among all source clients and the feature
extraction time of the target client, and the total computation time of
CSFTL-ASYNC and that of RDFTL depend on the larger of the maximum
11
Fig. 12. Comparisons of the feature transmission time and model transmission time of
different FTL methods used for RMFD.

local training time and the feature extraction time. As seen in Table 6,
the differences in the local training time of the three methods are slight,
which is because the local training strategies adopted by the three
methods are basically the same. The feature extraction time of CSFTL
accounts for 31.26% of the total computation time, whereas the feature
extraction time of RDFTL and that of CSFTL-ASYNC account for 0% of
the total computation time, which means that the feature extraction
time of RDFTL and that of CSFTL-ASYNC are completely hidden. This
is because there is idle waiting between the target client and the source
clients in CSFTL, whereas RDFTL and CSFTL-ASYNC adopt the proposed
asynchronous domain adaptation strategy, which can enable the local
training of the source clients and the feature extraction of the target
client to be executed in parallel.

From the above analysis, the conclusions are as follows. Firstly,
the proposed RDFTL framework can significantly reduce the com-
munication overhead of FTL. Secondly, the proposed asynchronous
domain adaptation strategy can avoid idle waiting and reduce the
additional communication overhead, thereby improving the overall
training efficiency of FTL.

4.3. Validation of the effectiveness of the proposed MPDDA strategy

To validate the effectiveness of the three evaluation metrics in the
proposed MPDDA strategy, some experiments are conducted on the task
T8 listed in Table 5. The three PU bearing datasets B1, B2, and B3 are
used as the three source domains and B4 is used as the target domain.
The local models trained on B1, B2, and B3 achieve diagnosis accuracies
of 65.78%, 96.73%, and 87.45% on the target domain B4, respectively.
In terms of the diagnosis accuracies achieved by the local models of the
three source clients, B2 is the best, followed by B3, and B1 is the worst.

Fig. 13(a) shows the variation curves of the MK-MMD distances
between different source domains and the target domain during the
training process. The smaller the MK-MMD distance, the smaller the
inter-domain distribution discrepancy. Fig. 13(b) presents the variation
curves of the domain discrimination deviations of different source
clients during the training process. The smaller the domain discrimi-
nation deviation, the smaller the inter-domain distribution discrepancy.
From the overall performance of the local models from the three source
clients on both the MK-MMD distance and domain discrimination de-
viation, B2 is the best, followed by B3, and B1 is the worst, which
indicates that both the MK-MMD distance and domain discrimination
deviation are effective evaluation metrics. As shown in Figs. 13(a) and
13(b), from the overall fluctuation amplitude of the three MK-MMD
distance curves and the three domain discrimination deviation curves,
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Fig. 13. Variation curves of different evaluation metrics under the task T8.

2 is the smallest, followed by B3, and B1 is the largest, which indicates
hat the stability is also an effective evaluation metric.

Fig. 14 presents the aggregation weights of different source clients
btained by MPDDA strategy under the task T8. As shown in Fig. 14,
n terms of the aggregation weights of the three source clients, B2 is
he largest, followed by B3, and B1 is the smallest. The aggregation
eights of the three source clients are consistent with their diagnosis
erformance on the target domain, and the aggregation weights of the
igh-quality local models are significantly different from those of the
ow-quality local models. This can fully utilize the role of high-quality
ocal models in aggregation and reduce the negative transfer caused by
ow-quality local models, thereby effectively improving the diagnosis
erformance of the global model.

To verify the effectiveness of the proposed MPDDA strategy in
mproving the diagnosis performance of the global model, the compara-
ive experiments are carried out using four different model aggregation
trategies on the eight tasks listed in Table 5. These strategies are
edAvg [27], Fed-DA, Fed-MK-MMD, and the proposed MPDDA. Fe-
Avg weights the local models participating in the aggregation on
verage. Fed-DA uses the domain discrimination deviation and the
orresponding variance to calculate the aggregation weights. Fed-MK-
MD uses the MK-MMD distance and the corresponding variance to

alculate the aggregation weights.
Table 7 shows the diagnosis accuracies achieved with different

ggregation strategies under the cross-working condition RMFD tasks.
s shown in Table 7, under the four transfer tasks of CWRU, the average
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iagnosis accuracies obtained by FedAvg, Fed-DA, Fed-MK-MMD, and
Fig. 14. Aggregation weights of the local models from different source clients obtained
by MPDDA strategy under the task T8.

Table 7
Diagnosis accuracies achieved with different aggregation strategies under the
cross-working condition RMFD tasks.

Task FedAvg Fed-DA Fed-MK-MMD MPDDA

T1 93.75 ± 0.45 96.75 ± 0.55 96.50 ± 0.25 99.25 ± 0.12
T2 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
T3 97.25 ± 0.31 100.00 ± 0.00 99.50 ± 0.09 100.00 ± 0.00
T4 99.68 ± 0.11 99.75 ± 0.06 100.00 ± 0.00 100.00 ± 0.00
Avg. 97.67 99.12 99.00 99.81
T5 81.09 ± 0.85 91.25 ± 1.25 93.20 ± 1.47 98.82 ± 0.38
T6 84.50 ± 1.15 93.67 ± 1.51 89.21 ± 1.57 99.21 ± 0.15
T7 82.75 ± 0.95 92.02 ± 1.17 90.77 ± 1.39 98.39 ± 0.22
T8 81.05 ± 1.12 92.39 ± 1.26 92.73 ± 1.75 99.07 ± 0.19
Avg. 82.34 92.33 91.48 98.87
Total avg. 90.01 95.72 95.23 99.34

MPDDA are 97.67%, 99.12%, 99.00%, and 99.81%, respectively. Under
the four transfer tasks of PU, the average diagnosis accuracies obtained
by FedAvg, Fed-DA, Fed-MK-MMD, and MPDDA are 82.34%, 92.33%,
91.48%, and 98.87%, respectively. The results indicate that these four
aggregation strategies have superior diagnosis performance on the
CWRU bearing dataset, whereas MPDDA significantly outperforms the
other three aggregation strategies on the PU bearing dataset. The diag-
nosis performance of FedAvg, Fed-DA, and Fed-MK-MMD on the CWRU
bearing dataset is better than that on the PU bearing dataset, which is
because the distribution discrepancy between different domains in the
CWRU bearing dataset is smaller than that in the PU bearing dataset.
Therefore, the local model from each source client performs well on
the target domain for the CWRU bearing dataset, which makes the
impact of aggregation weights on the diagnosis performance of the
global model insignificant. However, when facing the more complex
PU bearing dataset, the diagnosis performance of the local models from
different source clients differs significantly. The accurate evaluation of
the aggregation weights of different source clients becomes essential
to fully ensure the diagnosis performance of the global model. The
inappropriate aggregation weights can lead to serious negative transfer.

The tasks T4 and T8 are taken as examples, the variation of the diag-
nosis accuracies achieved with the four different aggregation strategies
during the training process is further analyzed. Figs. 15 and 16 present
the diagnosis accuracies achieved with different aggregation strategies
under the tasks T4 and T8, respectively. As shown in Fig. 15, the
final diagnosis accuracies achieved by MPDDA and Fed-MK-MMD reach
100% under the task T4. MPDDA has the fastest convergence speed
and almost no oscillation. The diagnosis accuracy of Fed-DA is slightly
lower than that of MPDDA, and its convergence speed is also slightly

slower than that of MPDDA. FedAvg has the lowest diagnosis accuracy,
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Fig. 15. Diagnosis accuracies achieved with different aggregation strategies under the
ask T4.

Fig. 16. Diagnosis accuracies achieved with different aggregation strategies under the
ask T8.

he slowest convergence speed, and obvious oscillation. As shown
n Fig. 16, the final diagnosis accuracy obtained by MPDDA is the
ighest and its oscillation is slight under the task T8. The diagnosis
ccuracies of Fed-DA and Fed-MK-MMD are significantly lower than
hat of MPDDA, and the oscillations of the diagnosis accuracies of
ed-DA and Fed-MK-MMD are larger than that of MPDDA. FedAvg
as the lowest diagnosis accuracy. As can be seen from Figs. 15 and
6, when facing the complex cross-working condition RMFD tasks,
PDDA can significantly alleviate the negative transfer caused by
odel aggregation, thereby improving the diagnosis performance of the

lobal model.

.4. Comparison with other fault diagnosis methods

To further validate the effectiveness of the proposed RDFTL method,
DFTL is compared with six other different fault diagnosis methods,

ncluding FTLDAN [19] (2022), DWFA [23] (2022), MSSA [10] (2022),
MDAAN-V [21] (2023), LQKF [25] (2023), and AFTBL [22] (2023),
here FTLDAN, DWFA, FMDAAN-V, LQKF, and AFTBL are the ad-
anced federated transfer learning methods for RMFD, and MSSA is
he advanced transfer learning approach for RMFD. FTLDAN [19] uses
eep adversarial networks to reduce inter-domain distribution discrep-
ncy, and adopts a source domain multi-classifier consistency scheme
13
to improve the prediction accuracy. DWFA [23] adopts a domain
adaptation strategy based on MMD distance to reduce inter-domain
distribution discrepancy. In addition, DWFA uses the MMD distance
to measure distribution discrepancy and adopts a weighted federated
averaging method based on distribution discrepancy for model ag-
gregation. FMDAAN-V [21] jointly utilizes a global feature alignment
module based on MK-MMD distance and a global domain discriminator
to reduce the distribution discrepancies between the target and source
domains, and employs the FedAvg strategy for model aggregation.
LQKF [25] adopts a low-quality knowledge filtering strategy to gen-
erate high-confidence pseudo labels for the target domain, and utilizes
the filtering idea to measure the contribution of each local model, so as
to dynamically aggregate the local models. AFTBL [22] employs a FTL
approach based on broad learning and attention mechanism for RMFD,
and utilizes the FedAvg strategy for model aggregation. MSSA [10] is a
multi-source sub-domain adaptation transfer learning method, which
uses the LMMD distance to calculate the inter-domain distribution
discrepancy and utilizes a multi-branch network structure to reduce the
distribution discrepancies between the source and target domains. Note
that MSSA does not need to consider data privacy, which means that
the data from different domains could be used for centralized training.

4.4.1. RMFD under cross-working condition scenarios
The comparative experiments are carried out using FTLDAN, DWFA,

FMDAAN-V, LQKF, AFTBL, MSSA, and RDFTL on the eight cross-
working condition RMFD tasks listed in Table 5. Table 8 provides
the accuracies achieved with different fault diagnosis methods under
the cross-working condition scenarios. As shown in Table 8, RDFTL
achieves the best average diagnosis accuracy among all the FTL meth-
ods, which shows that RDFTL is superior to the other FTL methods. The
differences in the diagnosis accuracies achieved on the four transfer
tasks of CWRU using these seven methods are slight. The main reasons
are as follows. On the one hand, due to the relatively small distribution
discrepancies among the four domains of CWRU, it is not difficult to
train the local models that exhibit good diagnosis performance on the
target domain. On the other hand, since each local model is comparably
excellent, the performance of the global model is not particularly
sensitive to the aggregation weights, and the issue of negative transfer
brought by model aggregation is mitigated.

However, when facing the four relatively complex transfer tasks of
PU, the average diagnosis accuracies of these seven different methods
have declined, whereas RDFTL still maintains the highest average diag-
nosis accuracy of 98.87% among all the FTL methods. The main reasons
are as follows. FTLDAN, DWFA, and FMDAAN-V only consider marginal
distribution alignment in the domain adaptation, but this does not
mean that the conditional distribution discrepancy can also be reduced
implicitly, which restricts their performance on the complex transfer
tasks to some extent. In contrast, RDFTL reduces both marginal dis-
tribution discrepancy and conditional distribution discrepancy through
the global domain alignment and the sub-domain alignment. In ad-
dition, FTLDAN, FMDAAN-V, and AFTBL use the FedAvg strategy in
model aggregation. Once the low-quality local models appear in the
aggregation process, the FedAvg strategy will hurt the performance of
the global model. DWFA only relies on the MMD distance to evaluate
the aggregation weights of local models, which is prone to cause
negative transfer in model aggregation for complex FTL tasks. LQKF
uses the batch normalized MMD distance as a component of the loss,
without directly utilizing the output of the feature extractor, which
ensures data privacy to a certain extent but at the cost of some diagnosis
performance. The negative transfer caused by low-quality local models
can be effectively avoided in RDFTL that incorporates MPDDA strategy.
Compared with MSSA without considering data privacy, the average
diagnosis accuracy achieved by RDFTL on all tasks is only 0.04% lower.
This proves that the proposed RDFTL that considers data privacy still
has strong competitiveness in diagnosis performance.
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Fig. 17. Feature visualization of the outputs of different layers of the final global model trained with RDFTL under the task T4.
Table 8
Accuracies achieved with different fault diagnosis methods under cross-working condition scenarios.

Task FTLDAN [19] (2022) DWFA [23] (2022) FMDAAN-V [21] (2023) LQKF [25] (2023) AFTBL [22] (2023) MSSA [10] (2022) RDFTL

T1 97.52 ± 0.11 98.85 ± 0.21 99.12 ± 0.06 99.10 ± 0.07 99.79 ± 0.05 99.57 ± 0.09 99.25 ± 0.12
T2 97.15 ± 0.15 100.00 ± 0.00 99.57 ± 0.13 99.26 ± 0.05 99.76 ± 0.06 100.00 ± 0.00 100.00 ± 0.00
T3 98.06 ± 0.07 99.58 ± 0.04 100.00 ± 0.00 98.89 ± 0.08 100 ± 0.00 99.81 ± 0.05 100.00 ± 0.00
T4 96.57 ± 0.23 97.34 ± 0.32 100.00 ± 0.00 98.90 ± 0.12 99.49 ± 0.05 100.00 ± 0.00 100.00 ± 0.00
Avg. 97.33 98.94 99.67 99.04 99.76 99.85 99.81
T5 88.14 ± 0.47 91.09 ± 0.45 93.99 ± 0.55 96.16 ± 0.18 98.15 ± 0.12 98.96 ± 0.16 98.82 ± 0.38
T6 90.32 ± 0.42 93.20 ± 0.55 96.77 ± 0.56 98.05 ± 0.14 97.37 ± 0.18 98.23 ± 0.33 99.21 ± 0.15
T7 93.80 ± 0.35 94.21 ± 0.28 94.73 ± 0.76 96.60 ± 0.21 97.89 ± 0.21 99.11 ± 0.17 98.39 ± 0.22
T8 92.51 ± 0.63 93.77 ± 0.87 96.11 ± 0.79 97.25 ± 0.12 98.26 ± 0.13 99.34 ± 0.12 99.07 ± 0.19
Avg. 91.19 93.07 95.40 97.02 97.92 98.91 98.87
Total avg. 94.26 96.01 97.54 98.03 98.84 99.38 99.34
As shown in Fig. 17, the output features of different layers of the
global model trained with RDFTL under the task T4 are visualized
by t-SNE. Fig. 17(a) shows that there are significant distribution dis-
crepancies between the source domains and the target domain without
performing domain alignment. Figs. 17(b)–17(e) show that the feature
distributions of the same fault category in different domains are gradu-
ally aligned. As can be seen from Fig. 17(f), after passing the classifier,
the feature distributions of the same fault category in all domains are
well aligned, and the differences between the feature distributions of
the different fault categories are very obvious, which indicates that
the features extracted by the global model trained with RDFTL achieve
good clustering and separability under all fault categories.

Fig. 18 illustrates the confusion matrices of different fault diag-
nosis methods under the task T8. As shown in Fig. 18(a), FTLDAN
misclassifies 9.72% of IF1 as IF+OF1 and misclassifies 23.38% IF2
as IF+OF1. As shown in Fig. 18(b), DWFA misclassifies 9.49% of IF1
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as IF+OF1 and misclassifies 20.63% of IF2 as IF+OF1. As shown in
Fig. 18(c), FMDAAN-V misclassifies 18.70% of IF+OF1 as IF3 and
misclassifies 4.90% of OF2 as OF1. As shown in Fig. 18(d), LQKF
misclassifies 13.16% of IF2 as IF1 and misclassifies 3.95% of IF2 as
IF+OF1. As shown in Figs. 18(e), 18(f), and 18(g), AFTBL, MSSA, and
RDFTL have slight misclassifications, e.g., AFTBL misclassifies 4.65% of
OF2 as OF1, MSSA misclassifies 4.17% of IF+OF1 as IF3, and RDFTL
misclassifies 2.61% of OF2 as OF1. This is because IF1, IF2, IF3, and
IF+OF1 contain the fault features of the inner-race, which increases
the difficulty of distinguishing between IF1, IF2, IF3 and IF+OF1. Both
OF1 and OF2 are the outer-race faults and have the same damage
degree, and the difference between them is only that they have different
damage modes, thus it is difficult to distinguish between OF1 and
OF2. The results indicate that the proposed RDFTL method can still
accurately distinguish the fault categories with slight differences under
the protection of data privacy.
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Fig. 18. Confusion matrices of different fault diagnosis methods under the task T8.
Table 9
Description of the dataset used under cross-device scenarios.

Health condition Number of samples Label

CWRU PU

N 1200 1200 0
IF 1200 1200 1
OF 1200 1200 2

4.4.2. RMFD under cross-device scenarios
To verify the effectiveness of the proposed RDFTL method for RMFD

under cross-device scenarios, the normal condition samples, inner-
race fault samples, and outer-race fault samples of the CWRU and PU
bearing datasets under different working conditions are selected to
carry out the experiment, as shown in Table 9. Six cross-device RMFD
tasks are designed, as shown in Table 10. Under the tasks T9, T10, and
T11, the three source domains come from CWRU, and the target domain
comes from PU. Under the tasks T12, T13, and T14, the three source
domains come from PU and the target domain comes from CWRU.

Table 11 presents the accuracies achieved with different fault di-
agnosis methods under cross-device scenarios. As shown in Table 11,
the average diagnosis accuracy achieved by RDFTL under the three
cross-device RMFD tasks from CWRU to PU is 82.10%, and the average
diagnosis accuracy achieved by RDFTL under the three cross-device
RMFD tasks from PU to CWRU is 94.41%, which indicates that the
15
Table 10
Description of the cross-device RMFD tasks.

Task name Source client #1 Source client #2 Source client #3 Target client

T9 A1 A2 A3 B1
T10 A1 A2 A3 B2
T11 A1 A2 A3 B3
T12 B1 B2 B3 A1
T13 B1 B2 B3 A2
T14 B1 B2 B3 A3

proposed RDFTL method also has excellent diagnosis performance in
the cross-device RMFD. In this experiment, the real damage data of
PU are selected, while only artificial damage data are provided by
CWRU, which means that PU as the source domain can provide richer
fault information than CWRU as the source domain. Therefore, the
better diagnosis performance is achieved when using PU as the source
domain.

As can be seen from Table 11, under these six cross-device RMFD
tasks, the average diagnosis accuracy of RDFTL reaches 88.26%, which
is higher than that of the other FTL methods. Under the cross-device
scenarios, the distribution discrepancies between the data provided by
different clients are usually significant, which greatly increases the
difficulty of domain adaptation and is more likely to cause negative
transfer in model aggregation. Since RDFTL considers both marginal
distribution alignment and conditional distribution alignment, which



Knowledge-Based Systems 284 (2024) 111288L. Wan et al.
Table 11
Accuracies achieved with different fault diagnosis methods under cross-device scenarios.

Task FTLDAN [19] (2022) DWFA [23] (2022) FMDAAN-V [21] (2023) LQKF [25] (2023) AFTBL [22] (2023) MSSA [10] (2022) RDFTL

T9 57.28 ± 2.12 68.15 ± 2.32 75.25 ± 1.84 79.87 ± 0.88 76.30 ± 1.17 79.23 ± 0.66 77.14 ± 0.55
T10 62.54 ± 1.89 71.00 ± 1.76 79.56 ± 0.82 83.36 ± 0.77 82.56 ± 0.71 89.34 ± 0.41 86.95 ± 0.21
T11 61.12 ± 1.56 75.30 ± 1.21 75.63 ± 1.13 79.20 ± 1.23 80.54 ± 0.42 86.24 ± 0.62 82.22 ± 0.32
Avg. 60.31 71.48 76.81 80.81 79.80 84.94 82.10
T12 72.84 ± 1.08 79.52 ± 0.67 86.85 ± 0.33 91.76 ± 0.65 92.27 ± 0.58 96.25 ± 0.08 93.91 ± 0.11
T13 81.60 ± 0.89 86.25 ± 0.52 91.23 ± 0.25 91.28 ± 0.31 89.46 ± 1.14 91.75 ± 0.15 93.75 ± 0.23
T14 70.69 ± 1.41 78.82 ± 0.32 85.34 ± 0.56 92.10 ± 0.47 92.14 ± 0.72 93.20 ± 0.21 95.58 ± 0.19
Avg. 75.04 81.53 87.81 91.71 91.29 93.73 94.41
Total avg. 67.68 76.51 82.31 86.26 85.55 89.34 88.26
Fig. 19. Impact of changes in the value of parameter 𝛼 on the diagnosis accuracy.

can greatly reduce the inter-domain distribution discrepancies, thereby
effectively improving the diagnosis performance of the local models.
The aggregation weights have a more significant impact on the di-
agnosis performance of the global model in the cross-device RMFD.
RDFTL can still reasonably evaluate the aggregation weights under the
cross-device scenarios, which can effectively reduce negative transfer,
thereby improving the diagnosis performance of the global model.
Under cross-working condition scenarios, AFTBL outperforms LQKF.
However, LQKF exhibits better average diagnosis accuracy than AFTBL
under cross-device scenarios, as shown in Table 11. This may be be-
cause there is a greater likelihood of encountering source domains with
significant distribution discrepancies from the target domain under
cross-device scenarios, leading to a higher incidence of low-quality
local models. The FedAvg strategy adopted by AFTBL cannot filter out
low-quality local models in model aggregation, and may even cause
serious negative transfer. This once again demonstrates the importance
of the aggregation strategy in FTL. Compared with MSSA without
considering data privacy, the average diagnosis accuracy achieved by
RDFTL under the six cross-device RMFD tasks is only 1.07% lower, and
RDFTL outperforms MSSA under the tasks T13 and T14. This is because
the source domains with low-quality data are more likely to appear in
the cross-device RMFD scenarios. In this case, directly using all domains
for centralized training may reduce the diagnosis accuracy. A lower
aggregation weight is assigned to a low-quality local model in the
model aggregation process of RDFTL, which can effectively alleviate the
negative impact of low-quality data, thereby obtaining better diagnosis
performance.

4.5. Parameter sensitivity analysis

To evaluate the contributions of the global domain alignment and
the sub-domain alignment to domain adaptation, a series of experi-
ments are conducted on the eight RMFD tasks through adjusting the
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values of parameters 𝛼 and 𝛽 in Eq. (9). The diagnosis accuracies are
recorded as the values of 𝛼 and 𝛽 vary from 0 to 1, where 𝛼 represents
the weight of the global domain alignment, 𝛽 indicates the weight of
the sub-domain alignment, and 𝛽 = 1 − 𝛼. Fig. 19 shows the impact
of changes in the value of parameter 𝛼 on the diagnosis accuracy. For
the four cross-working RMFD tasks of T3, T4, T7, and T8, the range
of 𝛼 corresponding to the optimal diagnosis accuracy of each task is in
[0.6, 0.7]. The diagnosis accuracies outside this range have declined,
but it is not significant. For the four cross-working RMFD tasks of
T10, T11, T13, and T14, the range of 𝛼 corresponding to the optimal
diagnosis accuracy of each task is also in [0.6, 0.7]. However, different
from the cross-working condition scenarios, the diagnosis accuracies
obtained under the cross-device scenarios are sensitive to the change
of parameters. This is because the feature distributions under the cross-
device scenarios are more complex and diverse than that under the
cross-working condition scenarios, which leads to more dependence on
appropriate parameter settings to obtain better diagnosis performance
under the cross-device scenarios. Overall, when 𝛼 is set to approx-
imately 0.65, the diagnosis accuracies gained under different RMFD
tasks are relatively excellent and stable.

The effect of the proposed MPDDA strategy is affected by the
adjustable parameters 𝜂 and 𝜑. To evaluate the contributions of the
MK-MMD distance, domain discrimination deviation, and their corre-
sponding variances to MPDDA strategy, the diagnosis accuracies are
recorded as the values of 𝜂 and 𝜑 vary from 0 to 1, as shown in
Fig. 20. 𝜂 and 1 − 𝜂 represent the weight of MK-MMD distance and
that of the domain discrimination deviation, respectively. 𝜑 and 1 − 𝜑
represent the weight of the variance of MK-MMD distance and that of
the variance of the domain discrimination deviation, respectively. The
grid-search method is adopted for finding the optimal combination of
𝜂 and 𝜑 from 𝜂 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and
𝜑 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Fig. 20 shows the
impact of different combinations of parameters 𝜂 and 𝜑 on the diagnosis
accuracy. As seen in Fig. 20, the diagnosis accuracies are not ideal and
fluctuate greatly when the values of 𝜂 and 𝜑 are quite extreme. The
diagnosis accuracies related to 𝜑 significantly improve when the value
of 𝜂 is in [0.6, 0.8]. Similarly, the diagnostic accuracies related to 𝜂
also significantly improve when the value of 𝜑 is in [0.2, 0.4]. Overall,
when 𝜂 and 𝜑 are set to approximately 0.7 and 0.3 respectively, the
accuracy reaches its optimal value.

5. Conclusions

In this paper, an RDFTL method for intelligent fault diagnosis is
proposed, which can obtain a cross-domain fault diagnosis model with
excellent performance in RMFD with data privacy at a fast training
speed. Firstly, unlike the traditional FTL methods based on client–
server architecture, a ring-based decentralized federated transfer learn-
ing framework is adopted in the proposed method, which effectively
reduces the communication overhead. Secondly, an asynchronous do-
main adaptation strategy is used in the proposed method, which ef-
fectively avoids idle waiting between clients and reduces additional
communication overhead. Thirdly, a multi-perspective distribution dis-
crepancy aggregation strategy is employed in the proposed method,
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Fig. 20. Impact of different combinations of parameters 𝜂 and 𝜑 on the diagnosis accuracy.
which effectively alleviates the negative transfer caused by model
aggregation, thereby improving the diagnosis performance of the global
model. Finally, the effectiveness of the proposed method is verified by
a series of experiments. Compared with the traditional FTL method
based on client–server architecture, the computation time and com-
munication time of the proposed method are reduced by 30.92% and
58.77% respectively, and the overall training efficiency of the proposed
method is improved by 44.09%. The average diagnosis accuracies
obtained with the proposed method reach 99.34% and 88.26% under
the cross-working condition RMFD tasks and the cross-device RMFD
tasks, respectively.

In industrial applications, the bearing fault data provided by dif-
ferent clients may have different label spaces. In future research, a
method that can effectively solve the heterogeneity of label spaces will
be explored, so that RDFTL can be better applied in practical fault
diagnosis.
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