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The main contributions of the paper are summarized as follows. We take an analytical 
approach in the sense that the quality of service and the price of service as well as 
the revenue, cost, and profit of a cloud service provider (CSP) can all be quantitatively 
available based on well established analytical models. We argue that the satisfaction of a 
customer includes two aspects, i.e., satisfaction on the price of service and satisfaction on 
the quality of service. We are able to derive a closed-form expression of the expected 
customer satisfaction of a CSP. We develop a non-cooperative game formulation for a 
competitive cloud computing market with competing CSPs. We discuss the market stability 
mechanism which creates interaction among the CSPs, give the best response of a CSP 
based on the other CSPs’ strategies, mention the existence of the Nash equilibrium, and 
develop an algorithm to find the Nash equilibrium.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Cloud computing has created new business models [53], with various cloud service delivery models such as 
infrastructure-as-a-service, platform-as-a-service, software-as-a-service, storage-as-a-service, database-as-a-service, security-
as-a-service, communication-as-a-service, integration-as-a-service, testing-as-a-service, process-as-a-service, and so on [13]. 
It is not a secret that cloud computing has the potential to be one of today’s biggest business opportunities for cloud service 
providers throughout the world [8]. According to Gartner, the worldwide public cloud services market is projected to grow 
from USD 182.4 billion in 2018 to USD 331.2 billion in 2022, attaining a compound annual growth rate (CAGR) of 16% 
[16]. In another report, the global cloud computing market size is expected to grow from USD 272.0 billion in 2018 to USD 
623.3 billion by 2023, at a CAGR of 18% during the forecast period [43]. 74% of Tech Chief Financial Officers (CFOs) have 
said that cloud computing will have the most measurable impact on their business, higher than Internet of things, artificial 
intelligence, 3D printing, virtual reality, and blockchain [9].

Like all businesses, cloud computing has competitive markets with competing cloud service providers. From the eco-
nomics point of view,1 a competitive cloud computing market is an imperfectly competitive market, where all the cloud 
service providers can set service prices or take other actions,2 as opposed to a perfectly competitive market, where every 
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participant is a passive price taker, i.e., no participant has the market power to set prices.3 In particular, a competitive cloud 
computing market takes the form of oligopoly (from Greek oλιγ oζ (oligos, meaning “few”) and πωλειν (polein, meaning 
“to sell”)) [15,36], which is a market form wherein a market or industry is dominated by a small number of oligopolists 
(e.g., cloud service providers/sellers).4 There are two to ten firms competing on the basis of service quality, service price, 
technological innovations, and reputation. Each oligopolist (i.e., a cloud service provider) is so large that its actions affect 
market conditions, i.e., each oligopolist is a proactive price setter or action taker. With just a few opponents, each oligopolist 
is aware of the actions of the others. The decisions of one company influence other companies and are influenced by deci-
sions of other companies. Strategic planning by oligopolists needs to take into account the likely responses of other market 
participants.

The purpose of the oligopolists is to maximize their profits (i.e., revenue minus cost). The profit of a cloud service 
provider is determined by its share of market, revenue of business, and cost of operation. A cloud service provider should 
take an appropriate action to maximize its profit. Notice that the market share is actually determined by the cloud service 
consumers/buyers, who choose the cloud service provider that has the highest customer satisfaction, which depends on 
quality of service and price of service, two most important considerations of cloud service customers [47]. Therefore, an 
action taken by a cloud service provider (e.g., increasing or decreasing the number of servers, the speed of servers, and the 
charge of services) will change its quality of service, price of service, and customer satisfaction, which causes some cloud 
service users to re-consider their cloud service providers. The flow of users in a competitive cloud computing market results 
in re-distribution of market share among the competing cloud service providers, whose revenue and profit will be changed 
accordingly. Eventually, the market becomes stable, i.e., all the cloud service providers have the same customer satisfaction, 
and no consumer wants to change his cloud service provider anymore. A cloud service provider should take the best action 
to make the most profit from a stable market. However, since each cloud service provider is making his best effort, the 
ultimate profit of a cloud service provider in a competitive cloud computing market becomes an interesting question.

Due to the competitive nature of cloud service providers, the most effective way to study an oligopoly market is to treat 
the market as a non-cooperative game involving two or more selfish players, each attempts to maximize his own profit 
and payoff. The competition of the oligopolists eventually reaches a Nash equilibrium. If each player has decided a strategy 
and no player can benefit by changing his strategy while other players keep their strategies unchanged, then the current 
set of strategies and the corresponding payoffs reach a Nash equilibrium.5 The Nash equilibrium is one of the fundamental 
concepts in game theory. The Nash equilibrium concept can be used to analyze the outcome of the strategic interaction 
of several decision makers. In other words, it provides an effective way to predict what will happen if several competing 
cloud service providers are making decisions at the same time to maximize their profits, where the best action for a cloud 
service provider to take depends on the actions of the others. A fundamental difficulty in analyzing the Nash equilibrium 
of a competitive cloud computing market is that the interaction among the competing cloud service providers is achieved 
by floating cloud service consumers who are looking for the best cloud service provider. These cloud service customers will 
stabilize the market by making all cloud service providers equally preferred. Therefore, the action of a cloud service provider 
depends on the actions of the others in an analytically very obscure and mysterious way.

1.2. Key contributions

While profit maximization of cloud service providers has been studied extensively in the literature (see Section 2), there 
has been little analytical investigation of the profits of competing cloud service providers in a competitive cloud computing 
market. The motivation of this paper is to make some efforts in this direction. The main contributions of the paper are 
summarized as follows.

• First, as a unique feature of our study, we take an analytical approach in the sense that the quality of service and the 
price of service as well as the revenue, cost, and profit of a cloud service provider can all be quantitatively available 
based on well established analytical models (i.e., multiserver model, power consumption models, and profit model).

• Second, we argue that the satisfaction of a customer includes two aspects, i.e., satisfaction on the price of service 
and satisfaction on the quality of service. We are able to derive a closed-form expression of the expected customer 
satisfaction of a cloud service provider, which gives a solid foundation for our further discussion.

• Third, we develop a non-cooperative game formulation for a competitive cloud computing market with competing 
cloud service providers. We discuss the market stability mechanism which creates interaction among the cloud service 
providers, give the best response of a cloud service provider based on the other cloud service providers’ strategies, 
mention the existence of the Nash equilibrium, and develop an algorithm to find the Nash equilibrium.

To the best of the author’s knowledge, there has been no such analytical study on the profits of competing cloud service 
providers in a competitive cloud computing market in the existing literature. Our investigation in this paper has made 
significant contributions in this direction.

3 https://en .wikipedia .org /wiki /Perfect _competition.
4 https://en .wikipedia .org /wiki /Oligopoly.
5 https://en .wikipedia .org /wiki /Nash _equilibrium.
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Table 0
Summary of related research.

Research aspect Related reference

Comprehensive survey [5,11,12,25,54]

Profit maximization for service providers [3,7,19,26,35,42,51]

Profit maximization using dynamic pricing [10,48,52,55,58–60]

Various queueing models [1,14,21,38–40]

Profit maximization with other issues [6,17,24,37]

Profit maximization for geo-distributed data centers [18,22,33,41,44,49,57]

Competitive cloud computing market [15,20,30,50]

The rest of the paper is organized as follows. In Section 2, we review related research in profit maximization of cloud 
service providers. In Section 3, we present the preliminaries, including a multiserver model, two power consumption models, 
and a profit model. In Section 4, we discuss customer satisfaction by quantitatively defining the concept and analytically 
calculating the expected customer satisfaction. In Section 5, we study the non-cooperative game for competing cloud service 
providers, discuss the market stability mechanism, give the best response of a cloud service provider, mention the existence 
of the Nash equilibrium, and develop an algorithm to find the Nash equilibrium. In Section 6, we demonstrate numerical 
examples for Nash equilibrium. In Section 7, we conclude the paper.

2. Related research

While substantial research is currently taking place in the technology-related issues of cloud computing, there is an 
equally urgent need for understanding the business-related issues surrounding cloud computing. Cloud computing eco-
nomics, e.g., pricing strategies and profit maximization for cloud service providers, has been listed in the top of a suggested 
research agenda [34]. The reader is referred to [5,11,12,25,54] for recent comprehensive surveys. Table 0 gives a summary 
of related research.

Profit maximization for service providers has been extensively studied in recent years. Chaisiri et al. proposed a stochastic 
programming model for a cloud provider to find an optimal computing resources subscription plan which maximizes the 
profit under uncertain customer demand [3]. Chiang and Ouyang proposed an optimal profit control policy which allows 
a cloud provider to make the optimal decision in the number of servers and system capacity, so as to maximize profit 
[7]. Goudarzi and Pedram presented a distributed solution to an SLA-based resource allocation problem (which determines 
the profit) by performing optimizations in three dimensions of processing, storage, and communication [19]. Lee et al. 
developed two sets of service request scheduling algorithms attempting to maximize profit within the satisfactory level 
of service quality specified by service consumers [26]. Mazzucco and Dyachuk addressed the problem of maximizing the 
revenues of cloud providers by trimming down their electricity costs and dynamically powering servers on and off [35]. Ren 
and van der Schaar proposed a joint optimization of scheduling and pricing decisions for delay-tolerant batch services to 
maximize a service provider’s long-term profit [42]. Tsakalozos et al. employed microeconomics to direct the allotment of 
cloud resources for a cloud administration to maximize per-user financial profit [51].

Profit maximization using dynamic pricing has been considered by several researchers. Cong et al. and Wang et al. 
developed a dynamic pricing strategy based on the customer perceived value [10,52]. Thanakornworakij et al. proposed 
an economic model for cloud service providers to maximize profit based on right pricing and rightsizing in the cloud 
data centers [48]. Xu and Li adopted a market-driven dynamic pricing mechanism to maximize the expected long-term 
revenue [55]. Zhao et al. designed an efficient online algorithm for dynamic pricing of VM resources across datacenters in 
a geo-distributed cloud to maximize the profit of a cloud provider over a long run [58]. Zheng and Veeravalli considered 
a joint treatment of load balancing and pricing, studied the relationship between price, load, and revenue, and found that 
there exists an optimal price which maximizes the revenue [59]. Attempting to dynamically adjust the virtual resource 
rental strategy according to price distribution and task urgency, Zhou et al. introduced a dynamic virtual resource renting 
approach [60].

Various queueing models have been employed for studying profit maximization. Cao et al. studied the problem of optimal 
multiserver configuration for profit maximization in a cloud computing environment [1]. Feng et al. addressed the problem 
of maximizing a provider’s revenue through SLA-based dynamic resource allocation, formalized the resource allocation prob-
lem using queuing theory, and proposed optimal solutions considering pricing mechanisms, arrival rates, service rates, and 
available resources [14]. Jaiganesh et al. proposed a priority based queuing model to evaluate the services leased by a cloud 
service provider, which schedules services to result in maximum profit [21]. Mei et al. addressed a fund-constrained profit 
maximization problem, i.e., for a service provider to select appropriate application domains for investment and to allocate 
the available funding, such that the total profit is maximized [38]. Mei et al. also defined and solved the virtual machine 
configuring and pricing problem which is an optimization problem to maximize the profit of a cloud broker [39]. Mei et al. 
further considered profit maximization with guaranteed quality of service in cloud computing [40].

Profit maximization has been discussed together with other issues, e.g., customer satisfaction and energy efficiency. 
Chen et al. investigated the interaction of service profit and customer satisfaction, and presented two scheduling algorithms 
that can effectively bid for different types of VM instances to make tradeoffs between profit and customer satisfaction [6]. 
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Ghamkhari and Mohsenian-Rad proposed a novel optimization-based profit maximization strategy for green data centers, 
taking into account service-level agreements and availability of local renewable power generation at data centers [17]. Aim-
ing at achieving the minimum service delay while taking into account a provider’s profit, Koutsandria et al. investigated the 
problem of efficient resource allocation strategies for time-varying traffic, and also proposed an energy-efficient approach 
for CPU-intensive tasks in cloud systems [24]. Mei et al. considered customer-satisfaction-aware optimal multiserver config-
uration for profit maximization in cloud computing by incorporating the impact of customer satisfaction on profit into their 
model [37].

Profit maximization for geo-distributed data centers has also been investigated extensively. Goiri et al. presented ways 
for a provider to enhance its profit in cloud federation [18]. Jing et al. proposed a customer satisfaction-aware algorithm 
based on ant-colony optimization for geo-distributed data centers, by formulating profit maximization as an optimization 
problem under customer satisfaction and data center constraints [22]. Liu et al. proposed an energy-efficient, profit- and 
cost-aware request dispatching and resource allocation algorithm to maximize the net profit of a cloud service provider 
operating geographically distributed data centers [33]. Patel and Sarje proposed an algorithm for VM provisioning in a 
federated cloud environment, attempting to improve a cloud provider’s profit [41]. Roh et al. formulated a problem for 
cloud service providers owning multiple geo-distributed clouds to decide their computing resource prices as a game of 
resource pricing [44]. Toosi et al. proposed policies that help in the decision-making process to enhance profit, utilization, 
and QoS in a cloud federation environment [49]. Yang et al. proposed and developed a business-oriented federated cloud 
computing model to maximize customer satisfaction, business benefits, and resources usage [57].

Several researchers have considered a competitive cloud computing market with competing cloud service providers. Feng 
et al. conducted an in-depth game theoretic study of a competition market with multiple competing cloud providers [15]. 
Hu et al. proposed a price bidding mechanism for multi-attribute cloud-computing resource provision from the perspective 
of a non-cooperative game [20]. Liu et al. focused on request migration strategies among multiple servers for load balancing 
and considered the problem from a game theoretic perspective [30]. Truong-Huu and Tham formulated the competition 
among cloud providers as a non-cooperative stochastic game [50]. The game theory approach has also been applied to 
study various other aspects of cloud computing [2,27,29,31,32,56].

As mentioned earlier, there has been little analytical investigation of the profits of competing cloud service providers in 
a competitive cloud computing market using a game theoretic approach.

3. The preliminaries

In this section, we present our multiserver model, power consumption models, and profit model. (The material in this 
section is essentially from [1] and included here for the sake of completeness.) A summary of notations and definitions is 
given in the appendix.

3.1. A multiserver model

By using a multiserver system, a cloud service provider (CSP) can process users’ service requests. Such a multiserver 
system can be implemented by various architectures, such as blade servers and blade centers where each server is a server 
blade, clusters of traditional servers where each server is an ordinary processor, and multicore server processors where 
each server is a single core. These blades, processors, and cores are all called servers. In a cloud computing environment, 
when a cloud service provider receives service requests (i.e., applications and tasks) submitted by users (i.e., customers and 
consumers of cloud computing), the cloud service provider serves the requests (i.e., runs the applications and performs the 
tasks) on its multiserver system and returns the required results.

Assume that there are n competing cloud service providers 1, 2, ..., n in the market, who operate n heterogeneous 
multiserver systems with different sizes, speeds, power consumption models, workloads, performance, revenues, costs, and 
profits. The multiserver system of the ith cloud service provider (CSPi ) has mi identical servers, where mi is the size 
of the system. We treat a multiserver system as an M/M/m queueing system with the following standard assumptions. 
(1) Service requests arrive according to a Poisson stream with arrival rate λi (measured by the number of arrival tasks 
per unit of time, e.g., second), i.e., the inter-arrival times are independent and identically distributed (i.i.d.) exponential 
random variables with mean 1/λi . (2) There is a queue with infinite capacity for waiting tasks when all the mi servers are 
busy, which adopts the first-come-first-served (FCFS) queueing discipline. (3) The task execution requirements (measured 
by the number of processor cycles or the number of billion instructions to be executed) are i.i.d. exponential random 
variables r with mean r̄. (4) The mi servers of the ith cloud service provider have identical execution speed si (measured 
by GHz or the number of billion instructions that can be executed in one second). Hence, the task execution times on the 
servers of the ith cloud service provider are i.i.d. exponential random variables xi = r/si with mean x̄i = r̄/si (measured by 
seconds).

Based on the above assumptions, we know that the average service rate (i.e., the average number of service requests that 
can be finished by a server in one second) of the ith cloud service provider is μi = 1/x̄i = si/r̄. The server utilization (i.e., 
the average percentage of time that a server is busy) of the ith cloud service provider is ρi = λi/miμi = λi x̄i/mi = λi r̄/mi si . 
Let pi,k denote the probability that there are k service requests (waiting or being processed) in the M/M/m queueing system 
for the ith cloud service provider. From the classic queueing theory, we have ([23], p. 102)
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pi,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pi,0
(miρi)

k

k! , k ≤ mi;

pi,0
mmi

i ρk
i

mi ! , k ≥ mi;
where

pi,0 =
⎛
⎝mi−1∑

k=0

(miρi)
k

k! + (miρi)
mi

mi ! · 1

1 − ρi

⎞
⎠

−1

.

The probability of queueing (i.e., the probability that a newly submitted service request must wait because all servers are 
busy) is

Pq,i =
∞∑

k=mi

pi,k = pi,mi

1 − ρi
= pi,0

(miρi)
mi

mi ! · 1

1 − ρi
.

3.2. Power consumption models

It is well known that power dissipation and circuit delay in digital CMOS circuits can be accurately modeled by simple 
equations, even for complex microprocessor circuits. Power consumption in CMOS circuits have several components, includ-
ing dynamic, static, and short-circuit power dissipation. However, in a well designed circuit, the dominant component is 
dynamic power consumption Pi (i.e., the switching component of power) of the multiserver system of the ith cloud service 
provider, which is approximately Pi = ai Ci V 2

i f i , where ai is an activity factor, Ci is the loading capacitance, V i is the supply 
voltage, and f i is the clock frequency [4]. In the ideal case, the supply voltage and the clock frequency are related in such 
a way that V i ∝ f φi

i for some constant φi > 0. The server execution speed si is usually linearly proportional to the clock 
frequency, namely, si ∝ f i . For ease of modeling, it is assumed that V i = bi f φi

i and si = ci f i , where bi and ci are some 
constants. Hence, we know that the dynamic power consumption is Pi = ξi s

αi
i , where ξi = aib

2
i Ci/c2φi+1

i and αi = 2φi + 1. 
We use P∗

i to represent base power consumption of the multiserver system of the ith cloud service provider, which includes 
static power dissipation, short circuit power dissipation, and other leakage and wasted power [28].

Two types of server speed and power consumption models will be considered in this paper.

• In the idle-speed model, we have Pi = λi r̄ξi s
αi−1
i + mi P∗

i .
• In the constant-speed model, we have Pi = mi(ξi s

αi
i + P∗

i ).

3.3. A profit model

The service charge to a service request is determined by multiple factors, including the amount of a service (reflected by 
the parameter r), the service level agreement (reflected by the parameter ci), the expectation and satisfaction of a consumer 
(reflected by the parameter s0,i ), the quality of a service (reflected by the parameter Ti ), the penalty of a low quality service 
(reflected by the parameter di ), and a service provider’s margin and profit (reflected by the parameter ai ). The ith cloud 
service provider chooses s0,i (the baseline speed of CSPi ), ai (the service charge per unit amount of service of CSPi ), ci (a 
parameter indicating the service level agreement of CSPi ), and di (a parameter indicating the degree of penalty of breaking 
the service level agreement of CSPi ).

The service charge function for a service request processed by the ith cloud service provider with execution requirement 
r and response time Ti is defined as follows:

Ci(r, Ti) =

⎧⎪⎪⎨
⎪⎪⎩

air, if 0 ≤ Ti ≤ (ci/s0,i)r;
air − di(Ti − (ci/s0,i)r), if (ci/s0,i)r < Ti ≤ (ai/di + ci/s0,i)r;
0, if Ti > (ai/di + ci/s0,i)r.

The above service charge function is illustrated in Fig. 1, whose rationals can be found in [1].
It is clear that Ci(r, Ti) is a random variable, since both r and Ti are random variables. It has been proven in [1] that the 

expected charge to a service request processed by the ith cloud service provider is

C i = Ci(r, Ti) = air̄

(
1 − Pq,i

((mi si − λi r̄)(ci/s0,i − 1/si) + 1)((mi si − λi r̄)(ai/di + ci/s0,i − 1/si) + 1)

)
,

where Pq,i = pi,m /(1 − ρi) and pi,m = pi,0(miρi)
mi /mi !.
i i

134



K. Li Journal of Computer and System Sciences 117 (2021) 130–153
Fig. 1. The service charge function.

Since in a stable M/M/m queueing system, the number of service requests processed by the ith cloud service provider in 
one unit of time is λi , the expected service charge in one unit of time is λi C i , which is actually the expected revenue created 
by the multiserver system of the ith cloud service provider in one unit of time. Assume that the cost of infrastructure 
facilities (e.g., initial acquisition and installation, long-term maintenance, and building, manpower, rental cost of the ith 
cloud service provider) of one server is βi cents per unit of time, and that the cost of energy consumption is γi cents per 
Watt and per unit of time. (Note: The monetary unit “cent” in this paper is not identical to the real cent in US dollars. 
A reasonable estimate is that “cent” is at the scale of 10−4 US cents and 10−6 US dollars.) The cost of the multiserver 
system of the ith cloud service provider is the sum of the infrastructure cost and the energy cost, i.e., βimi +γi P i . Then, the 
expected net business gain (i.e., the profit) of the ith cloud service provider in one unit of time is Gi = λi C i − (βimi + γi P i), 
which is defined as the revenue minus the cost. The above equation is Gi = λi C i − (βimi + γi(λi r̄ξi s

αi−1
i + mi P∗

i )) for the 
idle-speed model, and Gi = λi C i − (βimi + γimi(ξi s

αi
i + P∗

i )) for the constant-speed model.
To summarize, the ith cloud service provider is characterized by the following parameters, i.e., workload: λi ; system: mi , 

si , ξi , αi , P∗
i ; charge: s0,i , ai , ci , di ; cost: βi , γi .

4. Customer satisfaction

4.1. Definition

The satisfaction Si of a customer with a service request r of the ith cloud service provider includes two aspects, i.e., 
satisfaction S p,i on the price of service and satisfaction Sq,i on the quality of service. All satisfaction metrics should be 
normalized in the range [0, 1].

• The satisfaction S p,i on the price of service is defined as S p,i = e−ηp,i Ci , where Ci is the service charge, and ηp,i is a 
scaling factor. It is clear that as in all businesses, for a cloud consumer, the highest satisfaction on the price of service 
is achieved when the price of a service is zero, i.e., free. The higher the price Ci , the lower the satisfaction S p,i . Since 
Ci ∈ [0, ∞), we have S p,i ∈ (0, 1].

• The satisfaction Sq,i on the quality of service is defined as Sq,i = e−ηq,i T i , where Ti is the response time for a service 
request, and ηq,i is a scaling factor. It is clear that for a cloud customer, the highest satisfaction on the quality of service 
is achieved when the response time is zero, i.e., no delay. The longer the time Ti , the lower the quality, and the lower 
the satisfaction Sq,i . Since Ti ∈ (0, ∞), we have Sq,i ∈ (0, 1).

The satisfaction Si of a customer is defined as the product of S p,i and Sq,i , i.e., Si = S p,i Sq,i = e−(ηp,i Ci+ηq,i T i) . It is clear 
that Si ∈ (0, 1). The two scaling factors ηp,i and ηq,i are introduced to adapt the effect of Ci and Ti . Since S p,i and Sq,i
are combined using multiplication, ηp,i and ηq,i are not used to balance S p,i and Sq,i and not to prevent one of them from 
dominating the other as using addition.

Notice that the service charge function for a service request processed on the ith cloud service provider can also be 
defined in terms of the execution requirement r and waiting time W i as follows:

Ci(r, W i) =

⎧⎪⎪⎨
⎪⎪⎩

air, if 0 ≤ W i ≤ (ci/s0,i − 1/si)r;
(ai + cidi/s0,i − di/si)r − di W i, if (ci/s0,i − 1/si)r < W i ≤ (ai/di + ci/s0,i − 1/si)r;
0, if W i > (ai/di + ci/s0,i − 1/si)r.

The response time Ti can also be represented in terms of r and W i , i.e., Ti(r, W i) = W i + r/si . Therefore, S p,i , Sq,i , and Si

are all functions of r and W i , and in particular, we have Si(r, W i) = e−(ηp,i Ci(r,W i)+ηq,i T i(r,W i)) , which can be rewritten as:
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Si(r, W i) =⎧⎪⎪⎨
⎪⎪⎩

e−(ηp,iair+ηq,i(W i+r/si)), if 0 ≤ W i ≤ (ci/s0,i − 1/si)r;
e−(ηp,i((ai+cidi/s0,i−di/si)r−di W i)+ηq,i(W i+r/si)), if (ci/s0,i − 1/si)r < W i ≤ (ai/di + ci/s0,i − 1/si)r;
e−ηq,i(W i+r/si), if W i > (ai/di + ci/s0,i − 1/si)r.

Since both r and W i are random variables, Si = Si(r, W i) is also a random variable. We are interested in its expectation, 
i.e., Si . In the following, we calculate Si .

4.2. Derivation

In this section, we derive a closed-form expression of the expected customer satisfaction of a cloud service provider.
We define a unit impulse function uz(t) as follows [1]:

uz(t) =

⎧⎪⎨
⎪⎩

z, 0 ≤ t ≤ 1

z
;

0, t >
1

z
.

Let z → ∞ and define u(t) = lim
z→∞ uz(t). It has been proved in [1] that the pdf of the waiting time W i of a newly arrived 

service request is

f W i (t) = (1 − Pq,i)u(t) + miμi pi,mi e
−(1−ρi)miμi t, 0 ≤ t < ∞,

where Pq,i = pi,mi /(1 − ρi) and pi,mi = pi,0(miρi)
mi /mi !.

The expected satisfaction Si(r) of a customer with a service request r is

Si(r) = Si(r, W i)

=
∞∫

0

f W i (t)Si(r, t)dt

=
∞∫

0

(
(1 − Pq,i)u(t) + miμi pi,mi e

−(1−ρi)miμi t
)

Si(r, t)dt

= (1 − Pq,i)

∞∫
0

u(t)Si(r, t)dt + miμi pi,mi

∞∫
0

e−(1−ρi)miμi t Si(r, t)dt

= (1 − Pq,i)e−(ηp,iai+ηq,i/si)r + miμi pi,mi

( (ci/s0,i−1/si)r∫
0

e−(1−ρi)miμi t Si(r, t)dt

+
(ai/di+ci/s0,i−1/si)r∫

(ci/s0,i−1/si)r

e−(1−ρi)miμi t Si(r, t)dt +
∞∫

(ai/di+ci/s0,i−1/si)r

e−(1−ρi)miμi t Si(r, t)dt

)

= (1 − Pq,i)e−(ηp,iai+ηq,i/si)r + miμi pi,mi

( (ci/s0,i−1/si)r∫
0

e−(1−ρi)miμi te−(ηp,iair+ηq,i(t+r/si))dt

+
(ai/di+ci/s0,i−1/si)r∫

(ci/s0,i−1/si)r

e−(1−ρi)miμi te−(ηp,i((ai+cidi/s0,i−di/si)r−dit)+ηq,i(t+r/si))dt

+
∞∫

(ai/di+ci/s0,i−1/si)r

e−(1−ρi)miμi te−ηq,i(t+r/si)dt

)

= (1 − Pq,i)e−(ηp,iai+ηq,i/si)r + miμi pi,mi

(
e−(ηp,iai+ηq,i/si)r

(ci/s0,i−1/si)r∫
e−((1−ρi)miμi+ηq,i)tdt
0
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+e−(ηp,i(ai+cidi/s0,i−di/si)+ηq,i/si)r

(ai/di+ci/s0,i−1/si)r∫
(ci/s0,i−1/si)r

e−((1−ρi)miμi−ηp,idi+ηq,i)tdt

+e−(ηq,i/si)r

∞∫
(ai/di+ci/s0,i−1/si)r

e−((1−ρi)miμi+ηq,i)tdt

)

= (1 − Pq,i)e−(ηp,iai+ηq,i/si)r + miμi pi,mi

(
e−(ηp,iai+ηq,i/si)r · 1 − e−((1−ρi)miμi+ηq,i)(ci/s0,i−1/si)r

(1 − ρi)miμi + ηq,i

+e−(ηp,i(ai+cidi/s0,i−di/si)+ηq,i/si)r

·e−((1−ρi)miμi−ηp,idi+ηq,i)(ci/s0,i−1/si)r − e−((1−ρi)miμi−ηp,idi+ηq,i)(ai/di+ci/s0,i−1/si)r

(1 − ρi)miμi − ηp,idi + ηq,i

+e−(ηq,i/si)r · e−((1−ρi)miμi+ηq,i)(ai/di+ci/s0,i−1/si)r

(1 − ρi)miμi + ηq,i

)

= (1 − Pq,i)e−(ηp,iai+ηq,i/si)r + miμi pi,mi

(
e−(ηp,iai+ηq,i/si)r − e−((1−ρi)miμi(ci/s0,i−1/si)+ηp,iai+ηq,i ci/s0,i)r

(1 − ρi)miμi + ηq,i

+e−((1−ρi)miμi(ci/s0,i−1/si)+ηp,iai+ηq,i ci/s0,i)r − e−((1−ρi)miμi(ai/di+ci/s0,i−1/si)+ηq,i(ai/di+ci/s0,i))r

(1 − ρi)miμi − ηp,idi + ηq,i

+e−((1−ρi)miμi(ai/di+ci/s0,i−1/si)+ηq,i(ai/di+ci/s0,i))r

(1 − ρi)miμi + ηq,i

)
.

To finish the computation, we notice that the pdf of task execution requirement r is

fr(z) = 1

r̄
e−z/r̄, 0 ≤ z < ∞.

Hence, the expected customer satisfaction of the ith cloud service provider is

Si = Si(r)

=
∞∫

0

fr(z)Si(z)dz

= 1

r̄

∞∫
0

e−z/r̄

(
(1 − Pq,i)e−(ηp,iai+ηq,i/si)z

+miμi pi,mi

(
e−(ηp,iai+ηq,i/si)z − e−((1−ρi)miμi(ci/s0,i−1/si)+ηp,iai+ηq,i ci/s0,i)z

(1 − ρi)miμi + ηq,i

+e−((1−ρi)miμi(ci/s0,i−1/si)+ηp,iai+ηq,i ci/s0,i)z − e−((1−ρi)miμi(ai/di+ci/s0,i−1/si)+ηq,i(ai/di+ci/s0,i))z

(1 − ρi)miμi − ηp,idi + ηq,i

+e−((1−ρi)miμi(ai/di+ci/s0,i−1/si)+ηq,i(ai/di+ci/s0,i))z

(1 − ρi)miμi + ηq,i

))
dz

= 1

r̄

∞∫
0

(
(1 − Pq,i)e−(ηp,iai+ηq,i/si+1/r̄)z

+miμi pi,mi

(
e−(ηp,iai+ηq,i/si+1/r̄)z − e−((1−ρi)miμi(ci/s0,i−1/si)+ηp,iai+ηq,i ci/s0,i+1/r̄)z

(1 − ρi)miμi + ηq,i

+e−((1−ρi)miμi(ci/s0,i−1/si)+ηp,iai+ηq,i ci/s0,i+1/r̄)z − e−((1−ρi)miμi(ai/di+ci/s0,i−1/si)+ηq,i(ai/di+ci/s0,i)+1/r̄)z

(1 − ρ )m μ − η d + η
i i i p,i i q,i
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Fig. 2. The expected customer satisfaction Si vs. task arrival rate λi .

+e−((1−ρi)miμi(ai/di+ci/s0,i−1/si)+ηq,i(ai/di+ci/s0,i)+1/r̄)z

(1 − ρi)miμi + ηq,i

))
dz

= 1

r̄

(
1 − Pq,i

ηp,iai + ηq,i/si + 1/r̄
+ miμi pi,mi

(
1

(1 − ρi)miμi + ηq,i

(
1

ηp,iai + ηq,i/si + 1/r̄
− 1

(1 − ρi)miμi(ci/s0,i − 1/si) + ηp,iai + ηq,ici/s0,i + 1/r̄

)

+ 1

(1 − ρi)miμi − ηp,idi + ηq,i

(
1

(1 − ρi)miμi(ci/s0,i − 1/si) + ηp,iai + ηq,ici/s0,i + 1/r̄

− 1

(1 − ρi)miμi(ai/di + ci/s0,i − 1/si) + ηq,i(ai/di + ci/s0,i) + 1/r̄

)

+ 1

(1 − ρi)miμi + ηq,i
· 1

(1 − ρi)miμi(ai/di + ci/s0,i − 1/si) + ηq,i(ai/di + ci/s0,i) + 1/r̄

))
.

4.3. Data

Consider a cloud service provider whose multiserver system has the following parameter setting: λi = 8.0, r̄ = 1.0, mi =
7, si = 1.5, ξi = 4.0, αi = 3.0, P∗

i = 6.5, s0,i = 1.0, ai = 10.0, ci = 3.0, di = 1.0, βi = 1.5, γi = 0.075, ηp,i = 1.0, ηq,i = 2.0.
In Fig. 2, we show the expected customer satisfaction Si (actually, φSi for φ = 10) as a function of task arrival rate λi . It 

is observed that Si is a decreasing function of λi . When λi = 0, which implies that Pq,i = pi,m = 0, Si achieves its highest 
value 1/r̄(ηp,iai + ηq,i/si + 1/r̄). The reason is that the multiserver system is idle and the waiting time is W i = 0. Thus, 
we have Si(r) = e−(ηp,iai+ηq,i/si)r , and Si = Si(r) = 1/r̄(ηp,iai + ηq,i/si + 1/r̄). As λi approaches its upper limit mi si/r̄, Pq,i

approaches 1, pi,m approaches 0, and Si approaches 0. The reason is that the multiserver system becomes saturated and the 
response time Ti approaches infinity. Thus, Sq,i and Si approach 0, even though the service is free and S p,i = 1.

In Fig. 3, we show the expected customer satisfaction Si as a function of server speed si . It is observed that Si is an 
increasing function of si . When si approaches its lower limit λi r̄/mi , Pq,i approaches 1, pi,m approaches 0, and Si approaches 
0. As si increases, both Pq,i and pi,m approach 0, and Si approaches its highest value 1/r̄(ηp,iai + 1/r̄).

In Fig. 4, we show the expected customer satisfaction Si as a function of server size mi . It is observed that Si is an in-
creasing function of mi . When mi approaches its lower limit λi r̄/si , Pq,i approaches 1, pi,m approaches 0, and Si approaches 
0. As mi increases, both Pq,i and pi,m approach 0, and Si approaches its highest value 1/r̄(ηp,iai + ηq,i/si + 1/r̄).

In Fig. 5, we show the expected customer satisfaction Si as a function of service charge ai . It is observed that Si is a 
decreasing function of ai . Notice that ai only affects S p,i , which is a decreasing function of ai .
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Fig. 3. The expected customer satisfaction Si vs. server speed si .

Fig. 4. The expected customer satisfaction Si vs. server size mi .

5. A non-cooperative game formulation

In this section, we present the non-cooperative game for competing cloud service providers, discuss the market stability 
mechanism which creates interaction among the cloud service providers, give the best response of a cloud service provider 
based on the other cloud service providers’ strategies, mention the existence of the Nash equilibrium, and develop an 
algorithm to find the Nash equilibrium.

5.1. Description of the game

Assume that we have a cloud service market M = (λ, ̄r), specified by its consumer service demand, which is char-
acterized by a Poisson stream of service requests with arrival rate λ and the task execution requirements that are i.i.d. 
exponential random variables r with mean r̄. Each customer submits his/her service request to the ith cloud service provider 
with probability ψi , where ψ1 + ψ2 + · · · + ψn = 1. We say that ψi is the market share of the ith cloud service provider, 
and (λ1, λ2, ..., λn) is a workload distribution of λ on the n cloud service providers, where λi = ψiλ, for all 1 ≤ i ≤ n. Sev-
eral competing cloud service providers, each trying to maximize its profit from the market M , can be formulated as a 
non-cooperative game specified by a tuple (N , A , O, G ), where the components of the game are explained as follows.
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Fig. 5. The expected customer satisfaction Si vs. service charge ai .

Fig. 6. A workload distribution (λ1, λ2, ..., λn) determined by an action profile (x1, x2, ..., xn) and the common expected customer satisfaction S such that 
S1 = S2 = · · · = Sn = S .

• N = {CSP1, CSP2, ..., CSPn} is a set of n competing cloud service providers (or players), where CSPi = (λi, mi, si, ξi, αi, P∗
i ,

s0,i, ai, ci, di, βi, γi, ηp,i, ηq,i), for all 1 ≤ i ≤ n.
• A = A1 × A2 × · · · × An is a set of action profiles of the n cloud service providers. An action profile (x1, x2, ..., xn) ∈

A specifies the actions (or strategies) taken by the CSPs. An action xi ∈ Ai of CSPi is an action to change one of 
its parameters, i.e., mi, si, s0,i, ai, ci, di, ηp,i, ηq,i , which affect the expected customer satisfaction Si . For instances, in 
a server speed game, we have xi = si and si ∈ [s′

i, s
′′
i ], where s′

i > λi r̄/mi . In a server size game, we have xi = mi and 
mi ∈ {m′

i, m
′
i + 1, ..., m′′

i }, where m′
i ≥ 
λi r̄/si� + 1. In a service charge function game, we have xi = ai and ai ∈ [a′

i, a
′′
i ].

• O = {(λ1, λ2, ..., λn) | λ1 + λ2 + · · · + λn = λ} is a set of outcomes, where each outcome (λ1, λ2, ..., λn) is a workload 
distribution of λ on the n CSPs as a result of an action profile (x1, x2, ..., xn) (see Fig. 6). An outcome (λ1, λ2, ..., λn) is 
determined in such a way that all the n CSPs have the same expected customer satisfaction, i.e., S1 = S2 = · · · = Sn . 
Notice that λi = λi(x1, x2, ..., xn) is a function of the action profile (x1, x2, ..., xn), for all 1 ≤ i ≤ n.

• G = (G1, G2, ..., Gn) gives the net profits or business gains (i.e., utility or payoff ) of the n CSPs. Notice that Gi(λi) is a 
function of λi , which in turn, is a function of the action profile (x1, x2, ..., xn). Hence, Gi(x1, x2, ..., xn) is also a function 
of the action profile (x1, x2, ..., xn), for all 1 ≤ i ≤ n.

Notice that the n CSPs are not independent of each other. They interact with each other through a market stabilization 
mechanism, which determines the workload distribution and market shares of all CSPs. Any action taken by any CSP will 
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Fig. 7. The process of a non-cooperative game for profit maximization of competing cloud service providers in a competitive cloud computing market.

affect the profits of all CSPs. While a CSP may maximize its profit based on its current workload, it is the profit after market 
stabilization that is the real profit.

Fig. 7 shows the process of a non-cooperative game for profit maximization of competing cloud service providers in a 
competitive cloud computing market. The game is played in such a way that the players (i.e., the CSPs) repeatedly adjust 
their strategies to maximize their payoffs (i.e., profits) until no player wants to make further change in his action (i.e., a 
stable situation, or a Nash equilibrium, is reached).

5.2. Market stability

We say that a market is stable if all n the competing CSPs have the same expected customer satisfaction, i.e., S1 = S2 =
· · · = Sn . An action of any CSPi , i.e., change of a parameter which affects the expected customer satisfaction Si , disturbs a 
stable market, since Si is either increased or decreased, and no longer the same as the expected customer satisfaction of 
other CSPs. In an unstable market, consumers will move around and change their CSPs, typically move from a CSP with 
lower expected customer satisfaction to a CSP with higher expected customer satisfaction. Such movement of consumers 
results in a re-distribution (λ1, λ2, ..., λn) of the workload λ, which changes the expected customer satisfaction values of 
all CSPs. Eventually, the market becomes stable again, i.e., all the n competing CSPs have the same expected customer 
satisfaction again.

Given n competing CSPs, the stable market share and workload distribution can be obtained by the classic bisection 
method, as shown in Algorithms 1 and 2.

In Algorithm 1, given an action profile x = (x1, x2, ..., xn) ∈ A , we find a workload distribution (λ1, λ2, ..., λn), and the 
common expected customer satisfaction S such that S1 = S2 = · · · = Sn = S . The algorithm uses the standard bisection 
method based on the fact that λ1 + λ2 + · · · + λn is a decreasing function of S .

In Algorithm 2, for a given S , we find λi such that Si = S , for all 1 ≤ i ≤ n. This is done based on the fact that Si is a 
decreasing function of λi . The obtained λi ’s are then used to confirm the condition λ1 +λ2 +· · ·+λn = λ. A bisection search 
is completed when the search interval is sufficiently small (e.g., less than 10−10).

5.3. Best response of a cloud service provider

Let x = (x1, x2, ..., xn) ∈ A be a vector which denotes an action profile, where xi ∈ Ai is a variable. We use the notation 
x−i = (x1, ..., xi−1, xi+1, ..., xn) to denote the vector of all players’ variables except that of CSPi . The objective of CSPi , given 
the other CSPs’ strategies x−i , is to choose xi ∈ Ai , such that his profit Gi(xi, x−i) is maximized.
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Algorithm 1: Stabilizing market.

Input: M = (λ, ̄r), N = {CSP1, CSP2, ..., CSPn}, and an action profile x = (x1, x2, ..., xn) ∈ A .

Output: A workload distribution (λ1, λ2, ..., λn), such that S1 = S2 = · · · = Sn .

Initialize the search interval of S to be (0, 1); (1)

while (the length of the search interval is not less than ε) do (2)

S ← the middle point of the search interval; (3)

for i ← 1 to n do (4)

Obtain λi by using algorithm Finding λi with parameters CSPi and S; (5)

end do; (6)

if (λ1 + λ2 + · · · + λn < λ) then (7)

Change the search interval to the left half; (8)

else (9)

Change the search interval to the right half; (10)

end if (11)

end do; (12)

S ← the middle point of the search interval; (13)

for i ← 1 to n do (14)

Obtain λi by using algorithm Finding λi ; (15)

end do; (16)

return (λ1, λ2, ..., λn). (17)

Algorithm 2: Finding λi .

Input: CSPi and S .

Output: λi such that Si = S .

Initialize the search interval of λi to be [0, mi si/r̄]; (1)

while (the length of the search interval is not less than ε) do (2)

λi ← the middle point of the search interval; (3)

Calculate Si ; (4)

if (Si < S) then (5)

Change the search interval to the left half; (6)

else (7)

Change the search interval to the right half; (8)

end if (9)

end do; (10)

λi ← the middle point of the search interval; (11)

return λi . (12)

When xi changes, it results in a new stable market, where all the n competing CSPs have the same expected customer 
satisfaction S , which can be viewed as a function S(xi) of xi . The value of S then determines a workload distribution 
(λ1, λ2, ..., λn), and in particular, λi can be viewed as a function λi(S) of S . The value of λi finally decides the profit Gi of 
CSPi , and Gi can be viewed as a function Gi(λi) of λi . Therefore, we have Gi = Gi(λi, xi) = Gi(λi(S), xi) = Gi(λi(S(xi)), xi), 
i.e., Gi can be viewed as a function Gi(xi) of xi .

Essentially, we need to find xi such that ∂Gi(xi)/∂xi = 0. Notice that ∂Gi(xi)/∂xi involves ∂Gi/∂λi , ∂λi/∂ S , and ∂ S/∂xi . 
The main challenge here is that there is no explicit closed-form expressions for the two functions λi(S) and S(xi). From 
an implicit equation Si(λi) = S , where Si is viewed as a function of λi , we still cannot derive ∂λi/∂ S , because a closed-

form expression for Si
−1

(S), i.e., the inverse function to find λi for a given S , is not available. Although from the condition 
λ1 + λ2 + · · · + λn = λ and the implicit equation

S1
−1

(S) + S2
−1

(S) + · · · + Sn
−1

(S) = λ,

we can find S for a given xi numerically, there is no way to find ∂ S/∂xi , since no closed-form expression for S(xi) is 
available.

Our algorithm for the best response of a cloud service provider is given in Algorithm 3. We consider the case when Ai
(i.e., the set of actions for CSPi ) is discrete. The algorithm finds xi such that Gi(xi) is maximized, i.e., Gi(xi) = max

x∈Ai

(Gi(x)). 

This can be realized by traversing through the discrete set Ai . As mentioned above, the best response of CSPi with continu-
ous Ai remains unknown and needs further investigation.
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Algorithm 3: Finding xi (best response of CSPi with discrete Ai ).

Input: M = (λ, ̄r), N = {CSP1, CSP2, ..., CSPn}, an action profile x = (x1, x2, ..., xn) ∈ A , index i.
Output: xi such that Gi(xi) is maximized, i.e., Gi(xi) = max

x∈Ai

(Gi(x)).

Gopt ← 0; (1)

for (each x ∈ Ai ) do (2)

Find λi by using algorithm Stabilizing Market with parameters M , N , and x′ = (x, x−i); (3)

Calculate Gi(x); (4)

if (Gi(x) > Gopt) then (5)

xi ← x; (6)

end if (7)

end do; (8)

return xi . (9)

Algorithm 4: Calculating the Nash equilibrium.

Input: M = (λ, ̄r) and N = {CSP1, CSP2, ..., CSPn}.

Output: The Nash equilibrium x∗ = (x∗
1, x∗

2, ..., x∗
n).

Initialize x = (x1, x2, ..., xn) to some appropriate vector; (1)

repeat (2)

for i ← 1 to n do (3)

Obtain x′
i by using algorithm Finding xi (4)

with parameters M , N , x′ = (x′
1, ..., x′

i−1, xi , xi+1, ..., xn), and i; (5)

end do; (6)

x′ ← (x′
1, x′

2, ..., x′
n); (7)

if (x′ = x) then (8)

x ← x′; (9)

else (10)

x∗ ← x′; (11)

return x∗; (12)

end if (13)

forever. (14)

Fig. 8. The net profit G4 vs. server speed s4.
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Fig. 9. The net profit G4 vs. server size m4.

Fig. 10. The net profit G4 vs. service charge a4.

5.4. Existence of the Nash equilibrium

A (pure strategy) Nash equilibrium is a vector x∗ = (x∗
1, x

∗
2, ..., x

∗
n), which satisfies

Gi(x∗
i ,x∗

−i) ≥ Gi(xi,x∗
−i), for all xi ∈ Ai, and for all 1 ≤ i ≤ n.

In words, a Nash equilibrium is a strategy profile x∗ with the property that no single CSPi can benefit from a unilateral 
deviation from x∗

i , if all the other CSPs act according to it.
The most important issues of a non-cooperative game are an analytical issue, i.e., the existence (and even uniqueness) of 

the Nash equilibrium, and an algorithmic issue, i.e., the convergence of an iterative best-response-based algorithm.
Let F : A →Rn be a mapping:

F(x) = (∂G1(x)/∂x1, ∂G2(x)/∂x2, ..., ∂Gn(x)/∂xn).

The following result is from [45,46].

Theorem 1. If A ⊆ Rn is convex and compact (closed and bounded), and Gi(x) is continuously differentiable in x and Gi(xi, x−i) is 
concave (i.e., Fi(x) = ∂Gi(x)/∂xi) is monotonically decreasing) in xi for each fixed x−i , then there exists a Nash equilibrium.
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Table 1
Numerical data for server speed games (idle-speed model).

λ i si λi ρi Gi Si

110.0 (K = 3) 0 2.9000000 8.7315368 0.7527187 40.8442682 0.0762419

1 3.0000000 11.4801553 0.7653437 58.9096495 0.0762419

2 3.2000000 14.8072000 0.7712083 80.3391048 0.0762419

3 3.4000000 18.2485643 0.7667464 105.2204328 0.0762419

4 3.4000000 20.1472353 0.7407072 130.3913777 0.0762419

5 3.4000000 21.0179009 0.6868595 149.8457008 0.0762419

6 3.4000000 15.5674075 0.4578649 115.0168093 0.0762419

120.0 (K = 3) 0 2.8000000 8.5369234 0.7622253 41.7016273 0.0744834

1 3.0000000 11.7072667 0.7804844 60.2445561 0.0744834

2 3.2000000 15.1374011 0.7884063 82.3702053 0.0744834

3 3.4000000 18.7468872 0.7876843 108.4519440 0.0744834

4 3.4000000 20.9375105 0.7697614 136.1217168 0.0744834

5 3.4000000 22.5073927 0.7355357 161.7645600 0.0744834

6 3.4000000 22.4266184 0.6596064 174.9383532 0.0744834

130.0 (K = 3) 0 2.8000000 8.9233550 0.7967281 43.8685149 0.0695847

1 3.0000000 12.2429875 0.8161992 63.3670231 0.0695847

2 3.1000000 15.3275995 0.8240645 86.7123267 0.0695847

3 3.3000000 19.1572602 0.8293186 114.8960883 0.0695847

4 3.4000000 22.4721504 0.8261820 147.2033236 0.0695847

5 3.4000000 24.9090313 0.8140206 180.9307203 0.0695847

6 3.4000000 26.9676161 0.7931652 214.5500318 0.0695847

140.0 (K = 3) 0 2.8000000 9.4884616 0.8471841 46.9378245 0.0604284

1 2.9000000 12.5145783 0.8630744 67.4800316 0.0604284

2 3.1000000 16.2865848 0.8756228 92.6084699 0.0604284

3 3.3000000 20.4202840 0.8839950 123.0958580 0.0604284

4 3.4000000 24.1349204 0.8873132 158.9827292 0.0604284

5 3.4000000 27.1224438 0.8863544 198.3426532 0.0604284

6 3.4000000 30.0327271 0.8833155 241.0151475 0.0604284

150.0 (K = 3) 0 2.7000000 9.8929962 0.9160182 50.4005616 0.0414223

1 2.9000000 13.4725855 0.9291438 72.0750859 0.0414223

2 3.1000000 17.4528549 0.9383255 98.4725600 0.0414223

3 3.3000000 21.8318029 0.9450997 130.6529385 0.0414223

4 3.4000000 25.8204802 0.9492824 169.0278883 0.0414223

5 3.4000000 29.1181028 0.9515720 211.8859647 0.0414223

6 3.4000000 32.4111774 0.9532699 259.1463947 0.0414223

The convexity and compactness of A is clear, since each Ai is an interval. The main analytical difficulty of our game 
is due to the market stability mechanism, i.e., a workload distribution (λ1, λ2, ..., λn), which results in the same expected 
customer satisfaction S satisfying

S1
−1

(S) + S2
−1

(S) + · · · + Sn
−1

(S) = λ.

Although Gi(x) is analytically not available, the continuous differentiability of Gi(x) should not be a problem. The reason is 
that Si(λi), although very complicated, is a continuous function. The concavity of Gi(xi, x−i) (whose analytical form is not 
available) can be illustrated by numerical examples.

Consider a cloud service market M = (λ, ̄r), with λ = 60 and r̄ = 1. There are n = 7 cloud service providers, where 
CSPi has mi = 3 + i, si = 1.1 + 0.1i, ξi = 3.2 + 0.2i, αi = 3.4 − 0.1i, P∗

i = 4.5 + 0.5i, s0,i = 1.0, ai = 8.0 + 0.5i, ci = 3.0, 
di = 0.6 + 0.1i, βi = 1.5, γi = 0.075, ηp,i = 1, ηq,i = 2, for all 1 ≤ i ≤ n.

In Fig. 8, we show the net profit G4 as a function of server speed s4, for both idle-speed model and constant-speed 
model.

In Fig. 9, we show the net profit G4 as a function of server size m4, for both idle-speed model and constant-speed model.
In Fig. 10, we show the net profit G4 as a function of service charge a4, for both idle-speed model and constant-speed 

model.
From Figs. 8–10, we observe that as xi (i.e., si , mi , and ai ) increases, Gi is a concave function of xi . Such concavity can be 

explained as follows. For Figs. 8–9, when the server speed (size, respectively) is too low (small, respectively), the response 
time will be very long, which leads to low satisfaction on the quality of service, low customer satisfaction, light workload, 
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Table 2
Numerical data for server speed games (constant-speed model).

λ i si λi ρi Gi Si

110.0 (K = 3) 0 2.6000000 7.9087990 0.7604614 35.7211541 0.0735022

1 2.7000000 10.4715781 0.7756724 52.1461436 0.0735022

2 2.9000000 13.6669256 0.7854555 71.6296263 0.0735022

3 3.0000000 16.4387423 0.7827973 93.6791942 0.0735022

4 3.2000000 19.8539530 0.7755450 118.6860447 0.0735022

5 3.3000000 22.3230123 0.7516166 142.8851955 0.0735022

6 2.9000000 19.3369897 0.6667927 140.2268513 0.0735022

120.0 (K = 2) 0 2.6000000 8.1702010 0.7855962 37.8968179 0.0700138

1 2.7000000 10.8278420 0.8020624 55.2987844 0.0700138

2 2.9000000 14.1640928 0.8140283 76.2930250 0.0700138

3 3.0000000 17.1346889 0.8159376 100.5766641 0.0700138

4 3.2000000 20.8811874 0.8156714 129.4100236 0.0700138

5 3.3000000 23.9233543 0.8055001 160.4317672 0.0700138

6 3.2000000 24.8986337 0.7780823 185.5232594 0.0700138

130.0 (K = 2) 0 2.6000000 8.5279306 0.8199933 40.8368441 0.0643938

1 2.7000000 11.2982726 0.8369091 59.4128039 0.0643938

2 2.9000000 14.7927081 0.8501556 82.1276673 0.0643938

3 3.0000000 17.9670285 0.8555728 108.7517816 0.0643938

4 3.2000000 22.0203293 0.8601691 141.2148045 0.0643938

5 3.4000000 26.3573242 0.8613505 179.7163252 0.0643938

6 3.4000000 29.0364066 0.8540120 218.7726667 0.0643938

140.0 (K = 3) 0 2.6000000 9.0795308 0.8730318 45.1763980 0.0531795

1 2.7000000 11.9898079 0.8881339 65.2067150 0.0531795

2 2.9000000 15.6675539 0.9004341 89.9264587 0.0531795

3 3.1000000 19.7300845 0.9092205 119.9266014 0.0531795

4 3.3000000 24.1721132 0.9156103 156.2840465 0.0531795

5 3.4000000 28.1123912 0.9187056 198.3162207 0.0531795

6 3.4000000 31.2485183 0.9190741 243.4833860 0.0531795

150.0 (K = 3) 0 2.6000000 9.7010278 0.9327911 48.8764199 0.0348202

1 2.8000000 13.2146110 0.9439008 70.1546493 0.0348202

2 3.0000000 17.1308001 0.9517111 96.0951374 0.0348202

3 3.2000000 21.4483048 0.9575136 127.7202034 0.0348202

4 3.4000000 26.1662353 0.9619939 166.2466975 0.0348202

5 3.4000000 29.5020654 0.9641198 209.4477416 0.0348202

6 3.4000000 32.8369556 0.9657928 257.1498553 0.0348202

low revenue, and low profit. On the other hand, when the server speed (size, respectively) is too high (large, respectively), 
the cost of energy consumption (the cost of infrastructure facilities, respectively) will increase dramatically, which leads 
to low profit. Therefore, there must be an optimal choice of the server speed (size, respectively), which maximizes the 
profit. For Fig. 10, when the service charge is too cheap, the revenue as well as the profit will be low. On the other hand, 
when the service charge is too expensive, the satisfaction on the price of service will be low, which leads to low customer 
satisfaction, light workload, low revenue, and low profit. Therefore, there must be an optimal choice of the service charge, 
which maximizes the profit.

5.5. An algorithm to find the Nash equilibrium

Now, we are ready to present our algorithm to find the Nash equilibrium of the non-cooperative game.
Algorithm 4 executes in iterations. In each repetition, every cloud service provider finds its best response to the current 

market by using Algorithm 3. The algorithm completes when the action profiles of two successive repetitions are identical. 
The final converged action profile x∗ = (x∗

1, x
∗
2, ..., x

∗
n) is considered as the Nash equilibrium, i.e., a strategy profile x∗ with 

the property that no single CSPi can get higher profit by a unilateral deviation from x∗
i , if all the other CSPs keep their 

actions unchanged.
Our numerical examples in the next section demonstrate that the above iterative best-response-based algorithm con-

verges very soon in just a few rounds.
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Table 3
Numerical data for server size games (idle-speed model).

λ i mi λi ρi Gi Si

110.0 (K = 2) 0 20 37.5407990 0.8532000 222.8245121 0.0866674

1 20 37.4928218 0.8150613 235.8914060 0.0866674

2 20 34.9663792 0.7284662 230.5208550 0.0866674

3 1 0.0000000 0.0000000 -1.9875000 —

4 1 0.0000000 0.0000000 -2.0250000 —

5 1 0.0000000 0.0000000 -2.0625000 —

6 1 0.0000000 0.0000000 -2.1000000 —

120.0 (K = 2) 0 20 38.2045328 0.8682848 227.3981315 0.0846704

1 20 38.6445170 0.8400982 244.2890126 0.0846704

2 20 37.9203932 0.7900082 253.2747341 0.0846704

3 7 5.2305570 0.2988890 28.5857128 0.0846704

4 1 0.0000000 0.0000000 -2.0250000 —

5 1 0.0000000 0.0000000 -2.0625000 —

6 1 0.0000000 0.0000000 -2.1000000 —

130.0 (K = 2) 0 20 38.2497401 0.8693123 227.7091738 0.0845190

1 20 38.7185454 0.8417075 244.8282565 0.0845190

2 20 38.0749608 0.7932283 254.4646503 0.0845190

3 12 14.9567538 0.4985585 97.6731935 0.0845190

4 1 0.0000000 0.0000000 -2.0250000 —

5 1 0.0000000 0.0000000 -2.0625000 —

6 1 0.0000000 0.0000000 -2.1000000 —

140.0 (K = 2) 0 20 38.2612587 0.8695741 227.7884149 0.0844801

1 20 38.7373292 0.8421159 244.9650704 0.0844801

2 20 38.1137310 0.7940361 254.7631012 0.0844801

3 17 24.8876811 0.5855925 168.4241996 0.0844801

4 1 0.0000000 0.0000000 -2.0250000 —

5 1 0.0000000 0.0000000 -2.0625000 —

6 1 0.0000000 0.0000000 -2.1000000 —

150.0 (K = 2) 0 20 38.3977234 0.8726755 228.7268423 0.0840082

1 20 38.9575267 0.8469028 246.5684852 0.0840082

2 20 38.5556781 0.8032433 258.1646807 0.0840082

3 20 34.0890717 0.6817814 237.2207003 0.0840082

4 1 0.0000000 0.0000000 -2.0250000 —

5 1 0.0000000 0.0000000 -2.0625000 —

6 1 0.0000000 0.0000000 -2.1000000 —

6. Numerical examples

In this section, we demonstrate numerical examples for Nash equilibrium.
Consider a cloud service market M = (λ, ̄r), with and r̄ = 1. There are n = 7 cloud service providers, where CSPi has 

mi = 3 + i, si = 2.1 + 0.1i, ξi = 3.2 + 0.2i, αi = 3.4 − 0.1i, P∗
i = 4.5 + 0.5i, s0,i = 1.0, ai = 8.0 + 0.5i, ci = 3.0, di = 0.6 + 0.1i, 

βi = 1.5, γi = 0.075, ηp,i = 1, ηq,i = 2, for all 1 ≤ i ≤ n.
Let Si

∗ = 1/r̄(ηp,iai + ηq,i/si + 1/r̄) be the highest expected customer satisfaction of CSPi . It is clear that due to het-
erogeneity of cloud service providers, the n CSPs have different values of the Si

∗
’s. Without loss of generality, let us 

assume that S1
∗ ≥ S2

∗ ≥ · · · ≥ Sn
∗

. A key observation is that if λ is too small, it is not possible to find a workload dis-
tribution (λ1, λ2, ..., λn), such that S1 = S2 = · · · = Sn = S . The reason is that the last condition implies that S ≤ Sn

∗
, and 

λi = Si
−1

(S) ≥ Si
−1

(Sn
∗
), and

λ =
n∑

i=1

λi ≥
n∑

i=1

Si
−1

(Sn
∗
).

If the above condition is not satisfied, i.e.,

λ <

n∑
Si

−1
(Sn

∗
),
i=1
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Table 4
Numerical data for server size games (constant-speed model).

λ i mi λi ρi Gi Si

110.0 (K = 2) 0 20 37.5407990 0.8532000 212.7252151 0.0866674

1 20 37.4928218 0.8150613 221.5381466 0.0866674

2 20 34.9663792 0.7284662 207.1672704 0.0866674

3 1 0.0000000 0.0000000 -6.6750000 —

4 1 0.0000000 0.0000000 -7.0569146 —

5 1 0.0000000 0.0000000 -7.3876578 —

6 1 0.0000000 0.0000000 -7.6609089 —

120.0 (K = 2) 0 20 38.3577999 0.8717682 219.6304981 0.0841483

1 20 38.8935450 0.8455118 234.1127029 0.0841483

2 20 38.4295455 0.8006155 240.0456639 0.0841483

3 5 4.3191097 0.3455288 9.8154498 0.0841483

4 1 0.0000000 0.0000000 -7.0569146 —

5 1 0.0000000 0.0000000 -7.3876578 —

6 1 0.0000000 0.0000000 -7.6609089 —

130.0 (K = 2) 0 20 38.4374599 0.8735786 220.3026446 0.0838669

1 20 39.0208595 0.8482796 235.2543412 0.0838669

2 20 38.6788122 0.8058086 242.4105740 0.0838669

3 10 13.8628684 0.5545147 71.8765313 0.0838669

4 1 0.0000000 0.0000000 -7.0569146 —

5 1 0.0000000 0.0000000 -7.3876578 —

6 1 0.0000000 0.0000000 -7.6609089 —

140.0 (K = 2) 0 20 38.4281335 0.8733667 220.2239637 0.0839002

1 20 39.0060257 0.8479571 235.1213405 0.0839002

2 20 38.6501212 0.8052109 242.1383868 0.0839002

3 15 23.9157196 0.6377525 139.0293256 0.0839002

4 1 0.0000000 0.0000000 -7.0569146 —

5 1 0.0000000 0.0000000 -7.3876578 —

6 1 0.0000000 0.0000000 -7.6609089 —

150.0 (K = 2) 0 20 38.5140226 0.8753187 220.9484170 0.0835897

1 20 39.1419293 0.8509115 236.3397119 0.0835897

2 20 38.9097054 0.8106189 244.6008428 0.0835897

3 19 33.4343427 0.7038809 207.5131447 0.0835897

4 1 0.0000000 0.0000000 -7.0569146 —

5 1 0.0000000 0.0000000 -7.3876578 —

6 1 0.0000000 0.0000000 -7.6609089 —

then, not all CSPs can be involved in market stability, and some CSPs must be left out. In general, let us define

λ∗
i =

i∑
j=1

S j
−1

(Si
∗
),

for all 1 ≤ i ≤ n. Also, noticing that λi < mi si/r̄, we define

λ∗
n+1 =

n∑
i=1

mi si

r̄

to be the maximum value of λ. It is clear that 0 = λ∗
1 ≤ λ∗

2 ≤ · · · ≤ λ∗
n < λ∗

n+1. If λ∗
k ≤ λ < λ∗

k+1 for some k, where 1 ≤ k ≤ n, 
then only CSP1, CSP2, ..., CSPk are involved in market stability (i.e., Algorithms 1 and 2), and for CSPk+1, CSPk+2, ..., CSPn , we 
must have λk+1 = λk+2 = · · · = λn = 0.

In Tables 1 and 2, we demonstrate numerical data of server speed games for both idle-speed model and constant-
speed model respectively. Each action si is from the discrete set Ai = {1.0, 1.1, 1.2, 1.3, ..., 3.5}. For λ = 110, 120, ..., 150, 
we show the Nash equilibrium (s∗

1, s∗
2, ..., s

∗
n), the corresponding workload distribution (λ1, λ2, ..., λn), the server utilizations 

ρ1, ρ2, ..., ρn , the balanced expected customer satisfaction S1 = S2 = · · · = Sn , and the profits G1, G2, ..., Gn of all the CSPs. 
It is observed that all CSPs are able to participate in market stabilization (i.e., to achieve the same expected customer 
satisfaction). Larger servers tend to set higher speeds. By doing so, larger servers can attract more consumers and occupy 
larger market share by providing better quality of service. The increased cost of energy consumption can be covered by the 
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Table 5
Numerical data for service charge function games (idle-speed model).

λ i ai λi ρi Gi Si

80.0 (K = 12) 0 3.5000000 5.0211914 0.5705899 2.2092155 0.1678751

1 3.5000000 7.3429953 0.6385213 3.7277767 0.1678751

2 3.5000000 9.9322083 0.6897367 5.2366216 0.1678751

3 4.0000000 9.7592078 0.5576690 6.8214878 0.1678751

4 4.0000000 12.7098419 0.6110501 10.0346180 0.1678751

5 4.0000000 15.9032987 0.6544567 13.6752179 0.1678751

6 4.0000000 19.3312567 0.6904020 17.9191394 0.1678751

90.0 (K = 8) 0 9.0000000 5.5743117 0.6334445 33.9174716 0.0796446

1 9.0000000 7.9349743 0.6899978 48.4137078 0.0796446

2 9.5000000 9.8408769 0.6833942 64.1182641 0.0796446

3 9.5000000 12.6140291 0.7208017 82.2207212 0.0796446

4 9.5000000 15.6224772 0.7510806 101.9167088 0.0796446

5 10.0000000 17.5210261 0.7210299 122.0569434 0.0796446

6 10.0000000 20.8923046 0.7461537 146.3876470 0.0796446

100.0 (K = 4) 0 15.0000000 5.8917928 0.6695219 71.6078666 0.0499211

1 15.0000000 8.2980510 0.7215697 100.8272744 0.0499211

2 15.0000000 10.9478833 0.7602697 132.7937386 0.0499211

3 15.0000000 13.8307587 0.7903291 167.4763804 0.0499211

4 15.0000000 16.9400003 0.8144231 204.9393059 0.0499211

5 15.0000000 20.2710238 0.8341985 245.3063160 0.0499211

6 15.0000000 23.8204901 0.8507318 288.7372253 0.0499211

110.0 (K = 3) 0 15.0000000 6.9386222 0.7884798 85.5015005 0.0417008

1 15.0000000 9.4955072 0.8256963 116.5286405 0.0417008

2 15.0000000 12.2787221 0.8526890 150.0518070 0.0417008

3 15.0000000 15.2817285 0.8732416 186.1080739 0.0417008

4 15.0000000 18.5003323 0.8894391 224.8063553 0.0417008

5 15.0000000 21.9316233 0.9025359 266.3017147 0.0417008

6 15.0000000 25.5734644 0.9133380 310.7762493 0.0417008

120.0 (K = 2) 0 15.0000000 8.1073095 0.9212852 99.3555763 0.0232192

1 15.0000000 10.7752334 0.9369768 130.9748683 0.0232192

2 15.0000000 13.6513625 0.9480113 164.7133981 0.0232192

3 15.0000000 16.7334281 0.9561959 200.6682420 0.0232192

4 15.0000000 20.0199693 0.9624985 238.9843602 0.0232192

5 15.0000000 23.5099772 0.9674888 279.8388111 0.0232192

6 15.0000000 27.2027200 0.9715257 323.4264782 0.0232192

increased revenue, and eventually more profits are made. All CSPs have about the same server utilization and definitely the 
same expected customer satisfaction.

In Tables 3 and 4, we demonstrate numerical data of server size games for both idle-speed model and constant-
speed model respectively. Each action mi is from the discrete set Ai = {1, 2, 3, 4, ..., 20}. For λ = 110, 120, ..., 150, we 
show the Nash equilibrium (m∗

1, m∗
2, ..., m

∗
n), the corresponding workload distribution (λ1, λ2, ..., λn), the server utilizations 

ρ1, ρ2, ..., ρn , the balanced expected customer satisfaction S1 = S2 = · · · = Sn , and the profits G1, G2, ..., Gn of all the CSPs. 
It is observed that smaller servers tend to set their maximum sizes. By doing so, small servers can attract more consumers 
and occupy larger market share by providing better quality of service. Furthermore, the above situation makes larger servers 
unable to participate in market stabilization (i.e., to achieve the same expected customer satisfaction), and eventually decide 
to set their server sizes to 1 (i.e., to quit the market) to minimize business loss.

In Tables 5 and 6, we demonstrate numerical data of service charge function games for both idle-speed model 
and constant-speed model respectively. Each action ai is from the discrete set Ai = {1.0, 1.5, 2.0, 2.5, ..., 15.0}. For 
λ = 80, 90, ..., 120, we show the Nash equilibrium (a∗

1, a∗
2, ..., a

∗
n), the corresponding workload distribution (λ1, λ2, ..., λn), 

the server utilizations ρ1, ρ2, ..., ρn , the balanced expected customer satisfaction S1 = S2 = · · · = Sn , and the profits 
G1, G2, ..., Gn of all the CSPs. It is observed that all CSPs are able to participate in market stabilization (i.e., to achieve 
the same expected customer satisfaction). When λ is low, all CSPs choose small values of ai , i.e., charge less to the cus-
tomers, even to the extent of losing money (i.e., negative profits). As λ increases, all CSPs increase their service charge, even 
to the maximum (i.e., customers can find no cheap service provider). Of course, the balanced expected customer satisfaction 
is reduced.
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Table 6
Numerical data for service charge function games (constant-speed model).

λ i ai λi ρi Gi Si

80.0 (K = 14) 0 1.0000000 2.7673967 0.3144769 -18.4921533 0.3398786

1 1.0000000 5.2702342 0.4582812 -23.6962085 0.3398786

2 1.0000000 7.9976034 0.5553891 -29.5069916 0.3398786

3 1.0000000 10.9654857 0.6265992 -35.7643955 0.3398786

4 1.0000000 14.1664981 0.6810816 -42.2964701 0.3398786

5 1.0000000 17.5931481 0.7239979 -48.9068284 0.3398786

6 1.0000000 21.2396338 0.7585583 -55.3845592 0.3398786

90.0 (K = 16) 0 4.0000000 5.5118903 0.6263512 0.7614224 0.1474484

1 4.0000000 7.8936404 0.6864035 2.5705074 0.1474484

2 4.0000000 10.5294842 0.7312142 4.5633645 0.1474484

3 4.5000000 11.7875524 0.6735744 6.2980426 0.1474484

4 4.5000000 14.7834095 0.7107408 10.0423428 0.1474484

5 4.5000000 18.0158909 0.7413947 14.5471878 0.1474484

6 4.5000000 21.4781324 0.7670762 19.9984028 0.1474484

100.0 (K = 4) 0 14.5000000 6.1058776 0.6938497 67.2017844 0.0500586

1 15.0000000 8.2702873 0.7191554 95.0108391 0.0500586

2 15.0000000 10.9165988 0.7580971 126.1420825 0.0500586

3 15.0000000 13.7962572 0.7883576 160.0830120 0.0500586

4 15.0000000 16.9025272 0.8126215 196.9117395 0.0500586

5 15.0000000 20.2307857 0.8325426 236.7625959 0.0500586

6 15.0000000 23.7776662 0.8492024 279.8015942 0.0500586

110.0 (K = 3) 0 15.0000000 6.9386222 0.7884798 82.5911394 0.0417008

1 15.0000000 9.4955072 0.8256963 113.1466724 0.0417008

2 15.0000000 12.2787221 0.8526890 146.2509106 0.0417008

3 15.0000000 15.2817285 0.8732416 181.9488149 0.0417008

4 15.0000000 18.5003323 0.8894391 220.3556893 0.0417008

5 15.0000000 21.9316233 0.9025359 261.6306111 0.0417008

6 15.0000000 25.5734644 0.9133380 305.9570553 0.0417008

120.0 (K = 2) 0 15.0000000 8.1073095 0.9212852 98.2725186 0.0232192

1 15.0000000 10.7752334 0.9369768 129.7520466 0.0232192

2 15.0000000 13.6513625 0.9480113 163.3719926 0.0232192

3 15.0000000 16.7334281 0.9561959 199.2309197 0.0232192

4 15.0000000 20.0199693 0.9624985 237.4747265 0.0232192

5 15.0000000 23.5099772 0.9674888 278.2806644 0.0232192

6 15.0000000 27.2027200 0.9715257 321.8430492 0.0232192

Finally, we would like to mention the speed of convergence of our iterative best-response-based algorithm. Let K be the 
number of rounds in Algorithm 4. In Tables 1–6, we show K for each case. It is observed that K is very small for all cases 
in Tables 1–4, and no greater than 16 in Tables 5–6.

7. Conclusions

We have made some efforts in conducting analytical study on the profits of competing cloud service providers in a 
competitive cloud computing market using a non-cooperative game approach. The main feature of our game formulation 
is that the interaction among the competing cloud service providers is achieved by cloud service consumers who create 
a stable market where all cloud service providers have the same expected customer satisfaction. Such a feature makes 
the game very difficult to study. Although some results have been achieved, deeper investigation is required for better 
understanding the game.
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Appendix A. Summary of notations and definitions

We give a summary of notations and their definitions in the order introduced in the paper (Table 7).

Table 7
Summary of notations and their definitions.

Notation Definition

Queueing Model

n the number of competing cloud service providers

CSPi the ith cloud service provider

mi the size of CSPi

λi the arrival rate of CSPi

r task execution requirement

si task execution speed of CSPi

xi task execution time of CSPi

μi the average service rate of CSPi

ρi the server utilization of CSPi

pi,k the probability that there are k service requests in CSPi

Pq,i the probability of queueing in CSPi

T i the response time of CSPi

W i the waiting time of CSPi

Power Consumption Models

Pi dynamic power consumption of CSPi

ai an activity factor of CSPi

Ci the loading capacitance of CSPi

V i the supply voltage of CSPi

f i the clock frequency of CSPi

φi V i ∝ f φi
i

bi V i = bi f φi
i

ci si = ci f i

ξi = aib
2
i Ci/c2φi+1

i

αi = 2φi + 1

P∗
i base power consumption of CSPi

Profit Model

Ci the service charge of CSPi given by a service charge function Ci(r, Ti) or Ci(r, W i)

ai the service charge per unit amount of service of CSPi

ci a parameter indicating the service level agreement of CSPi

s0,i a parameter indicating the expectation and satisfaction of a consumer of CSPi

di a parameter indicating the degree of penalty of breaking the service level agreement of CSPi

βi the cost of infrastructure facilities of one server per unit of time in CSPi

γi the cost of energy consumption per Watt and per unit of time in CSPi

Gi the expected net business gain in one unit of time of CSPi

S p,i satisfaction on the price of service, = e−ηp,i Ci with scaling factor ηp,i

Sq,i satisfaction on the quality of service, = e−ηq,i T i with scaling factor ηq,i

Si satisfaction of a customer, = S p,i Sq,i

f Wi the probability density function (pdf) of the waiting time W i

Game Theory

λ the arrival rate of a Poisson stream of service requests

M = (λ, r̄), a cloud service market

ψi the market share of CSPi

N = {CSP1,CSP2, ...,CSPn}, a set of competing cloud service providers

xi an action of CSPi

Ai the set of actions of CSPi

A = A1 × A2 × · · · × An , a set of action profiles of the n cloud service providers

O = {(λ1, λ2, ..., λn) | λ1 + λ2 + · · · + λn = λ}, a set of outcomes

G = (G1, G2, ..., Gn)

K the number of rounds
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