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ABSTRACT
In this paper, we consider non-clairvoyant task offloading for random tasks
in mobile edge computing within the framework of combinatorial opti-
misation. For offline non-clairvoyant task offloading, we propose a non-
clairvoyant task offloading algorithm, which is able to determine a task
offloading strategywithout knowing the amount of computation and com-
munication of any task. For online non-clairvoyant task offloading, we pro-
pose a randomised online task offloading algorithm, which is able to make
an offloading decision for an arrival task without knowing anything about
future tasks and other tasks. For both algorithms, we analyse the probabil-
ity of certain performance guarantee. We also demonstrate numerical data.
To the best of the author’s knowledge, this is the first paper which consid-
ers both offline and online non-clairvoyant task offloading in mobile edge
computing, togetherwith analytical results onperformanceguaranteewith
high probability.
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1. Introduction

1.1. Motivation

Task offloading (i.e. computation offloading) in mobile edge computing has been extensively investi-
gated by many researchers in recent years (see [1–6] for comprehensive surveys). Task offloading has
been studied as a combinatorial optimisation problem, i.e. tominimise the total execution timeof a set
of tasks [7]. In virtually all existing studies, for a single task to be offloaded, it is assumed the amount
of computation and communication of the task is known in advance; for a collection of tasks to be
offloaded, it is assumed that the collection of tasks are all available to a task offloading algorithm.

In real applications, we encounter the following two challenges. The first challenge is that the
amount of computation and communication of a task may not be predictable, due to variable
input/outputdata anduncertain executionpaths. In such a situation, a task offloadingalgorithmneeds
to make an offloading decision without information of the amount of computation and communica-
tion of a task. This is similar to non-clairvoyant task scheduling in parallel and distributed systems [8].
The second challenge is that the information of a set of task may not be entirely available, since tasks
may arrive dynamically at different times. In such a situation, a task offloading algorithm should make
an offloading decision for an arrival task immediately without the knowledge of future tasks. This is
similar to online non-clairvoyant task scheduling in parallel and distributed systems [9].

Unfortunately, there has been little study for non-clairvoyant task offloading in mobile edge com-
puting, either onlineor offline. It isworth tomention that task offloading in the frameworkof Lyapunov
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optimisation [10] is not entirely online, since in each time slot, the information of all tasks in that time
slot is known. Furthermore, the optimisation goal is not tominimise the total execution time of a list of
tasks, but some performance measure averaged over all time slots. There are also online task offload-
ing algorithms based on deep reinforcement learning, whose primary goal is to optimally adjust task
offloading decisions according to various time-varying conditions [11]. All these studies are neither for
non-clairvoyant task offloading, nor for combinatorial optimisation.

1.2. Contributions

In this paper, we consider non-clairvoyant task offloading for random tasks inmobile edge computing
within the framework of combinatorial optimisation.

• Offline non-clairvoyant task offloading – We propose a non-clairvoyant task offloading algorithm,
which is able to determine a task offloading strategy without knowing the amount of computation
and communication of any task.

• Online non-clairvoyant task offloading – We propose a randomised online task offloading
algorithm,which is able tomakeanoffloadingdecision for an arrival taskwithout knowinganything
about future tasks and other tasks.

For both algorithms, we analyse the probability of certain performance guarantee.We also demon-
stratenumerical data. To thebest of the author’s knowledge, this is the first paperwhich considersboth
offline and online non-clairvoyant task offloading inmobile edge computing, together with analytical
results on performance guarantee with high probability.

The rest of the paper is organised as follows. In Section 2, we present our task offloading model in
mobile edge computing. In Section 3, we consider non-clairvoyant task offloading. In Section 4, we
consider randomised online task offloading. In Section 5, we conclude the paper.

2. A task offloadingmodel

In this section, we present our task offloading model in mobile edge computing.
Throughout the paper, E(X) is the expectation of a random variable X ; Var(X) is the variance of a

random variable X ; P(·) is the probability of an event.
We consider task offloadingof oneuser equipment (UE) in amultiplemobile edgecloud (MEC) servers

environment. There are M MEC servers: MEC1, MEC2,. . . , MECM. For convenience, the UE is treated as
MEC0. The UE has computation speed s0, andMECj has computation speed sj , measured by number of
billion instructions (BI) per second, where 1 ≤ j ≤ M. The communication speed between the UE and
MECj is cj , measured by number of million bits (MB) per second, where 1 ≤ j ≤ M.

The UE has a set S of N random tasks: S = {τ1, τ2, . . . , τN}. Each task is τi = (ri, di), where ri is the
amountof computation,measuredbynumberof BI, anddi is the amountof communication,measured
by number of MB, for all 1 ≤ i ≤ N. The ri’s are independent and identically distributed (i.i.d.) random
variableswithmean E(ri) = μr and varianceVar(ri) = σ 2

r . Thedi’s are i.i.d. randomvariableswithmean
E(di) = μd and variance Var(di) = σ 2

d .
A task offloading strategy is to divide the set S of tasks into M+ 1 disjoint subsets: S0, S1, . . . , SM,

where S0 ∪ S1 ∪ · · · ∪ SM = S. Tasks in S0 are executed on the UE, and tasks in Sj are executed onMECj ,
for all 1 ≤ j ≤ M. Let a subset be Sj = {τj,1, τj,2, . . . , τj,Nj }, with Nj = |Sj|, for all 0 ≤ j ≤ M.

A task τ0,k , where1 ≤ k ≤ N0,which is executedon theUE, has randomexecution time t0,k = r0,k/s0,
measured by seconds. The t0,k ’s are i.i.d. random variables with mean E(t0,k) = μr/s0 and variance
Var(t0,k) = σ 2

r /s20.
A task τj,k , where 1 ≤ k ≤ Nj , 1 ≤ j ≤ M, which is executed on theMECj , has randomexecution time

tj,k = rj,k/sj + dj,k/cj , measured by seconds. The tj,k ’s are i.i.d. random variables with mean E(tj,k) =
μr/sj + μd/cj and variance Var(tj,k) = σ 2

r /s2j + σ 2
d /c2j .
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MECj has some existingworkloadWj , measured by seconds, withmean E(Wj) and variance Var(Wj),
for all 1 ≤ j ≤ M.

3. Non-clairvoyant task offloading

In this section, we consider non-clairvoyant task offloading.

3.1. Problem

In non-clairvoyant task offloading, the information of the ri’s and the di’s are not available. A task
offloading strategy, i.e. S0, S1, . . . , SM, is determined without any knowledge of the ri’s, the di’s, and
the Wj ’s, except some of their statistical data and properties such as μr , μd , and E(Wj). Given a set
S of N tasks, the problem is to find S0, S1, . . . , SM, such that the total execution time of the N tasks is
minimised.

3.2. Algorithm

Our non-clairvoyant task offloading algorithm works as follows. The algorithm simply divides S
into M+ 1 disjoint subsets S0, S1, . . . , SM, with |Sj| = Nj , for all 0 ≤ j ≤ M. The values of the Nj ’s are
determined below.

The total execution time of all tasks in S0 is a random variable

T0 = t0,1 + t0,2 + · · · + t0,N0 ,

with mean

E(T0) = N0

(
μr

s0

)
,

and variance

Var(T0) = N0

(
σr

s0

)2

.

The total execution time of all tasks in Sj is a random variable

Tj = tj,1 + tj,2 + · · · + tj,Nj +Wj ,

with mean

E(Tj) = Nj

(
μr

sj
+ μd

cj

)
+ E(Wj),

and variance

Var(Tj) = Nj

(
σ 2
r

s2j
+ σ 2

d

c2j

)
+ Var(Wj),

for all 1 ≤ j ≤ M.
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The Nj ’s are determined in such a way that the UE and all the MEC’s complete their workload in
about the same time, i.e.

E(T0) = E(T1) = · · · = E(TM) = T̃ ,

that is,

N0

(
μr

s0

)
= Nj

(
μr

sj
+ μd

cj

)
+ E(Wj) = T̃ ,

for all 1 ≤ j ≤ M. The above equality implies that

N0 = T̃

μr/s0
,

and

Nj = T̃ − E(Wj)

μr/sj + μd/cj
,

for all 1 ≤ j ≤ M. Since

N0 +
M∑
j=1

Nj = N,

that is,

T̃

μr/s0
+

M∑
j=1

T̃ − E(Wj)

μr/sj + μd/cj
= N,

we get

T̃

⎛
⎝ 1

μr/s0
+

M∑
j=1

1
μr/sj + μd/cj

⎞
⎠ = N+

M∑
j=1

E(Wj)

μr/sj + μd/cj
,

which gives

T̃ =
⎛
⎝N+

M∑
j=1

E(Wj)

μr/sj + μd/cj

⎞
⎠
⎛
⎝ 1

μr/s0
+

M∑
j=1

1
μr/sj + μd/cj

⎞
⎠
−1

,

and

N0 = 1/(μr/s0)

1/(μr/s0)+
∑M

j=1 1/(μr/sj + μd/cj)

⎛
⎝N+

M∑
j=1

E(Wj)

μr/sj + μd/cj

⎞
⎠ ,

and

Nj = 1/(μr/sj + μd/cj)

1/(μr/s0)+
∑M

j=1 1/(μr/sj + μd/cj)

(
N− E(Wj)

μr/s0

)
,

for all 1 ≤ j ≤ M.
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Remark 3.1: We assume that

N >
E(Wj)

μr/s0
,

that is,

E(Wj) < N(μr/s0),

for all 1 ≤ j ≤ M. If

E(Wj) ≥ N(μr/s0),

for some 1 ≤ j ≤ M, we simply exclude MECj for task offloading, since the existing workload Wj on
MECj is too heavy.

Our Non-clairvoyant Task Offloading Algorithm (NCTOA) is formally presented in Algorithm 1.

Algorithm 1 Non-clairvoyant Task Offloading Algorithm (NCTOA).
Input: A set S of N random tasks: S = {τ1, τ2, . . . , τN}.
Output: A partition of S intoM+ 1 disjoint subsets: S0, S1, . . . , SM, where S0 ∪ S1 ∪ · · · ∪ SM = S.

for (j = 0; j ≤ M; j++) do (1)
Sj ← any subset of Swith Nj tasks; (2)
S← S− Sj ; (3)

end do (4)

3.3. Analysis

The total execution time of all the N tasks in S is T = max{T0, T1, . . . , TM}. Since T̃ is considered as the
best achievable time for completing the N tasks, we compare T with T̃ .

The following theorem gives a performance guarantee for non-clairvoyant task offloading.

Theorem 3.1: Our non-clairvoyant task offloading algorithm guarantees

P
(
T ≤ T̃ + bB

)
≥
(
1− 1

b2

)M+1
,

for all b> 0, where

B = max

⎧⎨
⎩
√
N0

(
σr

s0

)
, max
1≤j≤M

⎧⎨
⎩
√√√√Nj

(
σ 2
r

s2j
+ σ 2

d

c2j

)
+ Var(Wj)

⎫⎬
⎭
⎫⎬
⎭ .
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Proof: Chebyshev’s inequality [12, p. 389] states that for any random variable X, we have

P
(
|X − E(X)| ≥ b

√
Var(X)

)
≤ 1

b2
,

and equivalently,

P
(
|X − E(X)| ≤ b

√
Var(X)

)
≥ 1− 1

b2
,

for all b> 0. By applying Chebyshev’s inequality to Tj , we obtain

P
(
|Tj − T̃| ≤ b

√
Var(Tj)

)
≥ 1− 1

b2
,

for all 0 ≤ j ≤ M. Furthermore, we can have

P
(
Tj ≤ T̃ + b

√
Var(Tj)

)
≥ P

(
|Tj − T̃| ≤ b

√
Var(Tj)

)
≥ 1− 1

b2
,

for all 0 ≤ j ≤ M. Let

B = max
0≤j≤M

{√
Var(Tj)

}
,

which is actually the value given in the theorem. Then, we get

P
(
Tj ≤ T̃ + bB

)
≥ P

(
Tj ≤ T̃ + b

√
Var(Tj)

)
≥ 1− 1

b2
,

for all 0 ≤ j ≤ M. Consequently, we obtain

P
(
T ≤ T̃ + bB

)
=

M∏
j=0

P
(
Tj ≤ T̃ + bB

)
≥
(
1− 1

b2

)M+1
,

where we notice that the Tj ’s are independent random variables. �

More accurate performance analysis is possible for specific probability distributions. For instance,
let us assume that the ri’s, the di’s, and theWj ’s are all normal random variables. Note that we implicitly
assume that thedistribution in the range (−∞, 0) is extremely small andnegligible. LetX bea standard
normal random variable with mean 0 and variance 1, whose probability density function is

fX(x) = 1√
2π

e−x
2/2,

and whose cumulative distribution function is

FX(x) = �(x) = 1√
2π

∫ x

−∞
e−y

2/2 dy.

The following theorem gives the probability P(T ≤ (1+ γ )T̃) for normal random variables.

Theorem 3.2: If the ri’s, the di’s, and theWj’s are all normal random variables, we have

P
(
T ≤ (1+ γ )T̃

)
= �

(
γ T̃√

N0(σr/s0)

)
M∏
j=1

�

⎛
⎝ γ T̃√

Nj(σ 2
r /s2j + σ 2

d /c2j )+ Var(Wj)

⎞
⎠ ,

where γ > 0.
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Proof: It is clear that for all 0 ≤ j ≤ M, Tj is a linear combination of independent normal random vari-
ables, which is still a normal random variable with mean E(Tj) and variance Var(Tj) [12, pp. 213, 357].
It is well known that

X = Tj − E(Tj)√
Var(Tj)

is a standard normal random variable, that is,

P(Tj ≤ τ) = P

(
X ≤ τ − E(Tj)√

Var(Tj)

)
= �

(
τ − E(Tj)√
Var(Tj)

)
= �

(
τ − T̃√
Var(Tj)

)
.

Therefore, we obtain

P
(
T ≤ (1+ γ )T̃

)
=

M∏
j=0

P
(
Tj ≤ (1+ γ )T̃

)
=

M∏
j=0

�

(
γ T̃√
Var(Tj)

)
,

where γ > 0. The theorem is provedby substitutingVar(Tj) into the last equation for all 0 ≤ j ≤ M. �

3.4. Numerical data

We now demonstrate some numerical data.
Weuse the followingparameter setting.We consider amobile computing environmentwithM = 5

MECs. The computation speed of the UE is s0 = 2.0 BI/s. The computation speed of MECj is sj = 3.0+
0.1(j − 1) BI/s, for all 1 ≤ j ≤ M. The communication speed of MECj is cj = 5.0+ 0.2(j − 1) MB/s, for
all 1 ≤ j ≤ M. The random tasks have the following parameters: μr = 1.5 BI, σr = 0.3 BI, μd = 2.5 MB,
and σd = 0.4 MB. The existing workload on MECj has mean E(Wj) = 2.0+ 0.2(j − 1) s and variance
Var(Wj) = (0.3+ 0.05(j − 1) s)2, for all 1 ≤ j ≤ M.

In Figure 1, we show the probability P(T ≤ (1+ γ )T̃) (actually, the lower bound given in
Theorem 3.1) vs. N, for γ = 0.2, 0.4, 0.6, 0.8, 1.0. In doing so, we set b = γ T̃/B, so that T ≤ T̃ + bB is
equivalent to T ≤ (1+ γ )T̃ . It is easily observed that P(T ≤ (1+ γ )T̃) increases as γ and N increase.
Even for reasonable values of γ and N, P(T ≤ (1+ γ )T̃) is already very high. For instance, when
N = 100, P(T ≤ 2T̃) is 0.98937.

In Figure 2, we show the probability P(T ≤ (1+ γ )T̃) given in Theorem 3.2 vs. N, for γ =
0.05, 0.10, 0.15, 0.20, 0.25. It is observed that P(T ≤ (1+ γ )T̃) is already very high even for small values
of γ . For instances, when γ = 0.25, P(T ≤ 1.25T̃) is 0.88493 for N = 10, and is almost 1 for N ≥ 30.

4. Randomised online task offloading

In this section, we consider randomised online task offloading.

4.1. Problem

In online task offloading, the N tasks are given as a list L = (τ1, τ2, . . . , τN). Tasks are not all available in
the begin, andmay arrive dynamically. A task offloading strategy, i.e. a partition of L intoM+ 1 disjoint
sublists L0, L1, . . . , LM, is determinedwithout the information of the entire list. An arrival task should be
assigned to the UE or offloaded to an MEC immediately, without the knowledge of future tasks. Tasks
must be considered in the given order (i.e. online task offloading). Furthermore, the information of
the ri’s and the di’s are not available (i.e. non-clairvoyant task offloading). Given a list L of N tasks, the
problem is to find L0, L1, . . . , LM, such that the total execution time of the N tasks is minimised. Note
that not only there is no information of future arrival tasks, but also an online task offloading algorithm
does not know the value of N, yet still needs to minimise the total execution time of all the N tasks.
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Figure 1. P(T ≤ (1+ γ )T̃) in Theorem 3.1 vs. N.

Figure 2. P(T ≤ (1+ γ )T̃) in Theorem 3.2 vs. N.

4.2. Algorithm

Our randomisedonline taskoffloadingalgorithmworks as follows. For each task τi , the tasks is assigned
to MECj (i.e. put into Lj) with probability pj = Nj/N (i.e. randomised task offloading), where Nj is given
in Section 3, for all 0 ≤ j ≤ M.
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It is noticed that the pj ’s depend on N. However, if N→∞, we have pj → p′j , where

p′0 =
1/(μr/s0)

1/(μr/s0)+
∑M

j=1 1/(μr/sj + μd/cj)
,

and

p′j =
1/(μr/sj + μd/cj)

1/(μr/s0)+
∑M

j=1 1/(μr/sj + μd/cj)
,

for all 1 ≤ j ≤ M. In real applications, when N is large, we can use p′j as an approximation of pj , which
is independent of N.

Our Randomised Online Task Offloading Algorithm (ROTOA) is formally presented in Algorithm 2.

Algorithm 2 Randomised Online Task Offloading Algorithm (ROTOA).
Input: A list L of N random tasks: L = (τ1, τ2, . . . , τN).
Output: A partition of L intoM+ 1 disjoint sublists: L0, L1, . . . , LM.

for (i = 1; i ≤ N; i++) do (1)
pick an index j randomly from {0, 1, 2, . . . ,M}, where j is selected with probability pj ; (2)
append τi to Lj ; (3)
remove τi from L; (4)

end do (5)

Let N′j be the number of tasks assigned toMECj , which is a random variable. Clearly, N′j = y1 + y2 +
· · · + yN, where the yi’s are i.i.d. Bernoulli random variables with probability pj and qj = 1− pj . It is
well known that N′j is a binomial random variable with mean E(N′j) = Npj = Nj and variance Var(N′j) =
Npjqj = Njqj ([12, p. 146]).

4.3. Analysis

The main difficulty in analysing the randomised online task offloading algorithm is that the N′j ’s (and
therefore, the Tj ’s) are not independent of each other. It is easy to see that theN′j ’s follow amultinomial
distribution, with a probability mass function as

P(N′0 = k0,N′1 = k1, . . . ,N′M = kM) =
(

N

k0, k1, . . . , kM

)
pk00 pk11 · · · pkMM ,

which is

P(N′0 = k0,N′1 = k1, . . . ,N′M = kM) = N!
k0!k1! · · · kM!p

k0
0 pk11 · · · pkMM ,

where k0 + k1 + · · · + kM = N, and p0 + p1 + · · · + pM = 1.

Theorem 4.1: For our randomised online task offloading algorithm, we have

P(T ≤ τ) =
∑

k0+k1+···+kM=N

N!
k0!k1! · · · kM!p

k0
0 pk11 · · · pkMM

M∏
j=0

P
(
Tj ≤ τ |N′j = kj

)
,

for all τ > T̃ .
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Proof: Note that for fixed k0, k1, . . . , kM, the Tj ’s are independent random variables. This means that

P(T ≤ τ |N′0 = k0,N′1 = k1, . . . ,N′M = kM) =
M∏
j=0

P
(
Tj ≤ τ |N′j = kj

)
.

Hence, we have

P(T ≤ τ)

=
∑

k0 + k1 + ···+ kM =N

P(N′0= k0,N′1 = k1, . . . ,N′M = kM)P(T ≤ τ |N′0 = k0,N′1 = k1, . . . ,N′M = kM),

which is

P(T ≤ τ) =
∑

k0+k1+···+kM=N

(
N

k0, k1, . . . , kM

)
pk00 pk11 · · · pkMM

M∏
j=0

P
(
Tj ≤ τ |N′j = kj

)
.

The last equation is essentially the theorem. �

It is hard to find P(Tj ≤ τ |N′j = kj). Fortunately, for normal random variables, we are able to calcu-
late the probability P(T ≤ τ) for our randomised online task offloading algorithm, as shown in the
following theorem.

Theorem 4.2: If the ri’s, the di’s, and theWj’s are all normal random variables, we have

P(T ≤ τ)

=
∑

k0+k1+···+kM=N

N!
k0!k1! · · · kM!p

k0
0 pk11 · · · pkMM

×�

(
τ − k0(μr/s0)√

k0(σr/s0)

) M∏
j=1

�

⎛
⎝τ − (kj(μr/sj + μd/cj)+ E(Wj))√

kj(σ 2
r /s2j + σ 2

d /c2j )+ Var(Wj)

⎞
⎠ ,

for all τ > T̃ .

Proof: Under the condition thatN′0 = k0, the total execution time of all tasks in S0 is a randomvariable

T0 = t0,1 + t0,2 + · · · + t0,k0 ,

with mean

E(T0|N′0 = k0) = k0

(
μr

s0

)
,

and variance

Var(T0|N′0 = k0) = k0

(
σr

s0

)2

.

Similarly, under the condition thatN′j = kj , the total execution timeof all tasks in Sj is a randomvariable

Tj = tj,1 + tj,2 + · · · + tj,kj +Wj ,

with mean

E(Tj|N′j = kj) = kj

(
μr

sj
+ μd

cj

)
+ E(Wj),
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and variance

Var(Tj|N′j = kj) = kj

(
σ 2
r

s2j
+ σ 2

d

c2j

)
+ Var(Wj),

for all 1 ≤ j ≤ M. Furthermore, since Tj is a normal random variable, we have

P(Tj ≤ τ |N′j = kj) = �

⎛
⎝τ − E(Tj|N′j = kj)√

Var(Tj|N′j = kj)

⎞
⎠ ,

for all 0 ≤ j ≤ M. By Theorem 4.1, we get

P(T ≤ τ) =
∑

k0+k1+···+kM=N

N!
k0!k1! · · · kM!p

k0
0 pk11 · · · pkMM

M∏
j=0

�

⎛
⎝τ − E(Tj|N′j = kj)√

Var(Tj|N′j = kj)

⎞
⎠ .

The theorem is proved by substituting E(Tj|N′j = kj) and Var(Tj|N′j = kj) into the last equation for all
0 ≤ j ≤ M. �

4.4. Numerical data

We now demonstrate some numerical data.
We use the same parameter setting as Subsection 3.4.
In Figure 3, we show the probability P(T ≤ (1+ γ )T̃) given in Theorem 4.2 vs. N, for γ =

0.30, 0.35, 0.40, 0.45, 0.50. It is observed that P(T ≤ (1+ γ )T̃) is noticeably lower than that in
Theorem 3.2 due to increased randomness in the randomised online task offloading algorithm. How-
ever, for reasonable values of γ andN, P(T ≤ (1+ γ )T̃) is reasonably high. For instance, when γ = 0.5
and N = 100, P(T ≤ 1.5T̃) is 0.90126.

Figure 3. P(T ≤ (1+ γ )T̃) in Theorem 4.2 vs. N.
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5. Conclusions

Wehave consideredbothoffline andonlinenon-clairvoyant task offloading for randomtasks inmobile
edge computing. We have proposed algorithms for both types of task offloading and analysed their
performance by providing high probability of performance guarantee. These algorithms should be
very useful in real mobile edge computing applications, where there is little information about task
computation and communication requirement and/or there is need for immediate task offloading
without waiting for further tasks.
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