
Scheduling Precedence Constrained Tasks for
Mobile Applications in Fog Computing

Keqin Li , Fellow, IEEE

Abstract—We consider scheduling precedence constrained tasks of amobile application in a fog computing environment, which faces

multiple challenges of precedence constraints, power allocation, and performance-cost tradeoff. Our strategies to handle the three

challenges are described as follows. First, in pre-power-allocation algorithms and post-power-allocation algorithms, precedence constraints

are handled by the classic list scheduling algorithm and the level-by-level schedulingmethod respectively. Second, in a pre-power-allocation

algorithm (a post-power-allocation algorithm, respectively), a power allocation strategy is determined before (after, respectively) a

computation offloading strategy is decided. Third, the performance-cost tradeoff is dealt with by defining the energy-constrained scheduling

problem and the time-constrained scheduling problem. That is, between performance and cost, we fix one andminimize the other. The

main contributions of the present paper are highlighted as follows. We develop a class of pre-power-allocation algorithms for

both energy-constrained and time-constrained scheduling, which are based on the classic list scheduling algorithm and the equal-energy

method.We develop a class of post-power-allocation algorithms for both energy-constrained and time-constrained scheduling, which are

based on the level-by-level schedulingmethod and our previously proposed algorithms for independent tasks. We evaluate the proposed

algorithms by extensive experiments onmobile applicationswith randomly generated directed acyclic graphs and identify themost

effective and efficient heuristic algorithms. Our research in this paper studies computation offloading in the context of traditional task

scheduling while incorporating new and unique features of fog computing into consideration. To the author’s best knowledge, there has

been no such and similar study in the current literature.

Index Terms—Energy-constrained scheduling, fog computing, level-by-level scheduling, list scheduling, mobile application, post-power-allocation

algorithm, pre-power-allocation algorithm, precedence constrained tasks, task scheduling, time-constrained scheduling

Ç

1 INTRODUCTION

1.1 Challenges and Motivation

MOBILE applications in mobile edge computing, fog com-
puting, embedded systems, and Internet of things

(IoT) are more and more powerful and sophisticated, such
as connected vehicles, face detection and recognition,
healthcare, image processing, intelligent video acceleration,
interactive gaming, IoT gateway, mobile Big Data analytics,
natural language processing, reality augmentation, smart
homes and enterprises, and speech recognition. Typically, a
mobile application generated on a user equipment (UE) can
be decomposed into numerous tasks with precedence con-
straints which can be arbitrarily complicated [23]. Further-
more, the tasks may have very different computation and
communication requirements.

Such a complicated mobile application is beyond the
computing capability of a mobile device for timely process-
ing. With the assistance of servers in mobile edge clouds
(MECs), tasks of a mobile application can be offloaded to
the MEC servers. Computation offloading provides an effi-
cacious means to enhance the computing power of a UE
and to extend the battery lifetime of a UE. By parallel and
possibly faster task execution on the MECs, a UE may

complete an application in shorter time, at the cost of extra
time for communication. By remote task processing on the
MECs, a UE may save energy consumption for computa-
tion and make its battery to last longer, at the cost of
extra energy for communication.

Computation offloading for a mobile application with
precedence constrained tasks becomes scheduling prece-
dence constrained tasks of a mobile application in a fog com-
puting environment. However, fog computing introduces
several new and unique features that are quite different from
traditional energy-efficient task scheduling systems, and a
fog computing environment is a sophisticated and hard-to-
manage computing platform. First, a UE does not offload all
its tasks to the MECs. In fact, a UE also has task execution
capability. In other words, a task may not be offloaded and
executed locally on the UE or may be offloaded to an MEC
and executed remotely on the MEC. Second, a UE cannot
change and control the computation speeds of theMECs, but
only its own computation speed and its communication
speeds to the MECs. In other words, a UE can only partially
determine the execution time of a task. Third, only the energy
consumption of computation and communication in the UE
is considered in dealing with the energy-delay tradeoff. In
other words, energy consumption in the MECs is not
included into problem formulation and solution. Fourth, fog
computing exhibits strong heterogeneity, that is, a task has
different execution times and energy consumptions on the
UE and theMECs due to different computation and commu-
nication speeds and different characteristics of communica-
tion channels.

� The author is with the Department of Computer Science, State University
of New York, New Paltz, NY 12561 USA. E-mail: lik@newpaltz.edu.

Manuscript received 15 March 2022; revised 30 June 2022; accepted 15 July 2022.
Date of publication 19 July 2022; date of current version 12 June 2023.
Digital Object Identifier no. 10.1109/TSC.2022.3192095

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023 2153

1939-1374 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:lik@newpaltz.edu

There are multiple challenges in scheduling precedence
constrained tasks of a mobile application in a heterogeneous
fog computing environment. First, a computation offloading
strategy needs to be decided, which tells when and where to
execute a task, such that all precedence constraints among
the tasks are satisfied. Second, a power allocation strategy
needs to be determined, which, for each task, gives the com-
putation speed for local execution or the communication
speed for remote execution. Third, both performance (i.e.,
overall execution time) and cost (i.e., total energy consump-
tion) should be included into consideration when an optimi-
zation problem is defined. It is already known that task
scheduling is NP-hard even for independent tasks and only
one MEC, and certainly becomes more challenging with
added concerns of precedence constraints, power allocation,
and performance-cost tradeoff, and the inability of a UE to
change and control the computation speeds of the MECs.

The motivation of this paper is to develop high-quality
heuristic algorithms for scheduling precedence constrained
tasks of a mobile application in a fog computing environment
by effectively handling all the above challenges. Our investi-
gation is conducted within a well developed framework,
which can inspire further research and better algorithms.

1.2 New Contributions

In this paper, we consider scheduling precedence con-
strained tasks of a mobile application in a fog computing
environment. Our strategies to handle the three challenges
are described as follows. First, in pre-power-allocation algo-
rithms and post-power-allocation algorithms, precedence
constraints are handled by the classic list scheduling algo-
rithm and the level-by-level scheduling method respec-
tively. Second, in a pre-power-allocation algorithm (a post-
power-allocation algorithm, respectively), a power allocation
strategy is determined before (after, respectively) a compu-
tation offloading strategy is decided. Third, the perfor-
mance-cost tradeoff is dealt with by defining the energy-
constrained scheduling problem and the time-constrained
scheduling problem. That is, between performance and
cost, we fix one and minimize the other. Using the above
strategies, scheduling precedence constrained tasks of a
mobile application in a fog computing environment can be
investigated systematically, and various heuristic algo-
rithms can be developed and their performance can be eval-
uated and compared.

Themain contributions of the present paper are highlighted
as follows.

� Wedevelop a class of pre-power-allocation algorithms
for both energy-constrained and time-constrained
scheduling,which are based on the classic list schedul-
ing algorithm and the equal-energymethod.

� We develop a class of post-power-allocation algo-
rithms for both energy-constrained and time-con-
strained scheduling, which are based on the level-
by-level scheduling method and our previously pro-
posed algorithms for independent tasks.

� We evaluate the proposed algorithms by extensive
experiments on mobile applications with randomly
generated directed acyclic graphs and identify the
most effective and efficient heuristic algorithms.

Our research in this paper studies computation offloading
in the context of traditional task scheduling while incorpo-
rating new and unique features of fog computing into con-
sideration. To the author’s best knowledge, there has been
no such and similar study in the current literature. However,
the techniques of pre-power-allocation, post-power-alloca-
tion, list scheduling, level-by-level scheduling, energy-con-
strained scheduling, and time-constrained scheduling are all
borrowed from traditional energy-efficient task scheduling
in parallel and distributed computing systems [11], [12].

The organization of the paper is summarized as follows.
In Section 2, we provide background information, including
the models used in the paper, problem definitions, and NP-
hardness. In Section 3, we develop pre-power-allocation
algorithms. In Section 4, we develop post-power-allocation
algorithms. In Section 5, we experimentally evaluate the
performance of our proposed algorithms. In Section 6, we
review related research. In Section 7, we conclude the paper.

2 BACKGROUND INFORMATION

In this section, we present the models used in the paper,
define our scheduling problems, and show their NP-
hardness.

Our task scheduling problem incorporated into a service-
oriented fog computing environment is illustrated in Fig. 1.
In such an environment, there are multiple UEs, multiple
MECs, an application selector facing the UEs, and a task
scheduler facing the MECs. The UEs can submit service
requests in the form of mobile applications (see Section 2.1)
that are put into an application pool. An application selector
(i.e., a request server) chooses the next application (i.e., ser-
vice request) to be processed according to certain criterion
(e.g., quality of service). Once an application is chosen, a task
scheduler decides when, where, and how to execute the tasks
of the application on the multiple MECs (see Sections 2.2,
and 2.3). Note that in this article, we focus on the design of
the task scheduler, which includes a computation offloading
strategy and a power allocation strategy (see Section 2.4).

Fig. 1. A service-oriented fog computing environment.

2154 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

2.1 The Application Model

In this section, we describe the mobile application model.
Let us assume that aUE has amobile applicationA ¼ ðL;�Þ,

which is specified as follows.
There is a list of tasks L ¼ ðt1; t2; . . .; tmÞ. Each task ti is

specified as ti ¼ ðri; diÞ, where ri is the computation require-
ment (i.e., the amount of computation, measured by the
number of billion processor cycles or the number of billion
instructions (BI) to be executed) of ti, and di is the communi-
cation requirement (i.e., the amount of data to be communi-
cated between the UE and an MEC, measured by the
number of million bits (MB)) of ti.

There are precedence constraints among the tasks, which
are specified by a partial order � . If ti1 � ti2 , then ti1 is a
predecessor of ti2 , and task ti2 cannot start its execution until
task ti1 is completed. A mobile application with precedence
constrained tasks can be described by a directed acyclic graph
(dag) G. The vertices in G are them tasks in L. The arcs in G
are given in such a way that there is an arc from ti1 to ti2 if
and only if ti1 � ti2 .

2.2 The Computation and Communication Models

In this section, we describe the task execution model.
Assume that there are n heterogeneous MECs, i.e., MEC1,

MEC2,..., MECn. Each MECj has computation speed sj (i.e.,
the processor execution speed,measured byGHz or the num-
ber of billion instructions that can be executed in one second),
which cannot be changed by the UE, for all 1 � j � n.

Each task ti can be executed on the UE or an MEC. Task
execution time includes computation time and communica-
tion time.

If ti is not offloaded and executed locally on the UE with
computation speed s0;i, which can be decided by the UE,
the computation time (measured by seconds) of ti on the UE
is ri=s0;i. There is no communication time for local execu-
tion. The execution time of ti with local execution on the UE
is Ti ¼ ri=s0;i, for all 1 � i � m.

If ti is offloaded to an MECji and executed remotely on
MECji , the computation time of ti on MECji is ri=sji . The
communication speed between theUE andMECji for ti is ci;ji
(i.e., the data transmission rate, measured by the number of
million bits that can be transmitted in one second), which
can be decided by the UE. The communication time (mea-
sured by seconds) between the UE andMECji for ti is di=ci;ji .
The execution time of ti with remote execution on MECji is
Ti ¼ ri=sji þ di=ci;ji , for all 1 � i � m and 1 � ji � n.

2.3 The Power Consumption Models

In this section, we describe the power consumption models
for both computation and communication.

There are two components in the UE’s power consump-
tion P (measured by Watts) for computation, i.e., dynamic
power consumption and static power consumption. The
dynamic component Pd is typically represented as Pd ¼ �sa0 ,
where � and a are some constants determined by the tech-
nology. The static component Ps is normally a constant.
Consequently, we get P ¼ Pd þ Ps ¼ �sa0 þ Ps. If ti is not off-
loaded and executed locally on the UE with computation
speed s0;i, the power consumption is Pi ¼ �sa0;i þ Ps, and the
energy consumption for computation (measured by Joules)

of ti on the UE is Ei ¼ Piðri=s0;iÞ ¼ ðð�sa0;i þ PsÞ=s0;iÞri; for
all 1 � i � m.

Note that a UE consumes power for communication in
addition to consuming power for computation. Let Pt;i;ji be
the transmission power (measured by Watts) of the UE to
MECji for task ti, where 1 � i � m and 1 � ji � n. Then, we
have Pt;i;ji ¼ ð2ci;ji =wji � 1Þ=bji

, for all 1 � i � m and 1 � ji �
n, where wji is the channel bandwidth and bji

is a quantity
combining various factors such as the background noise
power, the interference on the communication channel
caused by other devices’ data transmission to the same
MEC, and the channel gain between the UE and MECji . The
energy consumption for communication (measured by
Joules) of ti from the UE to MECji is Ei ¼ Pt;i;jiðdi=ci;jiÞ ¼
ð2ci;ji =wji � 1Þ=ðbji

ci;jiÞdi, for all 1 � i � m and 1 � ji � n.
Notice that for local execution on the UE, only energy

consumption for computation is considered, and for remote
execution on an MEC, only energy consumption for com-
munication is considered. The total energy consumption of
a mobile application is E ¼Pm

i¼1 Ei, which is the main cost
measure of a mobile application.

2.4 Problem Definitions

In this section, we formally define our optimization prob-
lems to be solved in this paper.

A computation offloading strategy (a.k.a. schedule) of a
mobile application A is to decide for each task ti, when (the
starting time ti of execution) and where (the location, either
the UE or an MEC, of execution) to execute ti, where 1 � i �
m. A legitimate schedule must ensure that all tasks follow
the precedence constraints, i.e., ti1 þ Ti1 � ti2 , if ti1 � ti2 . A
power allocation strategy is to decide for each task ti, how (the
computation speed s0;i for local execution on the UE or the
communication speed ci;ji for remote execution on MECji)
to execute ti, where 1 � i � m.

We use T to denote the overall execution time to finish all
the tasks in L (i.e., the makespan), which is the main perfor-
mance measure of a mobile application.

Given a mobile application A ¼ ðL;�Þ of a UE, where
L ¼ ðt1; t2; . . .; tmÞ, with ti ¼ ðri; diÞ, for all 1 � i � m, in a
fog computing environment with n MECs, i.e., MEC1,
MEC2,..., MECn, where MECj has computation speed sj, for
all 1 � j � n, and an energy constraint ~E, the energy-con-
strained scheduling problem is to find a computation offload-
ing strategy and a power allocation strategy for all tasks in
L on the UE and MECs, such that E does not exceed ~E and
T is minimized.

Given amobile applicationA ¼ ðL;�Þ of a UE, whereL ¼
ðt1; t2; . . .; tmÞ, with ti ¼ ðri; diÞ, for all 1 � i � m, in a fog
computing environment with n MECs, i.e., MEC1, MEC2,...,
MECn, whereMECj has computation speed sj, for all 1 � j �
n, and a time constraint ~T , the time-constrained scheduling
problem is to find a computation offloading strategy and a
power allocation strategy for all tasks in L on the UE and
MECs, such that T does not exceed ~T andE is minimized.

2.5 NP-Hardness

In this section, we show that even for very special cases, e.g.,
for independent tasks and only one MEC, our combinatorial
optimization problems are still NP-hard.

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS FOR MOBILE APPLICATIONS IN FOG COMPUTING 2155

Theorem 1. The energy-constrained scheduling problem is NP-
hard even for independent tasks and only one MEC.

Proof. Assume that tasks t1; t2; . . .; tm0 are executed on the
UE with total energy consumption ~E. We can show that
the overall execution time T on the UE is minimized when
all the tasks have the same computation speed on the UE.
Let us assume that ti is executed with computation speed
s0;i on the UE, where 1 � i � m0. Then, we have

T ðs0;1; s0;2; . . .; s0;m0 Þ ¼
Xm0

i¼1
ri=s0;i; (1)

and

Eðs0;1; s0;2; . . .; s0;m0 Þ ¼
Xm0

i¼1
ð�sa�10;i þ Ps=s0;iÞri; (2)

where both the overall execution time T ðs0;1; s0;2; . . .; s0;m0 Þ
and the total energy consumption Eðs0;1; s0;2; . . .; s0;m0 Þ are
viewed as functions of the computation speeds s0;1; s0;2;
. . .; s0;m0 . To minimize T ðs0;1; s0;2; . . .; s0;m0 Þ subject to the
constraint Eðs0;1; s0;2; . . .; s0;m0 Þ ¼ ~E, we use the Lagrange
multiplier system

rT ðs0;1; s0;2; . . .; s0;m0 Þ ¼ �rEðs0;1; s0;2; . . .; s0;m0 Þ; (3)

where � is a Lagrange multiplier. Since

@T ðs0;1; s0;2; . . .; s0;m0 Þ
@si

¼ �
@Eðs0;1; s0;2; . . .; s0;m0 Þ

@si
; (4)

that is

� ri
s20;i
¼ �ri �ða� 1Þsa�20;i �

Ps

s20;i

 !

; (5)

we have

s0;i ¼ s0 ¼
�

1

�ða� 1Þ
�

Ps � 1

�

��1=a

; (6)

for all 1 � i � m0. Substituting the above si;0 into the con-
straint Eðs0;1; s0;2; . . .; s0;m0 Þ ¼ ~E, we get

R

�

�sa�10 þ Ps

s0

�

¼ ~E; (7)

where R ¼ r1 þ r2 þ � � � þ rm0 is the total execution
requirement of them0 tasks. The above discussion implies
that the overall execution time T on the UE is minimized
when all the tasks have the same computation speed s0 on
the UE, which can be found by solving the equation

�sa0 � ð ~E=RÞs0 þ Ps ¼ 0: (8)

For instance, when a ¼ 2, we have

s0 ¼ 1

2�
~E=Rþ

ffi

ð ~E=RÞ2 � 4�Ps

q� �

: (9)

Assume that tasks t1; t2; . . .; tm0 are executed on MEC1

with total energy consumption ~E. We can show that the
overall execution time T on the MEC is minimized when

all the tasks have the same communication speed
between the UE and MEC1. Let us assume that ti is exe-
cuted with communication speed ci;1 between the UE
and MEC1, where 1 � i � m0. Then, we have

T ðc1;1; c2;1; . . .; cm;01Þ ¼
Xm0

i¼1
ðri=s1 þ di=ci;1Þ; (10)

and

Eðc1;1; c2;1; . . .; cm;01Þ ¼
Xm0

i¼1

�
2ci;1=w1 � 1

b1ci;1

�

di; (11)

where both the overall execution time T ðc1;1; c2;1; . . .; cm;01Þ
and the total energy consumption Eðc1;1; c2;1; . . .; cm;01Þ are
viewed as functions of the communication speeds c1;1;
c2;1; . . .; cm;01. To minimize T ðc1;1; c2;1; . . .; cm;01Þ subject to
the constraint Eðc1;1; c2;1; . . .; cm;01Þ ¼ ~E, we use the
Lagrangemultiplier system

rT ðc1;1; c2;1; . . .; cm;01Þ ¼ �rEðc1;1; c2;1; . . .; cm;01Þ; (12)

where � is a Lagrange multiplier. Since

@T ðc1;1; c2;1; . . .; cm;01Þ
@ci;1

¼ �
@Eðc1;1; c2;1; . . .; cm;01Þ

@ci;1
; (13)

that is

� di
c2i;1
¼ �di

�
2ci;1=w1ðln 2=w1Þci;1 � ð2ci;1=w1 � 1Þ

b1c
2
i;1

�

; (14)

we have ci;1 ¼ c1 for all 1 � i � m0. Substituting the above
ci;1 into the constraintEðc1;1; c2;1; . . .; cm;01Þ ¼ ~E, we get

�
2c1=w1 � 1

b1c1

�

D ¼ ~E; (15)

where D ¼ d1 þ d2 þ � � � þ dm0 is the total communication
requirement of the m0 tasks. The above discussion
implies that the overall execution time T on the MEC is
minimized when all the tasks have the same communica-
tion speed c1 between the UE and MEC1, which can be
found by solving the equation

2c1=w1 � ð ~E=DÞb1c1 � 1 ¼ 0: (16)

When tasks have the same computation speed on the
UE and the same communication speed between the UE
and MEC1, the energy-constrained scheduling problem
becomes the problem of optimal computation offloading with
energy constraint [13], which has been proven to be NP-
hard for independent tasks and only one MEC. tu

Theorem 2. The time-constrained scheduling problem is NP-
hard even for independent tasks and only one MEC.

Proof. The proof follows a similar argument to that of the
proof of Theorem 1.

Assume that tasks t1; t2; . . .; tm0 are executed on the UE
with overall execution time ~T . We can show that total
energy consumptionE for computation isminimizedwhen
all the tasks have the same computation speed on theUE.

2156 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

Assume that tasks t1; t2; . . .; tm0 are executed on MEC1

with overall execution time ~T . We can show that total
energy consumption E for communication is minimized
when all the tasks have the same communication speed
between the UE and MEC1.

When tasks have the same computation speed on the
UE and the same communication speed between the UE
and MEC1, the time-constrained scheduling problem
becomes the problem of optimal computation offloading with
time constraint [13], which has been proven to be NP-hard
for independent tasks and only one MEC. tu
The remaining of the paper is to seek heuristic algorithms

which are able to produce high-quality solutions.

3 PRE-POWER-ALLOCATION ALGORITHMS

In this section, we develop pre-power-allocation algorithms.
In these algorithms, a power allocation strategy is deter-
mined before a computation offloading strategy is decided.

3.1 Energy-Constrained Scheduling

In this section, we consider energy-constrained scheduling
with pre-power-allocation.

There are several methods for pre-power-allocation [11].
In the equal-speed method, all tasks have the same computa-
tion speed. This is not possible in fog computing, since the
UE cannot change the computation speed of an MEC. In the
equal-time method, all tasks have the same execution time.
This is again not possible in fog computing, since the UE
can only control the communication time. In this paper, we
adopt the equal-energy method, in which, all tasks consume
the same amount of energy, i.e., ~E=m. The advantage is that
when a task is scheduled on the UE or an MEC, its computa-
tion or communication speed can be decided immediately.

If ti is not offloaded and executed locally on the UE with
computation speed s0;i, we have

Ei ¼ ð�sa�10;i þ Ps=s0;iÞri ¼ ~E=m; (17)

that is

�sa0;i � ð ~E=ðmriÞÞs0;i þ Ps ¼ 0: (18)

When a ¼ 2, we get

s0;i ¼ 1

2�
~E=ðmriÞ þ

ffi

ð ~E=ðmriÞÞ2 � 4�Ps

q� �

: (19)

In general, we observe that �sa0;i � ð ~E=ðmriÞÞs0;i < 0, which

implies that s0;i < ð ~E=ð�mriÞÞ1=ða�1Þ. Hence, Eq. (18) can be

solved numerically by using the standard bisection method,

which searches for s0;i in the interval ½0; ð ~E=ð�mriÞÞ1=ða�1Þ�.
However, as mentioned in [13]

Ei � riP
1�1=a
s �1=a

a

ða� 1Þ1�1=a
: (20)

Thus, Eq. (18) has a solution only if

~E � mriP
1�1=a
s �1=a

a

ða� 1Þ1�1=a
: (21)

For instance, when a ¼ 2, we must have

~E � 2mri
ffiffiffiffiffiffiffi
�Ps

p
: (22)

If ti is offloaded to an MECji and executed remotely on
MECji , we have

Ei ¼
�
2ci;ji =wji � 1

bji
ci;ji

�

di ¼ ~E=m; (23)

that is

2ci;ji =wji � ð ~E=ðmdiÞÞbji
ci;ji � 1 ¼ 0: (24)

By using a Taylor series, we know that for an exponential
function bx, we have

bx > 1þ ðln bÞxþ 1

2
ðln bÞ2x2; (25)

where we notice that ðbxÞ0 ¼ bx ln b and ðbxÞ00 ¼ bxðln bÞ2. By
letting b ¼ 21=wji and x ¼ ci;ji , we get

2ci;ji =wji > 1þ ðln 2=wjiÞci;ji þ
1

2
ðln 2=wjiÞ2c2i;ji ; (26)

and

ðln 2=wjiÞci;ji þ
1

2
ðln 2=wjiÞ2c2i;ji < ð ~E=ðmdiÞÞbji

ci;ji ;

(27)

which implies that

ci;ji < c	i;ji ¼
2ðð ~E=ðmdiÞÞbji

� ðln 2=wjiÞÞ
ðln 2=wjiÞ2

: (28)

Hence, Eq. (24) can be solved numerically by using the stan-
dard bisection method, which searches for ci;ji in the inter-
val ½0; c	i;ji �. As mentioned in [13]

Ei >

�
ln 2

wjibji

�

di: (29)

Thus, Eq. (24) has a solution only if

~E > m

�
ln 2

wjibji

�

di: (30)

Our energy-constrained scheduling algorithm with pre-
power-allocation, called Energy-Constrained List Schedul-
ing with Heuristic H (ECLS-H), is presented in Algorithm 1
(see Section 5.1 forH).

Notation: In this paper, we define

indexminðx1; x2; . . .; xnÞ;

to be the index j such that xj ¼ minðx1; x2; . . .; xnÞ. Similarly,
we define

indexmaxðx1; x2; . . .; xnÞ;

to be the index j such that xj ¼ maxðx1; x2; . . .; xnÞ.
The algorithm is essentially the classic list scheduling algo-

rithm [3] adapted for a fog computing environment. With

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS FOR MOBILE APPLICATIONS IN FOG COMPUTING 2157

pre-power-allocation, the execution time of a task can be
available when the task is scheduled for execution.

Algorithm 1. Energy-Constrained List Scheduling With
HeuristicH (ECLS-H)

Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
1 � j � n, and ~E.
Output: A computation offloading strategy and a power
allocation strategy such that E does not exceed ~E and T is
minimized.
Initialize the list L using heuristicH; (1)
T 0; (2)
for (each unscheduled ready task ti) do (3)
if (there is an available MECj) then (4)
Schedule ti on MECj at time 0; (5)
Wj the execution time of ti; (6)
Remove ti from L; (7)

end if; (8)
end do; (9)
while (there is still a running task) do (10)
j indexmin0�j0�n;Wj0 6¼0ðWj0 Þ; (11)
T T þWj; (12)
for (j0 ¼ 0; j0 � n; j0++) do (13)
if (Wj0 6¼ 0) then (14)
Wj0 Wj0 �Wj; (15)

end if; (16)
end do; (17)
for (each unscheduled ready task ti) do (18)
if (there is an available MECj) then (19)
Schedule ti on MECj at time T ; (20)
Wj the execution time of ti; (21)
Remove ti from L; (22)

end if; (23)
end do; (24)

end do. (25)

The list L is initialized with heuristic H (line (1)). The
variable T dynamically records the current time as a sched-
ule move on (line (2)). The for-loop in lines (3)–(9) schedules
the first batch of ready tasks (line (3)) at time 0 (line (5)). Let
Wj (line (6)) denote the remaining execution time of the task
currently running on MEC j, for all 0 � j � n, where we set
UE ¼ MEC0 for convenience. The while-loop in lines (10)–
(25) schedules the remaining tasks. In each repetition, the
following actions are performed. First, the MECj which
completes its current task the earliest is identified (line (11)).
Second, the time clock moves on to the moment when MECj

completes its current task (line (12)). Third, the remaining
execution time of each busy MEC (line (14)) is updated (line
(15)) by the for-loop in lines (13)–(17). Fourth, the next batch
of ready tasks (line (18)) are scheduled at time T (line (20))
by the for-loop in lines (18)–(24). The execution time of ti
(lines (6) and (21)) is ri=s0;i if j ¼ 0, where s0;i is found by
solving Eq. (18), and ri=sji þ di=ci;ji if j > 0, where ci;ji is
found by solving Eq. (24). The algorithm tells when and
where (lines (5) and (20)), and how (lines (6) and (21)) to
execute ti, for all 1 � i � m.

When Eqs. (18) or (24) cannot be solved due to insuffi-
cient energy allocation, the UE or MECj is considered not
available and skipped.

The time complexity of the algorithm is analyzed as fol-
lows. Line (1) typically takesOðmlogmÞ time. The for-loop in
lines (3)–(9) repeats m times. Line (6) needs to solve Eq. (18)
or Eq. (24), which requires Oðlog ðI=�ÞÞ time, where I is the
length of the largest search internal in this paper. However,
line (6) is performed at most n times. Thus, the for-loop in
lines (3)–(9) takes Oðmþ nlog ðI=�ÞÞ time. The while-loop in
lines (10)–(25) repeats m times, one for each completed task.
In each repetition of the while-loop, line (11) requires OðnÞ
time; the for-loop in lines (13)–(17) requires OðnÞ time; the
for-loop in lines (18)–(24) requires Oðmþ nlog ðI=�ÞÞ time.
Therefore, the while-loop in lines (10)–(25), and the overall
time complexity of Algorithm 1 isOðmðmþ nlog ðI=�ÞÞÞ.

3.2 Time-Constrained Scheduling

In this section, we consider time-constrained scheduling
with pre-power-allocation.

Our time-constrained scheduling algorithm with pre-
power-allocation, called Time-Constrained List Scheduling
with HeuristicH (TCLS-H), is presented in Algorithm 2.

Algorithm 2. Time-Constrained List Scheduling With
HeuristicH (TCLS-H)

Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
1 � j � n, and ~T .
Output: A computation offloading strategy and a power
allocation strategy such that T does not exceed ~T and E
is minimized.
~E a reasonable value; (1)
do (2)
Call Algorithm ECLS-H with ~E to get T ; (3)
~E ~E þ DE; (4)

while ðT > ~T Þ; (5)
f ~T=T ; (6)
for (i ¼ 1; i � m; i++) do (7)
if (ji ¼ 0) then (8)
s0;i s0;i=f; (9)

else (10)
ci;ji di=ðfðri=sji þ di=ci;jiÞ � ri=sjiÞ; (11)

end if; (12)
end do. (13)

It is very difficult to decide the computation or communi-
cation speed when a task is scheduled in time-constrained
scheduling to guarantee a time constraint. Our strategy is to
adopt a two stage process. In the first stage (lines (1)–(5)), we
find ~E such that T obtained by the ECLS-H algorithm (line
(3)) is no longer than ~T (line (5)). This can be realized by set-
ting ~E to some reasonable value (line (1)), and gradually
increasing ~E (line (4)) until T � ~T . In the second stage (lines
(6)–(13)), the execution time of each task (line (7)) is scaled by
a factor of f ¼ ~T=T � 1 (line (6)) by reducing the computa-
tion or communication speed as follows. If task ti is sched-
uled on the UE (line (8)), s0;i is changed to s00;i, such that
ri=s

0
0;i ¼ fðri=s0;iÞ, which gives s00;i ¼ s0;i=f (line (9)). If task ti

is scheduled on MECj (line (10)), ci;ji is changed to c0i;ji , such
that ri=sji þ di=c

0
i;ji
¼ fðri=sji þ di=ci;jiÞ, which gives c0i;ji ¼

di=ðfðri=sji þ di=ci;jiÞ � ri=sjiÞ (line (11)). Notice that such
execution time scaling does not affect the the precedence

2158 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

constraints among the tasks and the locations to execute the
tasks, only the starting times for execution of the tasks.

After computation and communication speed reduction,
tasks no longer consume the same amount of energy. How-
ever, this is not an issue at all, since our original purpose is
to produced a computation offloading strategy and a power
allocation strategy such that the time constraint is satisfied.

It is clear that if the ECLS-H algorithm is called K times
in the first stage, the overall time complexity of Algorithm 2
is OðKmðmþ nlog ðI=�ÞÞÞ. The value K depends on the ini-
tial value of ~E and the increment DE.

4 POST-POWER-ALLOCATION ALGORITHMS

In this section, we develop post-power-allocation algorithms.
In these algorithms, a power allocation strategy is determined
after a computation offloading strategy is decided.

4.1 Energy-Constrained Scheduling

In this section, we consider energy-constrained scheduling
with post-power-allocation.

A directed acyclic graph can be decomposed into v levels,
where the levels are defined as follows. Level 1 consists of
initial tasks, i.e., tasks with no predecessors. Generally, level
l contains a task ti if the number of nodes on the longest
path from some initial task to task ti is l, where 1 � l � v.
Let Ll denote the set of tasks in level l, for all 1 � l � v.
Thus, we have L ¼ L1 [L2 [� � � [Lv.

We adopt the level-by-level schedulingmethod, i.e., tasks in
L are scheduled level by level. This means that only when
all tasks in Ll�1 are completed, can tasks in Ll start their exe-
cution. The schedule of each level is produced individually,
independently, and separately. The schedule of the entire
mobile application is simply a concatenation of the v sched-
ules for L1; L2; . . .; Lv.

Since all tasks in the same level are independent of each
other, we can schedule them by using any heuristic energy-
constrained scheduling algorithm H for independent tasks,
e.g., those developed in [13]. All these algorithms have a
unique feature, i.e., a power allocation strategy is deter-
mined after a computation offloading strategy is decided.

Our energy-constrained scheduling algorithm with
post-power-allocation, called Energy-Constrained Level-
by-Level Scheduling with Heuristic H (ECLL-H), is pre-
sented in Algorithm 3.

The key issue in level-by-level energy-constrained sched-
uling is to determine how the given energy budget ~E is allo-
cated to the v levels. Let HðLl; ElÞ be the overall execution
time when algorithm H is applied to Ll with energy con-
straint El. Initially, each level Ll is scheduled by using algo-
rithm H with some initial energy allocation El (lines (1)–(3)).
Then, the remaining energy ~E � ðE1 þ E2 þ � � � þ EvÞ (line
(4)) is divided by K to get E0 (line (5)), and the while-loop in
lines (6)–(16) is repeated slightly more than K times. In each
repetition, the following actions are performed. First, DE is
determined, which is a random number g times E0, where g
is uniformly distributed in [0.5,1.0] (line (10)). Second,
the level l0 which results in the largest reduction in its
overall execution time if DE extra energy is provided, i.e.,
HðLl;ElÞ �HðLl; El þ DEÞ, is selected (line (12)). Third, level
l0 is allocated DE extra energy (line (13)). The while-loop

terminates after all the remaining energy is allocated (line
(6)). The overall execution time T of the mobile application is
simplyHðL1; E1Þ þHðL2; E2Þ þ � � � þHðLv;EvÞ (line (17)).

Algorithm 3. Energy-Constrained Level-by-Level Sched-
uling With HeuristicH (ECLL-H)

Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
1 � j � n, and ~E.
Output: A computation offloading strategy and a power
allocation strategy such that E does not exceed ~E and T
is minimized.
for (l ¼ 1; l � v; l++) do (1)
Tl HðLl; ElÞ; (2)

end do; (3)
remainingE ~E � ðE1 þ E2 þ � � � þ EvÞ; (4)
E0 ð ~E � ðE1 þ E2 þ � � � þ EvÞÞ=K; (5)
while (remainingE > 0) do (6)
if (remainingE � E0) then (7)
DE remainingE; (8)

else (9)
DE gE0, where g 2 ½0:5; 1:0�; (10)

end if; (11)
l0 indexmax1�l�vðTl �HðLl; El þ DEÞÞ; (12)
El0 El0 þ DE; (13)
Tl0 HðLl0 ; El0 Þ; (14)
remainingE remainingE � DE; (15)

end do; (16)
T T1 þ T2 þ � � � þ Tv. (17)

The initial energy constraint El for Ll is determined as
follows. Let us define Rl ¼

P
ti2Ll

ri and Dl ¼
P

ti2Ll
di, for

all 1 � l � v. Then, according to [13], we can set El as

El ¼ RlP
1�1=a
s �1=a

a

ða� 1Þ1�1=a
þ
�

ln 2

min1�j�nðwjbjÞ
�

Dl;

(31)

for all 1 � l � v.
We would like to mention that for independent tasks in

the same level, our heuristic energy-constrained scheduling
algorithm H assigns the same computation speed s0 to all
tasks executed locally on the UE and the same communica-
tion speed cj to all tasks executed remotely on MECj. How-
ever, tasks from different levels have different computation
speeds even if they are all executed locally on the UE, and
tasks from different levels have different communication
speeds even if they are all executed remotely on the same
MEC.

The time complexity of Algorithm 3 is analyzed as
follows. From [13], we know that algorithm H takes
OðjLljn2log ðI=�ÞÞ time in line (2). Thus, the for-loop in
lines (1)–(3) takes Oðmn2log ðI=�ÞÞ time, since jL1j þ jL2j þ
� � � þ jLvj ¼ m. The most time consuming step in the while-
loop of lines (6)–(16) is line (12), which takesOðmn2log ðI=�ÞÞ
time. Therefore, the overall time complexity of Algorithm 3
isOðKmn2log ðI=�ÞÞ.

4.2 Time-Constrained Scheduling

In this section, we consider time-constrained scheduling with
post-power-allocation.

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS FOR MOBILE APPLICATIONS IN FOG COMPUTING 2159

Our time-constrained scheduling algorithm with post-
power-allocation, called Time-Constrained Level-by-Level
Scheduling with Heuristic H (TCLL-H), is presented in
Algorithm 4.

Algorithm 4. Time-Constrained Level-by-Level Schedul-
ing With HeuristicH (TCLL-H)

Input: A ¼ ðL;�Þ with L ¼ ðt1; t2; . . .; tmÞ, where ti ¼ ðri; diÞ,
for all 1 � i � m, UE ¼ ð�;a; PsÞ, MECj ¼ ðsj; wj;bjÞ, for all
1 � j � n, and ~T .
Output: A computation offloading strategy and a power alloca-
tion strategy such thatT does not exceed ~T andE isminimized.
for (l ¼ 1; l � v; l++) do (1)
El HðLl; TlÞ; (2)

end do; (3)
additionalT ðT1 þ T2 þ � � � þ TvÞ � ~T ; (4)
T 0 ððT1 þ T2 þ � � � þ TvÞ � ~T Þ=K; (5)
while (additionalT > 0) do (6)
if (additionalT � T 0) then (7)
DT additionalT ; (8)

else (9)
DT gT 0, where g 2 ½0:5; 1:0�; (10)

end if; (11)
l0 indexmin1�l�vðHðLl; Tl � DT Þ � ElÞ; (12)
Tl0 Tl0 � DT ; (13)
El0 HðLl0 ; Tl0 Þ; (14)
additionalT additionalT � DT ; (15)

end do; (16)
E E1 þ E2 þ � � � þ Ev. (17)

The key issue in level-by-level time-constrained schedul-
ing is to determine how the given time budget ~T is allocated
to the v levels. Let HðLl; TlÞ be the total energy consumption
when algorithm H is applied to Ll with time constraint Tl.
Initially, each level Ll is scheduled by using algorithm H
with some initial time allocation Tl (lines (1)–(3)). Then, the
additional time ðT1 þ T2 þ � � � þ TvÞ � ~T (line (4)) is divided
byK to get T 0 (line (5)), and the while-loop in lines (6)–(16) is
repeated slightly more than K times. In each repetition, the
following actions are performed. First, DT is determined,
which is a random number g times T 0, where g is uniformly
distributed in [0.5,1.0] (line (10)). Second, the level l0 which
results in the minimum increment in its total energy con-
sumption if DT amount of time is reduced, i.e., HðLl; Tl �
DT Þ �HðLl; TlÞ, is selected (line (12)). Third, the execution
time of level l0 is reduced by DT (line (13)). The while-loop
terminates after all the additional time is reduced (line (6)).
The total energy consumption E of the mobile application is
simplyHðL1; T1Þ þHðL2; T2Þ þ � � � þHðLv; TvÞ (line (17)).

The initial time constraint Tl for Ll is determined as fol-
lows. According to [13], we can set Tl as

Tl ¼ Rl

minðs1; s2; . . .; snÞ ; (32)

for all 1 � l � v.
The time complexity of Algorithm 4 is analyzed as fol-

lows. From [13], we know that algorithm H takes OðjLljnÞ
time in line (2). Thus, the for-loop in lines (1)–(3) takes
OðmnÞ time, since jL1j þ jL2j þ � � � þ jLvj ¼ m. The most
time consuming step in the while-loop of lines (6)–(16) is

line (12), which takes OðmnÞ time. Therefore, the overall
time complexity of Algorithm 4 is OðKmnÞ.

5 EXPERIMENTAL PERFORMANCE EVALUATION

We experimentally evaluate the performance of our pro-
posed algorithms in this section.

5.1 Experiment Settings

A fog computing environment with one UE and n ¼ 7 MECs
is considered. TheUE is configuredwith the followingparam-
eters: � ¼ 0:1, a ¼ 2:0, Ps ¼ 0:05 Watts. The MECj is config-
ured with the following parameters: sj ¼ 3:1� 0:1j BI/
second, wj ¼ 2:9þ 0:1j MB/second, bj ¼ 2:1� 0:1j Watts�1,
for all 1 � j � n.

Task computation and communication requirements are
randomly generated. The ri’s are independent and identi-
cally and uniformly distributed in the range [1.5,5.0]. The
di’s are independent and identically and uniformly distrib-
uted in the range [1.0, 3.0].

A random directed acyclic graph with m nodes and arc
probability p is generated using the following procedure.
For each pair of tasks ti1 and ti2 , where 1 � i1 < i2 � m, an
arc ðti1 ; ti2Þ exists with probability p. The arc probabilities
are independent of each other. It is easy to see that the
expected number of successors of task ti is ðm� iÞp, where
1 � i � m. If p ¼ b=m, then it is in the range ½0; bÞ. We set b ¼
2 in this section.

To show numerical characteristics of the above random
dags, form ¼ 20; 40; 60; . . .; 200, the expected number of lev-
els v, and the expected number of tasks (width) ml on level l
for l ¼ 1; 2; 3; 4, are displayed below. These data are the
averages of those collected from 5000 random dags. For all
the data in the table, the maximum 99% confidence interval
(C.I.) is
2.59677%. It is observed that a random dag exhib-
its the shape of an inverted cone, i.e., the levels 1, 2, 3, 4,...
have decreasing widths.

m v m1 m2 m3 m4

20 4.426 8.756 5.389 3.309 1.684
40 5.151 17.450 10.460 6.469 3.444
60 5.541 26.128 15.594 9.593 5.197
80 5.823 34.731 20.758 12.674 6.968
100 6.054 43.434 25.691 15.830 8.765
120 6.192 52.061 30.860 19.020 10.527
140 6.341 60.654 36.013 22.160 12.340
160 6.463 69.414 41.013 25.316 14.049
180 6.583 77.900 46.110 28.415 15.825
200 6.644 86.725 51.206 31.549 17.610

The following heuristics for the initial order of L ¼ ðti1 ; ti2 ;
. . .; timÞ are considered in this paper.

� ORG (Original Order) – Tasks are arranged in their
original order.

� SRF (Smallest Requirement First) – Tasks are ordered
in such a way that ri1 � ri2 � � � � � rim .

� LRF (Largest Requirement First) – Tasks are ordered in
such a way that ri1 � ri2 � � � � � rim .

� SDF (Smallest Data First) – Tasks are ordered in such
a way that di1 � di2 � � � � � dim .

2160 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

� LDF (Largest Data First) – Tasks are ordered in such a
way that di1 � di2 � � � � � dim .

� SRD (Smallest Requirement-Data-Ratio First) – Tasks
are ordered in such a way that ri1=di1 � ri2=di2 �
� � � � rim=dim .

� LRD (Largest Requirement-Data-Ratio First) – Tasks
are ordered in such a way that ri1=di1 � ri2=di2 �
� � � � rim=dim .

� RANk (Best of k Random Orders) – Tasks are arranged
in k random orders and the best of the k solutions
are taken. We set k ¼ 10; 30; 50.

5.2 Evaluation of Pre-Power-Allocation Algorithms

In this section, we examine the performance of pre-power-
allocation algorithms.

In Table 1, we display our experimental results for energy-
constrained list scheduling. We set m ¼ 20; 40; 60; . . .; 200 for
the number of tasks, and ~E ¼ 4þ 8ðm=10Þ Joules for the
energy constraint. For eachm, we generateM ¼ 500 random
directed acyclic graphs withm nodes and arc probability p ¼
2=m. For each randomdag, we employ the ten proposed heu-
ristic algorithms, i.e., ECLS-H with H ¼ ORG, LRF, SRF,
LDF, SDF, LRD, SRD, RAN10, RAN30, andRAN50. The aver-
age of the M results of each heuristic algorithm is shown in
the table. For all the data in the table, the maximum 99% C.I.
is
2.73657%.

In Table 2, we display our experimental results for time-
constrained list scheduling. We set m ¼ 20; 40; 60; . . .; 200 for
the number of tasks, and ~T ¼ 3þ 3ðm=10Þ seconds for the
time constraint. (We set ~E ¼ 6þ 4ðm=10Þ in line (1) andDE ¼
1 in line (4).) For each m, we generate M ¼ 1000 random

directed acyclic graphs withm nodes and arc probability p ¼
2=m. For each random dag, we employ the ten proposed heu-
ristic algorithms, i.e., TCLS-H withH ¼ORG, LRF, SRF, LDF,
SDF, LRD, SRD, RAN10, RAN30, and RAN50. The average of
theM results of each heuristic algorithm is shown in the table.
For all the data in the table, the maximum 99% C.I. is

3.27861%.

From Tables 1 and 2, we can make the following impor-
tant observations.

� The heuristics LRF, SRF, LDF, SDF, LRD, SRD do not
yield noticeable difference in performance. Surpris-
ingly, even ORG performs better than LRF, SRF,
LDF, SDF, LRD, SRD.

� The strategy of repeating the algorithm multiple
times does yield performance improvement. RAN10
performs noticeably better than ORG, LRF, SRF, LDF,
SDF, LRD, SRD. However, excessive repetition does
not bring much benefit, e.g., RAN30 and RAN50 do
not perform noticeably better than RAN10.

5.3 Evaluation of Post-Power-Allocation Algorithms

In this section, we examine the performance of post-power-
allocation algorithms.

In Table 3, we display our experimental results for energy-
constrained level-by-level scheduling. We set m ¼ 20; 40; 60;
. . .; 200 for the number of tasks, and ~E ¼ 4þ 8ðm=10Þ Joules
for the energy constraint. For each m, we generate M ¼ 200
random directed acyclic graphs withm nodes and arc proba-
bility p ¼ 2=m. For each random dag, we employ the ten pro-
posed heuristic algorithms, i.e., ECLL-H withH ¼ORG, LRF,

TABLE 1
Experimental Data for Energy-Constrained List Scheduling (99% C.i. =
2.73657%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 6.33308 6.48709 6.66739 6.55910 6.42811 6.40151 6.59637 5.90977 5.78460 5.74500
40 9.11599 10.04377 9.93155 10.01859 9.86338 9.95566 9.95979 8.56220 8.34164 8.26095
60 12.33894 13.63935 13.55841 13.58227 13.44811 13.48620 13.57923 11.84143 11.62201 11.53058
80 15.73861 17.09231 17.19463 17.24645 17.09973 17.10994 17.11351 15.29914 15.11473 15.03161
100 19.36595 20.75231 20.72037 20.97696 20.84537 20.82771 20.80411 18.90222 18.68869 18.60861
120 23.02285 24.54459 24.47294 24.65159 24.41779 24.42716 24.46665 22.58554 22.37142 22.27217
140 26.55621 28.01454 28.00879 28.23518 28.05862 28.01719 28.05040 26.16482 25.95939 25.86265
160 30.22643 31.62066 31.70171 31.84462 31.65625 31.38314 31.80101 29.79547 29.56064 29.46299
180 33.87471 35.42949 35.49348 35.64393 35.57105 35.43361 35.49940 33.46656 33.24222 33.14254
200 37.49787 38.87911 38.89904 39.16259 39.01920 38.92612 39.03835 37.07450 36.84821 36.76140

TABLE 2
Experimental Data for Time-Constrained List Scheduling (99% C.i. =
3.27861%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 9.92750 9.96305 10.21354 10.30031 9.72279 9.71818 10.42555 7.68352 7.50296 7.43569
40 13.46612 14.37904 14.37946 14.60144 14.33305 14.32447 14.51679 12.72746 12.52871 12.44246
60 18.98870 20.31615 20.14062 20.24720 20.11653 20.26532 20.24780 18.57314 18.38512 18.30668
80 24.97693 26.24193 26.14677 26.20386 26.10228 26.32500 26.30230 24.62434 24.43361 24.34567
100 31.17557 32.41219 32.41821 32.23753 32.33055 32.65344 32.55194 30.79719 30.59395 30.49837
120 37.39229 38.88093 38.70792 38.46860 38.73005 39.04237 38.86885 37.00367 36.77652 36.67288
140 43.66139 45.19537 45.03864 44.68140 44.94225 45.41580 45.23217 43.24306 42.99051 42.88581
160 50.04367 51.70387 51.49461 51.03058 51.37655 51.94286 51.85121 49.60160 49.33935 49.22079
180 56.52746 58.22899 58.00216 57.36592 57.94094 58.57126 58.36803 55.95753 55.69383 55.57383
200 62.97426 64.87100 64.53795 63.74898 64.30659 65.15472 64.94806 62.32742 62.03703 61.89727

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS FOR MOBILE APPLICATIONS IN FOG COMPUTING 2161

SRF, LDF, SDF, LRD, SRD, RAN10, RAN30, and RAN50. The
parameterK is set as 10. The average of theM results of each
heuristic algorithm is shown in the table. For all the data in
the table, themaximum 99%C.I. is
3.66418%.

In Table 4, we display our experimental results for time-
constrained level-by-level scheduling. We set m ¼ 20; 40;
60; . . .; 200 for the number of tasks, and ~T ¼ 3þ 3ðm=10Þ
seconds the time constraint. For each m, we generate M ¼
400 random directed acyclic graphs with m nodes and arc
probability p ¼ 2=m. For each random dag, we employ the
ten proposed heuristic algorithms, i.e., TCLL-H with H ¼
ORG, LRF, SRF, LDF, SDF, LRD, SRD, RAN10, RAN30, and
RAN50. The parameter K is set as 200. The average of the
M results of each heuristic algorithm is shown in the table.
For all the data in the table, the maximum 99% C.I. is

4.32958%.

From Tables 3 and 4, we can make the following impor-
tant observations.

� Different heuristics do yield noticeable difference in
performance. First, when m is small (large, respec-
tively), i.e., when m � 100 (m > 100, respectively),
LRF (SRD, respectively) is the best heuristic among
ORG, LRF, SRF, LDF, SDF, LRD, SRD for energy-con-
strained level-by-level scheduling. Second, LDF is the
best heuristic amongORG, LRF, SRF, LDF, SDF, LRD,
SRD for time-constrained level-by-level scheduling.

� The strategy of repeating the algorithm multiple
times does not yield much performance improve-
ment. For instance, the performance of SRD and
LDF are already very close to that of RAN50 for

energy-constrained and time-constrained level-by-
level scheduling respectively.

5.4 Comparison

It is observed that post-power-allocation algorithms consis-
tently outperform pre-power-allocation algorithms in
almost all cases. Although the list scheduling algorithm is
very effective and efficient in handling precedence con-
straints, the equal-energy method for pre-power-allocation
is not efficient. Although the level-by-level scheduling
method is not as efficient as the list scheduling algorithm,
the computation offloading strategies and the post-power-
allocation strategies developed in [13] for independent tasks
in the same level are very effective and efficient.

6 RELATED RESEARCH

We review related research in this section.
In recent years, extensive investigation has been con-

ducted for computation offloading in mobile edge comput-
ing and fog computing, which has been a very active and
productive research area. Refs. [1], [10], [20] provide recent
comprehensive surveys.

Scheduling precedence constrained tasks for mobile
applications in mobile edge computing and fog computing
has been investigated by several researchers (see Table 5).
Almost in all existing studies, only the case of one UE and
one MEC has been considered. Therefore, the where issue in
a computation offloading strategy becomes a whether issue,
i.e., a binary computation offloading decision (either local
or remote execution), and task scheduling is conducted only

TABLE 3
Experimental Data for Energy-Constrained Level-by-Level Scheduling (99% C.i. =
3.66418%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 6.14116 6.41678 5.63241 6.31427 6.01120 6.25182 5.97162 5.58039 5.54089 5.52361
40 9.39722 9.62249 8.77565 9.68777 9.17091 9.37413 9.11474 8.62037 8.54037 8.51479
60 12.62807 12.75280 11.91830 13.01803 12.24451 12.39116 12.33286 11.70112 11.61171 11.57667
80 15.81300 15.77216 15.16399 16.27605 15.31049 15.37886 15.58691 14.87892 14.76326 14.72709
100 19.07778 18.94351 18.46658 19.73619 18.55745 18.52221 18.99568 18.14137 18.04773 18.01506
120 22.32952 21.99955 21.81596 23.06160 21.78133 21.59613 22.36492 21.38840 21.29001 21.24946
140 25.46007 24.99503 25.00448 26.31298 24.83862 24.55783 25.60256 24.51529 24.42089 24.37641
160 28.76626 28.11156 28.29632 29.68970 28.04417 27.66150 28.99075 27.77727 27.66976 27.63487
180 31.97630 31.22202 31.58380 33.04419 31.23029 30.72951 32.34895 31.00756 30.91417 30.88518
200 35.94577 34.98050 35.55188 37.11161 35.12320 34.55036 36.43820 34.95769 34.86119 34.81617

TABLE 4
Experimental Data for Time-Constrained Level-by-Level Scheduling (99% C.i. =
4.32958%)

m ORG SRF LRF SDF LDF SRD LRD RAN10 RAN30 RAN50

20 7.17612 7.45978 6.95541 7.31397 7.07785 7.27085 7.15486 6.91344 6.87709 6.86554
40 12.33779 12.67933 12.24361 12.52658 12.24655 12.49158 12.55159 12.05454 12.02382 12.01221
60 17.90778 18.28847 17.94457 18.11941 17.81361 18.17692 18.40052 17.63386 17.60367 17.59392
80 23.64200 24.08126 23.77834 23.84809 23.59230 24.06870 24.35092 23.36042 23.33168 23.32336
100 29.17348 29.68381 29.43206 29.39553 29.17235 29.71204 30.16238 28.90701 28.87904 28.86922
120 34.85638 35.43268 35.18821 35.11733 34.86430 35.54556 36.11573 34.58585 34.55644 34.54599
140 40.41645 41.06815 40.87987 40.66464 40.44734 41.26272 41.94877 40.13437 40.10787 40.09642
160 46.13776 46.82764 46.67916 46.42114 46.18082 47.10550 47.96953 45.84501 45.81365 45.80240
180 51.76933 52.57947 52.48760 52.09895 51.86871 52.94790 53.92911 51.50235 51.47520 51.46351
200 59.16643 60.60973 59.91616 59.54336 59.42100 61.31686 61.79147 58.75088 58.68758 58.66142

2162 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

on a UE and an MEC. A power allocation strategy still
involves the computation speed for local execution and/or
the communication speed remote execution. The main per-
formance measure is the overall execution time (i.e., the
makespan, or the maximum completion time of all tasks) of
a mobile application. Sometimes, the summation of execu-
tion times (or completion times) of all tasks is also used as a
performance measure. The main cost measure has been
unanimously the total energy consumption of a mobile
application.

Bymanipulating only the computation offloading decision,
Deng et al.minimized the total energy consumptionwhile sat-
isfying a strict delay (i.e., makespan) constraint using a parti-
cle swarm optimization algorithm [2]. Based on computation
offloading decision, transmission power allocation, and clock
frequency control, Guo et al. minimized the summation of
each task’s weighted sum of completion time and energy con-
sumption [4]. Jia et al. presented an online task offloading
algorithm on a mobile device to minimize the completion
time of an application [6]. By making computation offloading
decision and transmission power selection, Khalili and
Simeoneminimized aweighted sumof total energy consump-
tion and overall latency (i.e., makespan) [9]. By computation
offloading adjusting and frequency scaling, Liang et al. tried
to minimize the makespan over an MEC center with multiple
servers [14]. By making computation offloading decision and
transmission power selection, Lorenzo et al. minimized the
energy consumption at the mobile site, under a power budget
constraint and a latency constraint, where “latency” is the
summation of task transfer and execution times [19]. By
manipulating only the computation offloading decision,Mah-
moodi et al.maximized the energy saved through remote exe-
cution, with a runtime deadline constraint, i.e., the
completion time of the last component (i.e., makespan) does
not exceed a time deadline [21].

The above literature review reveals several major weak-
nesses of current research. First, only a single MEC is consid-
ered, which makes the computation offloading decision
much simpler and eliminates the challenging MEC selection
problem. Second, some researchers adopt the summation of
task execution times, not the makespan, as the performance
measure, which not only makes less sense, but also simplifies
the problem. Third, computation offloading should be con-
ducted together with power allocation for computation and
communication speeds and energy constraint. For these rea-
sons, there is lack of investigation of combinatorial optimiza-
tion approach to computation offloadingwithin a framework
similar to that of traditional energy-efficient task scheduling.
In this paper, we have considered multiple heterogeneous

MECswhich have different computation speeds and commu-
nication speeds.We have also employed the makespan as the
performance measure, which is the main objective of optimi-
zation in traditional task scheduling and the main concern
for a mobile application consisting of tasks connected by a
directed acyclic graph. Furthermore, we have incorporated
power allocation and energy constraint into consideration.

Some researchers have explored related but different sit-
uations and environments. A fully polynomial time approxi-
mation scheme was proposed by Kao et al. to find a task
assignment strategy on multiple devices, so as to minimize
the cost constrained latency [7]. Lin et al. considered amobile
device with multiple heterogeneous cores and minimized
the total energy consumption under a task completion time
(i.e., makespan) budget, i.e., a delay constraint, by making
computation offloading decision and determining heteroge-
neous cores mapping, execution frequency of each local task,
schedule of the tasks on heterogeneous cores and the
MEC [15]. Liu et al. investigated task offloading with both
precedence and placement constraints in a multi-user MEC
environment based on spatio-temporal information of tasks
and servers [16]. Liu et al.minimized the total weighted cost
of energy and delay in a multiple MEC environment by
incorporating the mobility of a mobile device into consider-
ation [17]. Long et al. studied oneMEC and one cloud server,
i.e., there are three (local, edge, cloud) computation models
for each task, and minimized the total energy consumption
under an application completion time (i.e., makespan) con-
straint by manipulating only computation offloading deci-
sion [18]. Yang et al. concerned multiple UEs and one MEC
with multiple homogeneous servers, where the computation
offloading decision needs to determine where (including the
mobile device and the cloud servers) to execute a task, and
minimized the average application delay of the users, where
the dags are linear and sequential dags and energy consump-
tion is not considered [24].

We would like to mention that there are studies focusing
on hierarchical fog computing environments [5], [8], [22].
These work mainly paid attention on the structure of a multi-
level fog computing network, not the structure of a mobile
application.

7 CONCLUDING REMARKS

In this paper, we have addressed scheduling precedence
constrained tasks of a mobile application in a fog computing
environment. We have developed the class of pre-power-
allocation algorithms and the class of pre-power-allocation
algorithms. We have also experimentally evaluated the

TABLE 5
Research in Computation Offloading for Mobile ApplicationsWith Precedence Constrained Tasks (✓: Considered; –: Not Considered)

Work Precedence Constraint Multiple MECs Computation Speed Communication Speed Makespan Energy Constraint

Ref. [2] ✓ – – – ✓ ✓

Ref. [4] ✓ – ✓ ✓ – ✓

Ref. [6] ✓ – – – ✓ –
Ref. [9] ✓ – – ✓ ✓ ✓

Ref. [14] ✓ – ✓ – ✓ –
Ref. [19] ✓ – – ✓ – ✓

Ref. [21] ✓ – – – ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓

LI: SCHEDULING PRECEDENCE CONSTRAINED TASKS FOR MOBILE APPLICATIONS IN FOG COMPUTING 2163

proposed algorithms, and found that ECLL-LRF and ECLL-
SRD are the best algorithms for energy-constrained schedul-
ing, and TCLL-LDF is the best algorithm for time-constrained
scheduling.

There are several research directions worth of further
exploration. First, there is still room for performance
improvement by considering more sophisticated and effi-
cient computation offloading strategies and power alloca-
tion strategies and new algorithmic schemes different from
pre-power-allocation algorithms and post-power-allocation
algorithms. Second, it is definitely interesting and challeng-
ing to analyze the performance of heuristic algorithms
when compared with optimal solutions. So far, little result
is known in this area even for independent tasks [13], and
much efforts and insights are required to bring break-
through and significant advancement.

ACKNOWLEDGMENTS

The author would like to express his gratitude to the anony-
mous reviewers for their criticism and comments on the
manuscript.

REFERENCES

[1] A. Bhattacharya and P. De, “A survey of adaptation techniques in
computation offloading,” J. Netw. Comput. Appl., vol. 78, pp. 97–115,
2017.

[2] M. Deng, H. Tian, and B. Fan, “Fine-granularity based application
offloading policy in cloud-enhanced small cell networks,” Proc.
IEEE Int. Conf. Commun. Workshops, 2016, pp. 638–643.

[3] R. L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM J. Appl. Math., vol. 2, pp. 416–429, 1969.

[4] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.

[5] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit formodeling and simulation of resourcemanagement techni-
ques in the Internet of Things, edge and fog computing environ-
ments,” Softw.: Pract. Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[6] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent
tasks for computation-intensive applications in mobile cloud
computing,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2014,
pp. 352–357.

[7] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:
Latency optimal task assignment for resource-constrained
mobile computing,” IEEE Trans. Mobile Comput., vol. 16, no. 11,
pp. 3056–3069,Nov. 2017.

[8] A. Kaur and N. Auluck, “Scheduling algorithms for hierarchical fog
networks,” Dec. 09, 2021. [Online]. Available: https://arxiv.org/
abs/2112.04715

[9] S. Khalili and O. Simeone, “Inter-layer per-mobile optimization of
cloud mobile computing: A message-passing approach,” Trans.
Emerg. Telecommun. Technol., vol. 27, no. 6, pp. 814–827, 2016.

[10] M. A. Khan, “A survey of computation offloading strategies for
performance improvement of applications running on mobile
devices,” J. Netw. Comput. Appl., vol. 56, pp. 28–40, 2015.

[11] K. Li, “Power allocation and task scheduling on multiprocessor
computers with energy and time constraints,” in Energy-Efficient
Distributed Computing Systems, A. Y. Zomaya and Y. C. Lee, Eds.,
Hoboken, NJ,USA: Wiley, 2012, pp. 1–37.

[12] K. Li, “Scheduling precedence constrained tasks with reduced
processor energy on multiprocessor computers,” IEEE Trans. Com-
put., vol. 61, no. 12, pp. 1668–1681, Dec. 2012.

[13] K. Li, “Heuristic computation offloading algorithms for mobile
users in fog computing,” ACM Trans. Embedded Comput. Syst.,
vol. 20, no. 2, 2021, Art no. 11.

[14] J. Liang, K. Li, C. Liu, and K. Li, “Joint offloading and scheduling
decisions for DAG applications in mobile edge computing,” Neu-
rocomputing, vol. 424, pp. 160–171, 2021.

[15] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization
in the mobile cloud computing environment,” IEEE Trans. Serv.
Comput., vol. 8, no. 2, pp. 175–186, Mar./Apr. 2015.

[16] B. Liu, X. Xu, L. Qi, Q. Ni, and W. Dou, “Task scheduling with
precedence and placement constraints for resource utilization
improvement in multi-user MEC environment,” J. Syst. Archit.,
vol. 114, 2021, Art. no. 101970.

[17] Y. Liu, C. Liu, J. Liu, Y. Hu, K. Li, and K. Li, “Mobility-aware and
code-oriented partitioning computation offloading in mobile edge
computing,” J. Grid Comput., vol. 20, 2022, Art. no. 11.

[18] X. Long, J. Wu, and L. Chen, “Energy-efficient offloading in
mobile edge computing with edge-cloud collaboration,” in Proc.
Int. Conf. Algorithms Architect. Parallel Process., 2018, pp. 460–475.

[19] P. D. Lorenzo, S. Barbarossa, and S. Sardellitti, Joint optimization of
radio resources and code partitioning in mobile edge computing,
Feb. 03, 2016. [Online]. Available: https://arxiv.org/abs/1307.
3835

[20] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surv.
Tut., vol. 19, no. 3, pp. 1628–1656, July.–Sep. 2017.

[21] S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal
joint scheduling and cloud offloading for mobile applications,”
IEEE Trans. Cloud Comput., vol. 7, no. 2, pp. 301–313, Apr.–Jun.
2019.

[22] M. Peixoto, T. Genez, and L. F. Bittencourt, “Hierarchical schedul-
ing mechanisms in multi-level fog computing,” IEEE Trans. Serv-
ices Comput., to be published, doi: 10.1109/TSC.2021.3079110.

[23] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R.
Govindan, “Odessa: Enabling interactive perception applications
on mobile devices,” in Proc. 9th Int. Conf. Mobile Syst., Appl., Serv.,
2011, pp. 43–56.

[24] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation par-
titioning for latency sensitive mobile cloud applications,” IEEE
Trans. Comput., vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a national distin-
guished professor with Hunan University, China.
His current research interests include cloud com-
puting, fog computing andmobile edge computing,
energy-efficient computing and communication,
embedded systems and cyber-physical systems,
heterogeneous computing systems, Big Data
computing, high-performance computing, CPU-
GPU hybrid and cooperative computing, computer

architectures and systems, computer networking, machine learning, intel-
ligent and soft computing. He has authored or coauthored more than 850
journal articles, book chapters, and refereed conference papers, and has
received several best paper awards. He holds more than 70 patents
announced or authorized by the Chinese National Intellectual Property
Administration. He is among the world’s top 5 most influential scientists in
parallel and distributed computing in terms of both single-year impact and
career-long impact based on a composite indicator of Scopus citation
database. He has chaired many international conferences. He is currently
an associate editor of theACMComputing Surveys and theCCF Transac-
tions on High Performance Computing. He has served on the editorial
boards of the IEEE Transactions on Parallel and Distributed Systems, the
IEEE Transactions on Computers, the IEEE Transactions on Cloud Com-
puting, the IEEE Transactions on Services Computing, and the IEEE
Transactions on Sustainable Computing. He is a fellow of the Asia-Pacific
Artificial Intelligence Association (AAIA). He is also a member of Acade-
mia Europaea (Academician of the Europe).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2164 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 3, MAY/JUNE 2023

https://arxiv.org/abs/2112.04715
https://arxiv.org/abs/2112.04715
https://arxiv.org/abs/1307.3835
https://arxiv.org/abs/1307.3835
http://dx.doi.org/10.1109/TSC.2021.3079110

	46-tsc-li-3192095-x

