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ABSTRACT
Unmanned aerial vehicles (UAVs) are widely used in various mili-
tary and civilian applications. UAV mission scheduling is a key issue
in UAV applications and a central topic in UAV research. UAV task
scheduling should include several constraints into consideration,
such as completion time constraint, flight distance constraint, and
resource consumption constraint. Furthermore, UAV task schedul-
ing should be studied within the traditional framework of combi-
natorial optimisation. In this paper, we consider optimal mission
scheduling for heterogeneous UAVswith completion time, flight dis-
tance, and resource consumption constraints. The contributions of
the paper are summarised as follows. We define two combinatorial
optimisation problems, namely, the NFTM (number of finished tasks
maximisation) problem and the RFTM (reward of finished tasks max-
imisation) problem.We construct an algorithmic framework for both
NFTM and RFTM problems, so that our heuristic algorithms (four for
NFTM and two for RFTM) can be presented in a unified way. We
derive upper bounds for optimal solutions, so that our heuristic solu-
tions can be compared with optimal solutions. We experimentally
evaluate the performance of our heuristic algorithms. To the best of
our knowledge, this is the first paper studying UAV mission schedul-
ing with time, distance, and resource constraints as combinatorial
optimisation problems.
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1. Introduction

1.1. Background

Unmanned aerial vehicles (UAVs), also called drones, arewidely used in variousmilitary and
civilian applications, such as construction inspection, disaster management, forest restora-
tion, precision agriculture, remote sensing, search and rescue, security and surveillance,
traffic monitoring (SCE). UAVs have created a new type of distributed systems and dynamic
environments (Machovec et al., 2023).

UAV mission scheduling is a key issue in UAV applications and a central topic in UAV
research. A typical scenario involves multiple heterogeneous UAVs (with different initial
locations, flight speeds, maximum flight distances, maximum flight times, and maximum
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resource consumptions) and multiple heterogeneous tasks (with different positions, pro-
cessing times, deadlines, resource requests, and rewards). UAVs are actually mobile and
location-sensitive (Tan et al., 2021) servers with limited energy capacity (C.-I. Li et al., 2021),
which move around to process tasks. UAV mission scheduling is essentially to dispatch
UAVs to fly, process, and complete tasks with various optimisation objectives under various
conditions and constraints.

UAV task scheduling (especially for rescue missions (Alhaqbani et al., 2021) and other
similar tasks) should include several constraints into consideration, such as completion time
constraint, flight distance constraint, and resource consumption constraint. (1) Comple-
tion time constraint – For a time-critical task, there is a deadline to complete the task. For
instance, in disaster rescue, the survival time of a victim is very limited. (2) Flight distance
constraint – AUAVhas certain flight distance limitationdue to limited energy supply (fuel or
electricity). (3) Resource consumption constraint – AUAV can only carry a certain amount of
resources required and requested by tasks due to limited capacity and space. Furthermore,
UAV task scheduling should be studied within the traditional framework of combinatorial
optimisation (K. Li, 2023).

1.2. Related work

It has been pointed out that there are two main considerations in UAV mission schedul-
ing, i.e. task assignment and flight planning (Bellingham et al., 2003; Peng et al., 2021;
Sebbane, 2021). Extensive research has been conducted in task assignment [including
such methods as fish-inspired algorithm (Alhaqbani et al., 2021), autonomous task allo-
cation (Aljalaud & Kurdi, 2021), leader-follower coalition (J. Chen & Sun, 2011), dynamic
grouping allocation (X. Chen et al. 2019), distributed task allocation (Cui et al., 2022), decen-
tralised auction algorithm (Hu & Yang, 2018), double-layer deep reinforcement learning
(Mao et al., 2022), human-agent collaboration (Ramchurn et al., 2015), mixed integer lin-
ear program (Schumacher et al., 2003), negotiation (Sujit et al., 2006), simulation-based
system (Sung et al., 2019), team-based approach (Venugopalan et al., 2015), quantum
genetic algorithm (Z. Wang & Yan, 2021), digital twin (Yi et al., 2023), and clone selec-
tion (Zhang & Chen, 2021)] and flight planning [including such methods as decentralised
algorithm (Bertuccelli et al., 2009), neural network (Filho et al., 2022), auction algorithm
(Fu et al., 2019), cooperative planning (L. Geng et al. 2014), particle swarm optimisation
(N. Geng et al., 2021), simulated annealing and local search (Ozkan, 2021), auction bid-
ding and resolution (Sullivan et al. 2019), distributed particle swarm optimisation (Y. Wang
et al., 2019), online algorithm (Yao & Ansari, 2020), deep migration reinforcement learn-
ing (Yin et al., 2022), and bat algorithm (Zhou et al., 2021)]. It is also noticed that the two
problems of task allocation and route planning should be considered together (Yan et al.,
2021).

A combinatorial optimisation approach has been adopted in K. Li (2023), where task
scheduling on heterogeneous UAVs was treated as NP-hard optimisation problems and
heuristic algorithms were designed and analysed. However, task completion time con-
straint, UAV flight distance constraint, and UAV resource consumption constraint were not
taken into account.
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1.3. Contributions

In this paper, we consider optimal (rescue) mission scheduling for heterogeneous UAVs
with completion time (e.g. survival time), flight distance, and resource consumption con-
straints. The contributions of the paper are summarised as follows.

• We define two combinatorial optimisation problems, namely, the NFTM (number of fin-
ished tasksmaximisation) problemand theRFTM (rewardof finished tasksmaximisation)
problem.

• We construct an algorithmic framework for both NFTM and RFTM problems, so that our
heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unifiedway.

• We derive upper bounds for optimal solutions, so that our heuristic solutions can be
compared with optimal solutions.

• We experimentally evaluate the performance of our heuristic algorithms.

To the best of our knowledge, this is the first paper studying UAV mission scheduling with
time, distance, and resource constraints as combinatorial optimisation problems.

The rest of thepaper is organisedas follows. In Section2,wepresentpreliminary informa-
tion, including a UAV mission scheduling model and our problem definitions. In Section 3,
we develop our heuristic algorithms. In Section 4, we derive upper bounds for optimal solu-
tions. In Section 5, we conduct an experimental performance evaluation for our heuristic
algorithms. In Section 6, we summarise the paper.

2. Preliminaries

In this section, we present preliminary information, including a UAV mission scheduling
model and our problem definitions. Table A1 lists all the notations and definitions used in
the paper.

2.1. Schedulingmodel

In this section, we describe our UAV mission scheduling model.
Ourmodel includesmUAVs: u1, u2, . . . , um, and nmissions (tasks) in a three-dimensional

space.
A UAV is specified as ui = (position(ui), speed(ui),maxdistance(ui),maxresource(ui)),

where position(ui) is the initial location of ui, speed(ui) is the flight speed of ui,
maxdistance(ui) is the maximum flight distance of ui, and maxresource(ui) is the maxi-
mum resource consumption of ui. For convenience, we also define maxtime(ui) to be the
maximum flight time of ui, which ismaxdistance(ui)/speed(ui).

Let L = (t1, t2, . . . , tn) be a list of tasks. A task is specified as tj = (position(tj), ptime(tj),
deadline(tj), request(tj), reward(tj)), where position(tj) is the position of tj, ptime(tj) is the
processing time of tj, deadline(tj) is time deadline to complete tj, request(tj) is the amount
of resource request of tj, and reward(tj) is the reward of completing tj.

Our scheduling problems essentially find route(ui), i.e. the flight route of ui, for all i. A
flight route is actually (ti,1, ti,2, . . . , ti,ni), i.e. a sequence of tasks.

Let dist(p, q) be the distance between locations p and q.
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For a route(ui) = (ti,1, ti,2, . . . , ti,ni) of ui, the total flight distance of ui is

distance(ui) = dist(position(ui), position(ti,1))+
ni−1∑
k=1

dist(position(ti,k), position(ti,k+1)).

The total flight time of ui is

ftime(ui) = distance(ui)/speed(ui).

The total processing time of ui is

ptime(ui) =
ni∑
k=1

ptime(ti,k).

The total time of ui is the total flight time+ the total processing time:

time(ui) = ftime(ui)+ ptime(ui).

The total resource consumption of ui is

resource(ui) =
ni∑
k=1

request(ti,k).

Initially, the current location of ui is

location(ui) = position(ui),

and when ui moves to ti,k ,

location(ui) = position(ti,k).

The completion time of ti,k is

ctime(ti,k) =
1

speed(ui)

⎛
⎝dist(position(ui), position(ti,1))

+
k−1∑
k′=1

dist(position(ti,k′), position(ti,k′+1))

⎞
⎠+

k∑
k′=1

ptime(ti,k′).

Let F be the set of finished tasks, i.e.

F = {tj | ctime(tj) ≤ deadline(tj)}.
Let N be the number of finished tasks, i.e.

N = |F|.
Let R the total reward of finished tasks, i.e.

R =
∑
tj∈F

reward(tj).
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2.2. Optimization problems

In this section, we define our combinatorial optimisation problems.
We define two UAVmission scheduling problems.
The first problem is called number of finished tasksmaximisation (NFTM). Givenm hetero-

geneous UAVs and a list of tasks, the NFTM problem is to maximise the number of finished
tasks, such that the completion of each task does not exceed its time deadline, the total
flight distance of a UAVdoes not exceed itsmaximum flight distance, and the total resource
consumption of a UAV does not exceed its maximum resource consumption.

Problem 2.1: Number of Finished Tasks Maximization (NFTM)

Input: m UAVs: u1, u2, . . . , um, where ui = (position(ui), speed(ui),maxdistance(ui),
maxresource(ui)), and a list of tasks L = (t1, t2, . . . , tn), where tj=(position(tj), ptime(tj),
deadline(tj), request(tj)).
Output: route(ui) for all i, such that N is maximised and ctime(tj) ≤ deadline(tj) for all j,
distance(ui) ≤ maxdistance(ui) for all i, and resource(ui) ≤ maxdistance(ui) for all i.

We would like tomention that the NFTM problem is NP-hard even if there is no distance
and resource consideration, i.e. maxdistance(ui) = ∞ and maxresource(ui) = ∞ for all i,
and request(tj) = 0 for all j, and all tasks have a common time deadline, i.e. deadline(tj) = D
for all j (K. Li 2023).

The second problem is called reward of finished tasksmaximisation (RFTM). Givenm het-
erogeneous UAVs and a list of tasks, the RFTM problem is to maximise the total reward of
finished tasks, such that the completion of each task does not exceed its time deadline, the
total flight distance of a UAV does not exceed its maximum flight distance, and the total
resource consumption of a UAV does not exceed its maximum resource consumption.

Problem 2.2: Reward of Finished Tasks Maximization (RFTM)

Input: m UAVs: u1, u2, . . . , um, where ui = (position(ui), speed(ui),maxdistance(ui),
maxresource(ui)), and a list of tasks L = (t1, t2, . . . , tn), where tj=(position(tj), ptime(tj),
deadline(tj), request(tj), reward(tj)).
Output: route(ui) for all i, such that R is maximised and ctime(tj) ≤ deadline(tj) for all j,
distance(ui) ≤ maxdistance(ui) for all i, and resource(ui) ≤ maxdistance(ui) for all i.

It is clear that NFTM is a special case of RFTM (when all rewards are identical). Therefore,
the RFTM problem is also NP-hard.

3. Heuristic algorithms

In this section, we develop our heuristic algorithms.

3.1. An algorithmic framework

In this section, we present an algorithmic framework for bothNFTMand RFTM, such that our
heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way.
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Algorithmic Framework

for (each ui) do (1)
route(ui)← an empty list; (2)
time(ui)← 0; (3)
distance(ui)← 0; (4)
resource(ui)← 0; (5)
location(ui)← position(ui); (6)

end do; (7)
for (each tj) do (8)

calculate best(tj); (9)
end do; (10)
N← 0; (11)
R← 0; (12)
while (there is still task in L) do (13)

if (best(tj) is undefined for all tj in L) (14)
break; (15)

find tj such that gain(best(tj), tj) is the (minimum for NFTM)/(maximum for
RFTM); (16)

ui ← best(tj); (17)
append tj to route(ui); (18)
remove tj from L; (19)
N← N+ 1; (20)
R← R+ reward(tj); (21)
time(ui)← time(ui)+ ftime(ui, tj)+ ptime(tj); (22)
distance(ui)← distance(ui)+ dist(location(ui), position(tj)); (23)
resource(ui)← resource(ui)+ request(tj); (24)
location(ui)← position(tj); (25)
update gain(ui, tj) and best(tj) for all tj in L; (26)

end do; (27)
return N for NFTM or R for RFTM. (28)

We define a condition:

feasible(ui, tj) = (time(ui)+ ftime(ui, tj)+ ptime(tj) ≤ deadline(tj))

and (distance(ui)+ dist(location(ui), position(tj)) ≤ maxdistance(ui))

and (resource(ui)+ request(tj) ≤ maxresource(ui)),

which means that based on its current situation, ui can flight to tj and process tj, without
violating any time deadline, flight distance, or resource consumption constraint.

Letgain(ui, tj)be an evaluation function ofui and tj, only if feasible(ui, tj) is true. The exact
definition of gain(ui, tj) depends on a specific algorithm.

We define best(tj) to be the ui with the minimum/maximum gain(ui, tj):

ui = argmin/argmax{gain(ui, tj)}, forall ui such that feasible(ui, tj) = true,
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where, for NFTM, we choose the minimum, and for RFTM, we choose the maximum. Note
that best(tj) is undefined, if there is no ui such that feasible(ui, tj) is true.

All our heuristic algorithms follow the same algorithmic framework. Lines (1)–(12) ini-
tialise the UAVs and the tasks. The main body of the algorithm is in lines (13)–(27). In each
repetition of the while-loop, the tj which has theminimum gain(best(tj), tj) for NFTM or the
maximum gain(best(tj), tj) for RFTM is identified (line (16)), i.e. a greedymethod is adopted.
Task tj is then assigned to ui = best(tj) (lines (17)–(21)), and the status of ui is updated (lines
(22)–(25)). All remaining tasks also update their status (line (26)). Thewhile-loop is repeated
until there is no more task to schedule (line (13)) or no task can be scheduled anymore due
to time deadline, flight distance, and resource consumption constraints (lines (14)–(15)).

It is clear that the most time-consuming step is line (26), which takes O(mn) time. Since
the while-loop can be repeated n times, the overall time complexity of the algorithm is
O(mn2).

3.2. Algorithms for NFTM

In this section, we present four heuristic algorithms for the NFTM problem. Each algorithm
has its own gain(ui, tj).

• Algorithm 1: Earliest Deadline First (EDF)

gain(ui, tj) = (deadline(tj), dist(location(ui), position(tj))× request(tj)).

• Algorithm 2: Shortest Distance First (SDF)

gain(ui, tj) = (dist(location(ui), position(tj)), deadline(tj)× request(tj)).

• Algorithm 3: Least Request First (LQF)

gain(ui, tj) = (request(tj), deadline(tj)× dist(location(ui), position(tj))).

• Algorithm 4: EDF-SDF-LQF

gain(ui, tj) = (deadline(tj)× dist(location(ui), position(tj))× request(tj), j).

Note that the result of gain(ui, tj) is a pair of values to break ties. To compare a pair, we
define (u1, u2) < (v1, v2) if and only if (u1 < v1), or, (u1 = v1) and (u2 < v2).

3.3. Algorithms for RFTM

In this section, we present two heuristic algorithms for the RFTM problem. Each algorithm
has its own gain(ui, tj).

• Algorithm 5: Highest Reward First (HRF)

gain(ui, tj) = (reward(tj), 1/(deadline(tj)× dist(location(ui), position(tj))×request(tj))).
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• Algorithm 6: EDF-SDF-LQF-HRF

gain(ui, tj) = (reward(tj)/(deadline(tj)× dist(location(ui), position(tj))

× request(tj)), 1/j).

Note that Algorithms 5 and 6 become Algorithm 4 if all rewards are identical.
Similarly, to compare a pair, we define (u1, u2) > (v1, v2) if and only if (u1 > v1), or, (u1 =

v1) and (u2 > v2).

4. Upper bounds

In this section, we derive upper bounds for optimal solutions.

4.1. An upper bound for NFTM

In this section, we derive an upper bound for the optimal solutionN∗ of the NFTMproblem.
We give three possible upper bounds and then take the minimum of them.

We define Nt to be the number of tj’s such that

min
1≤i≤m

{dist(position(ui), position(tj))/speed(ui)} + ptime(tj) ≤ deadline(tj),

where the left-hand side is the minimum possible completion time of tj. It is clear that N ≤
Nt .

We define

Distance =
m∑
i=1

maxdistance(ui).

Let dist(tj) be the minimum distance to reach tj, i.e.

dist(tj) = min
{
min
1≤i≤m

{dist(position(ui), position(tj))}, min
j′ �=j
{dist(position(tj′), position(tj))}

}
,

where only those ui’s with

dist(position(ui), position(tj))/speed(ui)+ ptime(tj) ≤ deadline(tj)

are considered. Assume that

dist(t1) < dist(t2) < · · · < dist(tn).

Let Nd = k, where k is the largest integer satisfying:

dist(t1)+ dist(t2)+ · · · + dist(tk) ≤ Distance.

It is clear that N ≤ Nd .
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We define

Resource =
m∑
i=1

maxresource(ui).

Assume that

request(t1) < request(t2) < · · · < request(tn),

where each tj satisfies

min
1≤i≤m

{dist(position(ui), position(tj))/speed(ui)} + ptime(tj) ≤ deadline(tj).

Let Nr = k, where k is the largest integer satisfying:

request(t1)+ request(t2)+ · · · + request(tk) ≤ Resource.

It is clear that N ≤ Nr .
To summarise, we get an upper bound for the NFTM problem: N∗ ≤ Nub =

min{Nt ,Nd ,Nr}.

4.2. An upper bound for RFTM

In this section, we derive an upper bound for the optimal solution R∗ of the RFTM problem.
We give three possible upper bounds and then take the minimum of them.

Let time(tj) be the minimum time to reach tj + the processing time of tj:

time(tj) = dist(tj)

/
max
1≤i≤m

{speed(ui)} + ptime(tj) .

We define

Time =
m∑
i=1

maxtime(ui).

Assume that

reward(t1)/time(t1) > reward(t2)/time(t2) > · · · > reward(tn)/time(tn),

where each tj satisfies

min
1≤i≤m

{dist(position(ui), position(tj))/speed(ui)} + ptime(tj) ≤ deadline(tj).

k is the largest integer satisfying:

time(t1)+ time(t2)+ · · · + time(tk) ≤ Time.

Let

Rt = reward(t1)+ reward(t2)+ · · · + reward(tk)

+ (reward(tk+1)/time(tk+1))(Time− (time(t1)+ time(t2)+ · · · + time(tk)).

It is clear that R ≤ Rt .
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Assume that

reward(t1)/dist(t1) > reward(t2)/dist(t2) > · · · > reward(tn)/dist(tn),

where each tj satisfies

min
1≤i≤m

{dist(position(ui), position(tj))/speed(ui)} + ptime(tj) ≤ deadline(tj).

k is the largest integer satisfying:

dist(t1)+ dist(t2)+ · · · + dist(tk) ≤ Distance.

Let

Rd = reward(t1)+ reward(t2)+ · · · + reward(tk)

+ (reward(tk+1)/dist(tk+1))(Distance− (dist(t1)+ dist(t2)+ · · · + dist(tk)).

It is clear that R ≤ Rd .
Assume that

reward(t1)/request(t1) > reward(t2)/request(t2) > · · · > reward(tn)/request(tn),

where each tj satisfies

min
1≤i≤m

{dist(position(ui), position(tj))/speed(ui)} + ptime(tj) ≤ deadline(tj).

k is the largest integer satisfying:

request(t1)+ request(t2)+ · · · + request(tk) ≤ Resource.

Let

Rr = reward(t1)+ reward(t2)+ · · · + reward(tk)

+ (reward(tk+1)/request(tk+1))(Resource− (request(t1)+ request(t2)

+ · · · + request(tk)).

It is clear that R ≤ Rr .
To summarise, we get an upper bound for the RFTMproblem: R∗ ≤ Rub = min{Rt , Rd , Rr}.

5. Experimental performance evaluation

In this section, we conduct an experimental performance evaluation for our heuristic
algorithms.
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Table 1. Simulation results of algorithm EDF (99% Confidence Interval= ±0.46928%).
n τ = 30 τ = 50 τ = 70 τ = 90

20 0.96879 0.96879 0.96879 0.96879
40 0.98300 0.98174 0.98313 0.98269
60 0.98621 0.98779 0.98669 0.98743
80 0.98874 0.98708 0.98900 0.98782
100 0.98894 0.98999 0.98904 0.98138
120 0.98874 0.98923 0.98095 0.91100
140 0.99018 0.98584 0.92321 0.80585
160 0.98890 0.95761 0.83408 0.71618
180 0.98612 0.89413 0.75084 0.64512
200 0.97099 0.82152 0.68318 0.58864

5.1. Parameter setting

Assume that a three-dimensional space [−3000, 3000]× [−3000, 3000]× [0, 300] has coor-
dinatesmeasured inmeters (m). Aposition is specified as (x, y, z). Thedistancebetween two
positions p1 = (x1, y1, z1) and p2 = (x2, y2, z2) is

dist(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

We consider m = 4 UAVs with the following parameters. The position(ui)’s are (d, 0, 100),
(0, d, 100), (−d, 0, 100), (0,−d, 100), where d = 2000m. The speed(ui)’s are i.i.d. random
variables uniformly distributed in the range [20, 30]m/s. The maxtime(ui)’s are i.i.d. ran-
dom variables uniformly distributed in the range [1, 2] hours, i.e. [3600, 7200] seconds. The
maxdistance(ui)’s are i.i.d. random variables uniformly distributed in the range [72, 216]
km, i.e. [72000, 216000]m. The maxresource(ui)’s are i.i.d. random variables uniformly dis-
tributed in the range [0.8, 1.2]× 10.5× (n/m), where 10.5 = (1+ 20)/2.

The number of tasks is n = 20, 40, . . . , 200. The position(tj)’s are i.i.d. random variables
uniformlydistributed in the space [−3000, 3000]× [−3000, 3000]× [0, 300]. Theptime(tj)’s
are i.i.d. random variables uniformly distributed in the range [τ , 2τ ], where τ = 30, 50,
70, 90 s. The deadline(tj)’s are i.i.d. random variables uniformly distributed in the range
[600, 6000] s, i.e. [10, 100]min. The request(tj)’s are i.i.d. random variables uniformly dis-
tributed in the set {1, 2, . . . , 20}. The reward(tj)’s are i.i.d. random variables uniformly
distributed in the set {1, 2, . . . , 10}.

5.2. Simulation results

In this section, we show our simulation results.
In Tables 1–6, we demonstrate our experimental data for the six algorithms respectively.

In each table, for each combination of n and τ , we generate M = 500 random samples of
input (i.e.m random UAVs and n random tasks), execute the corresponding algorithm, cal-
culate the upper bound Nub or Rub, and record the ratio N/Nub or R/Rub. The average of the
M ratios is shown in the table, together with the maximum 99% confidence interval of all
the data in the table.

We have the following observations.
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Table 2. Simulation results of algorithm SDF (99% Confidence Interval= ±0.56354%).
n τ = 30 τ = 50 τ = 70 τ = 90

20 0.96427 0.96304 0.96122 0.95682
40 0.98077 0.97127 0.95773 0.94147
60 0.97686 0.95861 0.93333 0.90358
80 0.96766 0.93646 0.90027 0.86006
100 0.95532 0.91155 0.86334 0.81139
120 0.93995 0.88432 0.82392 0.76838
140 0.92456 0.85614 0.79140 0.72371
160 0.90604 0.83067 0.75564 0.68581
180 0.89036 0.80217 0.72295 0.64858
200 0.87328 0.77614 0.69010 0.61395

Table 3. Simulation results of algorithm LQF (99% Confidence Interval= ±0.65958%).
n τ = 30 τ = 50 τ = 70 τ = 90

20 0.94659 0.94899 0.94869 0.94594
40 0.97213 0.96499 0.95492 0.94350
60 0.96773 0.94442 0.91920 0.89714
80 0.94702 0.90696 0.87351 0.82865
100 0.91255 0.86458 0.81323 0.76968
120 0.88618 0.82171 0.76416 0.71238
140 0.85169 0.78143 0.72001 0.66233
160 0.81928 0.74586 0.67831 0.61639
180 0.79194 0.71003 0.63661 0.57572
200 0.75945 0.67618 0.59904 0.53799

Table 4. Simulation results of algorithm EDF-SDF-LQF (99% Confidence Interval= ±0.51538%).
n τ = 30 τ = 50 τ = 70 τ = 90

20 0.95972 0.95982 0.95821 0.95772
40 0.98237 0.98140 0.97977 0.97578
60 0.98684 0.98371 0.97479 0.95891
80 0.98823 0.97656 0.95413 0.91940
100 0.98442 0.96106 0.91993 0.87167
120 0.97905 0.93774 0.88147 0.81223
140 0.96626 0.90575 0.83333 0.75970
160 0.95241 0.87554 0.79106 0.71064
180 0.93625 0.84094 0.74889 0.66408
200 0.91596 0.81025 0.70996 0.62270

• For theNFTMproblem,when n and τ are small, Algorithm EDF has the best performance
in the sense that it has the highest N/Nub ratio. As n and τ increase, Algorithm EDF-SDF-
LQF performs the best.

• For the RFTM problem, Algorithm EDF-SDF-LQF-HRF consistently has the best perfor-
mance in the sense that it has the highest R/Rub ratio.

• For all algorithms, as n and τ increase, the ratios N/Nub and R/Rub decrease, because the
number of completed tasks decreases due to more tasks missing their time deadlines
and insufficient flight distance and resource supplies.

• SinceN and R are comparedwithNub and Rub respectively, the actual performance ratios
N/N∗ or R/R∗ should be higher than those in the tables.
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Table 5. Simulation results of algorithm HRF (99% Confidence Interval= ±0.61934%).
n τ = 30 τ = 50 τ = 70 τ = 90

20 0.98581 0.98542 0.98431 0.98157
40 0.99186 0.98774 0.97966 0.97129
60 0.98514 0.97326 0.95532 0.93622
80 0.97147 0.94784 0.92281 0.89399
100 0.95395 0.92390 0.88792 0.85624
120 0.93422 0.89484 0.85166 0.81520
140 0.91448 0.86560 0.82076 0.77901
160 0.89281 0.83922 0.79080 0.75529
180 0.87456 0.81260 0.76273 0.74092
200 0.85233 0.79053 0.74130 0.73689

Table 6. Simulation results of algorithm EDF-SDF-LQF-HRF (99% Confidence Interval= ±0.66539%).
n τ = 30 τ = 50 τ = 70 τ = 90

20 0.96337 0.96337 0.96350 0.96547
40 0.98614 0.98675 0.98471 0.98190
60 0.99171 0.98761 0.98031 0.96884
80 0.99172 0.98093 0.96153 0.93703
100 0.98772 0.96713 0.93266 0.89437
120 0.98198 0.94844 0.90143 0.84890
140 0.97118 0.92401 0.86701 0.80946
160 0.95940 0.90033 0.83054 0.77652
180 0.94628 0.87335 0.80160 0.76125
200 0.93124 0.84747 0.77305 0.74723

6. Summary

For the first time in the literature, we have investigated optimal task scheduling for hetero-
geneousUAVswith completion time, flight distance, and resource consumption constraints
within the framework of combinatorial optimisation. Our study has three unique features.
First, we consider multiple resource and requirement constraints simultaneously. Second,
we develop an algorithmic framework for all our heuristic algorithms. Third, we compare
our heuristic solutions with optimal solutions.
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Appendix

Table A1. Notations and definitions.

Notation Definition

m number of UAVs
n number of tasks
ui a UAV
position(ui) initial location of ui
speed(ui) flight speed of ui
maxdistance(ui) the maximum flight distance of ui
maxresource(ui) the maximum resource consumption of ui
maxtime(ui) the maximum flight time of ui
route(ui) flight route of ui ,= (ti,1, ti,2, . . . , ti,ni ), a sequence of tasks
distance(ui) total flight distance of ui
ftime(ui) total flight time of ui
ptime(ui) total processing time of ui
time(ui) total time of ui , i.e.(total flight time+ total processing

time) of ui
resource(ui) total resource consumption of ui
location(ui) current location of ui
L a list of tasks
tj a task
position(tj) position of tj
ptime(tj) processing time of tj
deadline(tj) time deadline to complete tj
request(tj) amount of resource request of tj
reward(tj) reward of completing tj
ctime(tj) completion time of tj
dist(tj) the minimum distance to reach tj
time(tj) the minimum time to reach tj + the processing time of tj
best(tj) the ui with the minimum/maximum gain(ui , tj)
dist(p, q) distance between locations p and q
ftime(ui , tj) flight time from ui to tj
F the set of finished tasks
N the number of finished tasks
N∗ the optimal solution of the NFTM problem
Nt ,Nd ,Nr ,Nub upper bounds for N∗
R the total reward of finished tasks
R∗ the optimal solution of the RFTM problem
Rt , Rd , Rr , Rub upper bounds for R∗
Distance the sum ofmaxdistance(ui) for all ui ’s
Resource the sum ofmaxresource(ui) for all ui ’s
Time the sum ofmaxtime(ui) for all ui ’s
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