
Future Generation Computer Systems 106 (2020) 412–425

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Modeling and optimization of packet forwarding performance in
software-definedWAN
Jinyuan Zhao a,b, Zhigang Hu a,∗, Bing Xiong c, Liu Yang a, Keqin Li d
a School of Computer Science and Engineering, Central South University, Changsha 410075, PR China
b School of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, PR China
c School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
d Department of Computer Science, State University of New York at New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:
Received 21 June 2019
Received in revised form 21 August 2019
Accepted 6 December 2019
Available online 7 January 2020

MSC:
00-01
99-00

Keywords:
Controller cluster deployments
OpenFlow switches
Optimization models
Queueing system
Software-defined networking
Wide-area networks

a b s t r a c t

As a novel network paradigm, Software-Defined Networking (SDN) offers numerous benefits for
wide-area networks (WAN), like promoting application performance and reducing deployment costs.
However, it also comes along with an inherent penalty to essential network performance such as
packet forwarding delay, primarily due to the involvement of logically centralized controllers. This
paper is motivated to provide an accurate queueing system of packet forwarding performance in
software-defined WAN based on modeling its controller cluster and OpenFlow switches. In particular,
we approximate the packet-in message processing of the controller cluster as an M/M/n queue based
on the derivation of its message arrival process. Meanwhile, we characterize the packet processing
of an OpenFlow switch as an M/G/1 queue after taking an insight into its packet switching process.
As a further step, we build an optimization model of controller cluster deployments to obtain the
optimal number of controllers in the cluster. Finally, our proposed queueing model of SDN controller
cluster is evaluated with the prevalent benchmark OFsuite_Performance by experiments, and their
results indicate that our proposed model provides a more accurate approximation of controller cluster
performance. Furthermore, we perform numerical analysis on packet forwarding delay and solve the
optimal number of controllers for different varying parameters, which offer effective guidelines for
software-defined WAN deployments.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

As a novel network paradigm, Software-Defined Networking
(SDN) separates network control from data forwarding devices,
and allows for a separate controller entity to manipulate sub-
strate switches through southbound interface typically Open-
Flow [1,2]. The paradigm paves the way for a more flexible,
programmable, and innovative networking, and is commonly re-
garded as one of the promising directions towards future Internet.
Over the past several years, OpenFlow-based SDN concept has
already come into implementations in a variety of production
networks such as wide-area networks (WAN), and provided nu-
merous benefits like enhancing data transfer efficiency, promot-
ing application performance, and reducing deployment costs [3,
4]. As a pioneer enterprise, Google designed and implemented a
private software-defined WAN (SD-WAN) called B4 connecting its
data centers across the planet as early as 2013 [5], and incre-
mentally moved from offering best-effort content-copy services
to carrier-grade availability for the following 5-year evolution [6].
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In SDN architecture, the control plane is responsible for con-
structing a global network view based on topology discovery,
and administrating data forwarding behaviors of all underlying
switches. This is prone to incur serious performance bottlenecks
of logically centralized control plane, and brings about an inher-
ent penalty to essential network performance typically packet
forwarding delay. For example, the NOX controller roughly han-
dles 30 k flow setup requests per second at most in case of
keeping flow setup time at 15 ms [7], while a data center with 100
switches can generate 1M flow setup requests per second at the
worst [8]. This implies that a single controller is incapable of han-
dling all flow setup requests from OpenFlow switches especially
in SD-WAN scenarios. Thus it is imperative to deploy multiple
controllers in the control plane typically in the form of a cluster.
When it comes to SD-WAN deployments, it is a prerequisite to
understand their network performance and limitation.

Queueing theory has been widely applied in network per-
formance evaluation, due to its unique advantage of a quick
performance approximation [9]. Initially, some researchers built
queueing models of SDN controllers by characterizing their flow
setup requests as batch arrival process [10,11]. However, the
batch arrivals could not exactly describe the pattern of flow setup
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requests from multiple switches. A few literatures concentrated
on queueing models of OpenFlow switches with an arbitrary
assumption that packet switching time conforms to exponential
distribution [12,13] without a careful investigation into packet
switching process. More close to our work, several analytical
models of OpenFlow-based SDN approximate the data plane as
an open Jackson network with the controller also modeled as a
M/M/1 queue [14,15]. Nevertheless, these work was carried out
on hypothetical queueing parameters lacking of deep insights into
practical queueing characteristics in specific network scenarios.

For the above situations, this paper is motivated to provide an
accurate queueing system of packet forwarding performance in
software-defined WAN. To achieve this aim, we firstly depict a
typical deployment scenario of software-defined WAN. Then, we
model the packet processing of each switch and the packet-in
message processing of the controller cluster, based on investi-
gates into their queueing parameters. Subsequently, we construct
a queueing system of packet forwarding to derive average packet
delay through an OpenFlow switch. Furthermore, we build an
optimization model of controller cluster deployments to solve the
optimal number of controllers. Finally, we evaluate the queueing
model of SDN controller clusters with the prevalent benchmark
OFsuite_Performance, carry out numerical analysis on packet for-
warding delay, and solve the optimal number of controllers for
different varying parameters.

With the above methodology, this paper aims to achieve the
following conclusions as our main contributions: (a) pointing out
that the packet processing time of an OpenFlow switch conforms
to general distribution due to its multiple processing steps; (b)
concluding that packet-in message arrivals at SDN controller clus-
ters can be characterized as Poisson stream in software-defined
WAN; (c) building a queueing system of packet forwarding per-
formance in software-defined WAN with its controller cluster and
OpenFlow switches respectively modeled as M/M/n and M/G/1
queues; (d) proposing an optimization model of controller cluster
deployments, based on average packet forwarding delay through
an OpenFlow switch; (e) solving the optimization model to obtain
the optimal number of controllers in the cluster, based on the
proof of the convexity of its objective function.

The reminder of the paper is organized as follows. Section 2
introduces related work. In Section 3, we give a typical deploy-
ment scenario of software-defined WAN. Section 4 models the
packet-in message processing of a controller cluster as an M/M/n
queue based on the derivation of its message arrival process.
In Section 5, we apply the M/G/1 model to characterize the
packet processing of an OpenFlow switch based on investiga-
tions into its packet switching process. Section 6 formulates a
queueing system of packet forwarding performance in software-
defined WAN, and builds an optimization model of controller
cluster deployments. In Section 7, we evaluate the queueing
model of SDN controller clusters with the prevalent benchmark
OFsuite_Performance, perform numerical analysis on packet for-
warding delay, and solve the optimal number of controllers in
terms of different parameters. Section 8 concludes the paper.

2. Related work

The SDN paradigm offers flexible, dynamic, and programmable
functionality of network systems by decoupling control logic from
its underlying switches, and introducing a separate control entity
to manage and control the network via programming. However,
these advantages come with non-negligible penalty to essential
network performance such as packet forwarding delay, due to the
involvement of logically centralized controllers. Until now, there
are a variety of different OpenFlow controllers including NOX,

NOX-MT, POX, ONOS, Beacon, Maestro, Ryu, Floodlight, Open-
Daylight. These controllers have their own performance char-
acteristics as a result of their design with different technical
architecture, implementations in diverse languages and develop-
ments by various vendors/research groups. Several measurement
tools such as Cbench [16], hcprobe [17], OFsuite_Performance,
have been developed to evaluate controller performance with
different metrics including latency, throughput, scalability [18].
However, it still needs to spend considerable time for simulation
studies or expensive experimental platform setups with these
tools. In contrast, analytical models typically based on queueing
theory can provide closed-form descriptions of a networking
architecture in a few seconds, and have been widely applied to
characterize SDN performance.

A few literatures focused on queueing models of controllers
as a performance bottleneck in the SDN paradigm. Zuo et al. [10]
modeled SDN control plane as Mm/M/1/B by introducing mul-
tiple arrivals and single departure queueing system, and derived
the queueing delay of flow setup requests in the controller un-
der different network size and traffic load levels. Similarly, Yao
et al. [11] also characterized flow setup requests at controllers
as batch arrival process, and achieved the Mk/M/1 model to
estimate average flow service time. However, both models did
not reach precise delay estimation, since the batch arrival pro-
cess could not accurately characterize the pattern of flow setup
requests from multiple switches. Wang et al. [19] modeled mul-
tiple SDN controllers’ performance by using queuing theory, and
found that multiple controllers’ approach is an effective way to
increase the control plane’s scalability of SDN, but also results
in longer sojourn time. Meanwhile, Fu et al. developed [20] a
dormant multi-controller model for centralized multi-controller
architecture, i.e., M/M/c queue with N policy and (d, c) vaca-
tion mechanism, which allows a part of idle controllers to enter
the dormant state under light traffic. Moreover, they established
an expected total cost function with key queueing performance
metrics, to find the optimal values of various parameters includ-
ing the number of controllers. However, their cost function did
not take into account the expenditure of the controllers. Sub-
sequently, we built an optimization model of controller cluster
deployments in consideration of their expenditure to solve the
optimal number of controllers in the cluster, by modeling the
packet-in message processing of a controller cluster as an M/M/n
queue [21].

Some researchers attempted to build precise queueing mod-
els of OpenFlow switches. Metter et al. [12,13] formulated a
simple analytical model based on M/M/∞ queueing system to
understand the impact of flow time-out period on flow table
occupancy and controller signaling traffic for different network
traffic characteristics. Sood et al. [22] exploited the capabilities of
the M/Geo/1 queueing model to analyze key performance factors
of a SDN switch without the interaction of its controller, including
flow-table size, packet arrival rate, number and position of rules.
These queueing models were lack of consideration on the priori-
ties of packet flows and Quality of Service (QoS). To address this
problem, Miao et al. [23] presented a preemption-based packet
scheduling scheme for SDN data plane, and developed an ana-
lytical model to achieve its quantitative performance evaluation
and pinpoint the performance bottleneck in SDN architecture.
As a further step, they characterized bursty traffic generated by
multimedia applications as Markov-Modulated Poisson Process
(MMPP), and modeled SDN data plane as a priority-queue system
to capture the multi-queue nature of forwarding devices [24].
The priority-queue system is decomposed into two single server
single queue models by applying and extending the Empty Buffer
Approximation (EBA) method, and their key performance metrics
were derived in terms of average latency and network through-
put. Similarly, Liu et al. [25,26] proposed a prioritized service
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queueing model for SDN data plane, evaluated its QoS with self-
similar input traffic, and derived the probability distribution of its
queue length by introducing Large Deviation Principle (LDP).

Closely related to our work, Jarschel et al. abstracted
OpenFlow-based SDN architecture as a feedback-oriented queue-
ing system, where its controller and each switch are respectively
modeled as M/M/1 − S and M/M/1 queues [27]. They ana-
lyzed the forwarding speed and blocking probabilities of the
architecture, and estimated packet sojourn time and packet loss
probability in such a system. However, the system was just
designed for a simple network scenario, where a controller is
responsible for only a single switch in the data plane. Mahmood
et al. further proposed an analytical model of OpenFlow net-
work performance by approximating the data plane as an open
Jackson network with the controller also modeled as an M/M/1
queue [14]. They derived the probability distribution function
(PDF) and the cumulative distribution function (CDF) of packet
forwarding time for a given path. Similarly, Li et al. adopted
Jackson’s theorem to model file transmission process in Software
Defined Satellite Networks (SDSN), and carried out numerical
analysis to evaluate impact factors of file sojourn time [15].
Nevertheless, these models was built on arbitrary hypothesis of
queueing parameters for viable derivation of network perfor-
mance metrics. Xiong et al. built a queueing model of packet
forwarding in OpenFlow-based SDN, by modeling the packet
forwarding of its switches and the packet-in message processing
of its controller respectively as MX/M/1 and M/G/1 queues, and
solved the closed-form expression of packet sojourn time and
its PDF [28]. AlGhadhban et al. presented a delay model of flow
setup process with consideration of matching probabilities under
proactive and reactive flow setup modes [29]. They modeled both
the data-plane device and the southbound channel as M/M/1
and the control-plane device as M/G/1, and derived the overall
system capacity and blocking probability. But all above queueing
models were built for small-scale network scenarios with a single
controller, which are not applicable to the SD-WAN deployments.

3. Software-defined wide-area networks

The increasing number of Internet users and smart mobile
terminals have driven a continuous emergence of data-intensive
network applications and services such as Internet television,
live streaming, and short video sharing. These applications and
services generate massive data transmission across wide-area
networks, and put forwards higher demands on the quality of
service and upper-level application performance. By introducing
the concept of software-defined networking, a WAN will obtain
many technical advantages, including transport independence,
intelligent path control, application optimization, secure connec-
tivity, automatic configuration and management. Consequently,
the emerging paradigm of software-defined WAN will become a
significant trend for enterprises to save deployment cost, release
human resources, and acquire fast, stable, secure transmission
service [5,6].

In the SD-WAN paradigm, logically centralized control plane
takes charge of all packet forwarding devices connecting a variety
of cloud platforms, data centers, enterprises and their branches
to Internet. A single controller tends to become a performance
bottleneck in such a large-scale network, which results in a nat-
ural consequence of multiple controller solutions [30,31]. Fig. 1
demonstrates a typical SD-WAN deployment scenario. In this
scenario, OpenFlow switches connect cloud data centers, enter-
prise headquarters and their branches to Internet through various
kinds of high-speed links including MPLS, Ethernet, leased line,
xDSL, SDH, 3G/4G LTE. The controller cluster provides the func-
tion of topology management, path computation, data security
and policy control over global networks.

Fig. 1. A typical SD-WAN deployment scenario.

Fig. 2. The packet-in message processing of the controller cluster.

In the above SD-WAN scenario, OpenFlow switches simply
forward packets in terms of their flow table entries decided by
the global controller cluster. As for an arrived packet, an Open-
Flow switch parses it to extract all necessary header fields at
each protocol layer, and computes its flow identifier with them.
Subsequently, the flow identifier is utilized to match against flow
tables to locate an entry. If an entry is successfully matched, its
actions will be applied to the packet, generally forwarded to the
next station. Otherwise, the packet is supposed to belong to an
emerging flow. In such case, the switch should deliver a flow
setup request in encapsulation of the packet partly or wholly,
i.e., a packet-in message, to the controller cluster for instructions.
The controller cluster generates the respective flow rule based on
global network view, and installs it to the switch. After that, the
switch will process all packets within the flow in terms of the
rule.

4. Queueing model of SDN controller cluster

Network data transmission is primarily manifested as a se-
quence of packet flows in network traffic. As depicted in the
previous section, an OpenFlow switch will transmit a packet-in
message to the controller cluster for each new flow. Then there
will be a packet-in message stream sending from an OpenFlow
switch. Packet-in messages from all switches will converge at
the controller cluster, and be distributed to multiple controllers
for processing in terms of their arrival time. In particular, each
controller determines a flow rule for each packet-in message
through path computation based on global network topology. The
topology is generally built by the running of routing protocols
or manual programming. Finally, the controller sends down the
flow rule as a packet-out message to all switches among the flow
path. Fig. 2 summarizes the packet-in message processing of the
controller cluster.
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In the SD-WAN paradigm, a packet-in message from an Open-
Flow switch is triggered by a packet initiating a new flow. Thus,
packet-in messages have a mapping relationship with packet
flows at a switch. Meanwhile, a packet belonging to a new flow
does not necessarily give rise to a packet-in message from the
switch, as the controller cluster may proactively install flow rules
into the switch. This is to say, an OpenFlow switch does not
need to send a packet-in message for an emerging flow, if the
corresponding flow rule has been installed by the controller clus-
ter in advance. In summary, the stream of packet-in messages is
mapped with a subset of flow arrival process for an OpenFlow
switch.

Network traffic measurements have indicated that packet
flows in large-scale networks like WAN tends to be independent
of each other and flow arrival process can be approximately
regarded as Poisson stream [32–35]. This is attributed to traf-
fic aggregation from a large number of widespread sources in
WAN [36,37], which weakens the correlation between packet
flows to be negligible. With simple assumption of random map-
ping between packet-in message stream and flow arrival process,
packet-in messages from a switch is supposed to follow Poisson
distribution. Suppose packet-in message streams from multi-
ple switches are independent from each other, we can further
reach the conclusion that all packet-in messages at the controller
cluster form up a Poisson stream in Theorem 4.1.

Theorem 4.1. As for N OpenFlow switches under the administra-
tion of a SDN controller cluster, suppose packet flows independently
arrive at the ith (i = 1, 2, . . . ,N) one as a Poisson stream with the
rate λ

(f )
i , if the αi part of their corresponding flow rules are randomly

installed by the controller cluster in a proactive way, then all packet-
in messages at the controller cluster conform to Poisson distribution
with the rate λ(c):

λ(c) =

N∑
i=1

(1− αi)λ
(f )
i . (1)

Proof. Let fij and mij (i = 1, 2, . . . ,N; j = 1, 2, . . .) respectively
be the jth packet flow passing through the ith switch and the jth
packet-in message arriving at the controller cluster from the ith
switch. As for each emerging flow, the switch looks up its flow
tables to locate an entry. If the corresponding flow entry has been
proactively installed by the controller cluster, the lookup will still
succeed and the actions in the located entry will be applied to all
packets within the flow. Otherwise, the switch will be triggered
to fire off a packet-in message mij to the controller.

According to the assumptions, the flow arrival process {fij}
(j = 1, 2, . . .) at the ith switch is supposed as a Poisson stream
with the rate λ

(f )
i , and the αi part of their corresponding flow rules

are proactively installed by the controller cluster in a random
way. Then it can be concluded that the packet-in message stream
{mij} (j = 1, 2, . . .) from the ith switch also conforms to Poisson
distribution in (2):{
mij

}
∼P

(
(1− αi)λ

(f )
i

)
. (2)

With the additivity property of Poisson streams and the simple
assumption that packet-in message streams from all switches are
independent of each other, we can further achieve the conclu-
sion that all packet-in messages at the controller cluster from N
switches conform to Poisson distribution in (3):{ N∑

i=1

mij

}
∼P

( N∑
i=1

(1− αi)λ
(f )
i

)
. (3)

Thus, the above theorem is proved.

According to the above queueing analysis, we can characterize
the packet-in message processing of the controller cluster as
the queueing model M/M/n with the following assumptions: (a)
packet-in messages arrive at the controller cluster as a Poisson
stream with the average rate λ(c); (b) the cluster involves n identi-
cal SDN controllers independently processing packet-in messages
with the average rate µ(c); (c) the packet-in message processing
time of each controller conforms to negative exponential distri-
bution. According to queueing theory, we can achieve the average
sojourn time of packet-in messages in the controller cluster as:

W (c)(n) =
∫
∞

0
tw(c)(t)dt =

p0ρn
1

µ(c)n·n!(1− ρ(c))2
+

1
µ(c)

, (4)

where ρ1 = λ(c)/µ(c), ρ(c) = λ(c)/nµ(c) < 1, and p0 in (5):

p0 =
(n−1∑

i=0

ρ i
1

i!
+

ρn
1

n!
1

1− ρ(c)

)−1
. (5)

5. Queueing model of openflow switches

Packet inter-arrival time has been reported to be exponential
and independent in Internet backbone traffic [37–40], although
it is generally considered as heavy-tailed distributions in other
networks such as access networks and data center networks. This
primarily attributes to the fact that packet traffic at the point
close to users, terminals and servers is highly correlated due to
its dependence on their instantaneous network activities and be-
haviors, while that far away from these network endpoints tends
to be independent as a result of its highly distributed abundant
sources. This phenomenon has been formulated as the super-
position theorem of point arrival processes [36], which pushes
hybrid packet arrivals toward Poisson with the increasing traffic
aggregation. Consequently, it can be inferred that packet arrival
process at an OpenFlow switch conforms to Poisson distribution
in software-defined WAN.

Fig. 3 demonstrates the packet forwarding of an OpenFlow
switch. As for an arrived packet, the switch caches it in the ingress
queue and sends packets one by one into the processing pipeline
of the ingress port. In particular, the switch first parses each
packet to extract its key fields and compute its flow identifier.
Then the flow identifier is utilized to look up the flow tables to
match an entry. If the lookup fails, the switch transmits a packet-
in message containing packet information to its superordinate
controller, and waits for a corresponding flue rule. Once receiving
the flow rule, the switch adds it as a new entry into its flow
tables. When a flow entry is found, the packet is switched to the
egress port indicated in the entry after applying ingress ACL and
updating ingress meters and counters. Note that the packet can be
scheduled or queued before entering into the processing pipeline
of the egress port. In the egress pipeline, the packet should be
first parsed and modified such as its data-link layer header. Then
the switch applies egress ACL to the packet, and updates egress
meters and counters. Finally the packet is put into the egress
queue to wait for transmitting.

As seen from Fig. 3, the packet switching process in an Open-
Flow switch can be broken down into a sequence of processing
steps. Suppose all s steps are independent of each other and
the packet processing time of the ith (1≤i≤s) step conforms to
negative exponential distribution with the rate µi. Then we can
achieve the conclusion that total packet switching time follows
a general distribution with the rate in (6) and the variance in
(7) according to the Theorem 5.1. In particular, the general
distribution is specialized as Erlang if all the steps of the packet
switching have identical processing rates.
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Fig. 3. The packet forwarding of an OpenFlow switch.

Theorem 5.1. Suppose OpenFlow-based packet switching consists
of s processing steps independent of each other, if the processing time
of the ith (1≤i≤s) step follows negative exponential distribution with
the rate µi, then packet switching time has the rate µ(s) in (6) and
the variance σ (s)2 in (7):

µ(s)
=

1∑s
i=1

1
µi

. (6)

σ (s)2
=

s∑
i=1

1
µ2

i
. (7)

Proof. As packet switching is composed of s processing steps,
let Ti(1≤i≤s) be the processing time of the ith step, then packet
switching time can be expressed as T =

∑s
i=1 Ti. Since Ti follows

negative exponential distribution with the rate µi according to
the assumptions, we can get the expectation and the variance of
Ti respectively as E(Ti) = 1/µi and D(Ti) = 1/µ2

i .
Owing to the assumption that all the steps are independent of

each other, we can derive the expectation of the packet switching
time T :

E(T ) =
s∑

i=1

E(Ti) =
s∑

i=1

1
µi

. (8)

Subsequently, we can reach the expected rate of packet switch-
ing in (9):

µ(s)
= 1/E(T ) =

1∑s
i=1

1
µi

. (9)

With the independent assumption of the processing time of
all the steps Ti(1≤i≤s), we can derive the variance of packet
switching time in (10):

σ (s)2
= D(T ) =

s∑
i=1

D(Ti) =
s∑

i=1

1
µ2

i
. (10)

In summary, the theorem is proved.

With the above queueing analysis, we can characterize the
packet switching of the ith switch as the queueing model M/G/1
based on the following assumptions: (a) packet traffic arrives at
the ith switch as Poisson stream with the rate λ

(s)
i ; (b) packet

switching time of the ith switch conforms to a general distribu-
tion with the rate µ

(s)
i in (11) and the variance σ

(s)
i

2
in (12), where

the µij represents the processing rate of the jth step in the ith
switch; (c) each switch processes all arrived packets at each port
with the first-come-first-serving principle, and the arrivals and
switching of packets are independent of each other.

µ
(s)
i =

1∑s
j=1

1
µij

. (11)

σ
(s)
i

2
=

s∑
j=1

1
µ2

ij
. (12)

According to queueing theory, we can achieve the average
sojourn time of packets in the ith switch in (13):

W (s)
i =

L(s)i

λ
(s)
i

=
1

µ
(s)
i

+
ρ
(s)
i

2
+ λ

(s)
i

2
σ

(s)
i

2

2λ(s)
i (1− ρ

(s)
i )

, (13)

where ρ
(s)
i = λ

(s)
i /µ

(s)
i .

6. Optimization model of SD-WAN deployments

6.1. Queueing system of packet forwarding in SD-WAN

In software-defined WAN, an OpenFlow switch caches all ar-
rived packets in a queue at each ingress port, and processes them
in term of their respective flow rules in flow tables. As for packets
with matched entries in the flow tables, the switch directly han-
dles them, generally forwarding them to their next stations. As
for packets belonging to new flows, the switch cannot match any
entry in the flow tables, and sends packet-in messages contain-
ing packet information as flow setup requests to SDN controller
cluster. The cluster also keeps all packet-in messages from its
subordinate switches in a queue, determines their respective flow
rules and delivers the rules as packet-out messages to respective
switches. Each switch adds the rules into the flow tables for
guiding the processing of subsequent packets within these flows.
According to the above queueing analysis in Sections 4 and 5,
we can model packet forwarding in software-defined WAN as a
queueing system in Fig. 4.

As shown in Fig. 4, packet traffic arrives at the ith (1≤i≤N)
switch with the rate λ

(s)
i , and the switch processes packets with

the rate µ
(s)
i . Suppose packets at the ith switch belong to new

flows with the probability qi, packet flows arrive at the switch
with the rate λ

(f )
i = qiλ

(s)
i . According to the proof of Theorem 4.1,

the switch sends packet-in messages to the controller cluster with
the rate λ

(m)
i = (1 − αi)λ

(f )
i . In summary, the controller cluster

receives packet-in messages with the rate λ(c) as:

λ(c) =

N∑
i=1

λ
(m)
i =

N∑
i=1

(1− αi)qiλ
(s)
i . (14)

Each controller in the cluster processes packet-in messages
as flow setup requests with the rate µ(c), and the cluster sends
packet-out messages in encapsulation of flow rules back to the
switch with the rate λ

(m)
i . The switch installs the flow rules in

packet-out messages into flow tables, and handles packets within
newly installed flows in accordance with the flow rules.
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Fig. 4. The queueing system of packet forwarding in software-defined WAN.

6.2. Packet forwarding delay model

With the above queueing system, we can deduce packet for-
warding delay at an OpenFlow switch in software-defined WAN.
In SD-WAN paradigm, a packet at a switch can be forwarded
directly in terms of its flow rule in internal flow tables or in-
directly with the involvement of the controller cluster. Indirect
forwarding delay at the ith switch consists of direct forwarding
delay at the switch and flow setup delay across the controller
cluster, respectively denoted as D(p)

i and D(f )
i (n). According to

the above queueing model, we can get the probability of packet
forwarding at the ith switch with a detour through the controller
cluster as λ

(m)
i /λ

(s)
i = (1 − αi)qi. Consequently, we can express

packet forwarding delay at the ith switch Di(n) (1≤i≤N) in (15):

Di(n) =

{
D(p)
i with probability 1− (1− αi)qi,

D(f )
i (n)+ D(p)

i with probability (1− αi)qi.
(15)

With the above packet forwarding delay at the ith switch, we
achieve its expectation Di(n) in (16):

Di(n) = (1− αi)qiD
(f )
i (n)+ D(p)

i , (16)

where D(f )
i (n) and D(p)

i respectively denotes average flow setup
delay and the average delay of direct packet forwarding at the ith
switch. Meanwhile, we can also get the expectation of maximal
packet forwarding delay at the ith switch D̂i(n) in (17):

D̂i(n) = D(f )
i (n)+ D(p)

i . (17)

Since packet arrives at the ith switch with the rate λ
(s)
i , we

further compute average packet forwarding delay among the
entire network D(n) in (18):

D(n) =
∑N

i=1 λ
(s)
i Di(n)∑N

i=1 λ
(s)
i

=

∑N
i=1(1− αi)qiλ

(s)
i D(f )

i (n)∑N
i=1 λ

(s)
i

+

∑N
i=1 λ

(s)
i D(p)

i∑N
i=1 λ

(s)
i

. (18)

Delay in packet switching networks can be divided into four
parts: transmission delay, propagation delay, queueing delay and

processing delay. Note that the transmission and propagation
delays in software-defined WAN are negligible compared to the
queueing and processing delays, since the transmission rates
come up to 1Gbps for modern switches and controller clusters,
and the propagation rate of electromagnetic wave goes beyond
2.0 × 108 m/s typically in copper wire and optical fiber. Then
we only need to focus on the queueing and processing delays
collectively called sojourn time at switches and the controller
cluster.

Therefore, the average delay of direct packet forwarding D(p)
i

can be approximately estimated as the average packet sojourn
time W (s)

i at the ith switch. As for the average flow setup delay
D(f )
i (n) at the ith switch, we can infer it from three flow setup

phases respectively, i.e., a packet-in message from the switch to
controller cluster, flow rule decision in the controller cluster, and
a packet-out message from the controller cluster to the switch.
Suppose the controller cluster is connected to the cth switch,
and the messages are transmitted between the ith switch and it
through the path P(i, c) exclusive of the i switch. With the average
message sojourn time at the controller cluster W (c)(n) and the
average packet sojourn time at the ith switch W (s)

i , we get the
average flow setup delay D(f )

i (n) in (19):

D(f )
i (n) = W (c)(n)+W (s)

i +
∑

k∈P(i,c)

2W (s)
k . (19)

With the average message sojourn time at the controller clus-
ter in (4), we further deduce the average packet forwarding delay
D(n) in (20) from (18):

D(n) = a1W (c)(n)+ a00 + a01,

=
a1p0ρn

1

µ(c)(1− ρ(c))2n·n!
+

a1
µ(c)
+ a00 + a01.

(20)

where,

a1 =
∑N

i=1(1− αi)qiλ
(s)
i∑N

i=1 λ
(s)
i

,

a00 =
∑N

i=1[1+ (1− αi)qi]λ
(s)
i W (s)

i∑N
i=1 λ

(s)
i

,

a01 =

∑N
i=1

∑
k∈P(i,c) 2(1− αi)qiλ

(s)
i W (s)

k∑N
i=1 λ

(s)
i

.

(21)

Similarly, we achieve the expectation of maximal packet for-
warding delay at the ith switch D̂i(n) in (22) from (17):

D̂i(n) = W (c)(n)+ bi =
p0ρn

1

µ(c)(1− ρ(c))2n·n!
+

1
µ(c)
+ bi, (22)

where,

bi = 2W (s)
i +

∑
k∈P(i,c)

2W (s)
k . (23)

As seen from (20) and (22), the number of controllers in the
cluster n has a significant impact on packet forwarding delays.
This is greatly attributed to the fact that the controller cluster
operates at a logically-centralized mode.

6.3. Optimization model of controller cluster deployments

In software-defined WAN, upper-layer applications have vary-
ing levels of requirements on quality of service (QoS), primarily
manifested as packet forwarding delay. As shown in the above
section, both the average packet forwarding delay D(n) and the
expectation of maximal packet forwarding delay at the ith switch
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D̂i(n) are significantly dominated by the number of controllers
in the cluster n. Therefore, it is requisite to determine the op-
timal number of controllers in a cluster for the deployments of
software-defined WAN.

As seen from (20), the average packet forwarding delay grad-
ually decreases with the increasing number of controllers. This,
in turn, would need more expenditure to purchase, maintain,
or upgrade controllers. For simplicity, we formulate the capital
expenditure of the controller cluster as e(n) = e1n + e0, where
e1 and e0 respectively the cost of each controller and the other
cost of the cluster except of its controllers. In summary, we
build a multi-objective optimization model of controller cluster
deployments in (24):

argmin
n

(
D(n), e(n)

)
subject to

D̂i(n) ≤ DQoS, 1≤i≤N,

e(n)≤BCC ,

n∈N+,

(24)

by taking the average packet forwarding delay and the cap-
ital expenditure of the controller cluster as the optimization
objectives.

As shown in (24), the optimization model has three constraint
conditions: (a) maximal packet forwarding delay at each switch
must not exceed the upper bound allowed by the quality of
service of network applications DQoS ; (b) there is a budget ceiling
BCC for the capital expenditure of the controller cluster; (c) the
number of controllers n is naturally a positive integer.

To solve the above model, we convert its multi-objective opti-
mization function to a single-objective one, by multiplying the
two optimization objectives D(n) and e(n). However, there is
a non-elementary factor n! in the formula of D(n) shown in
(20). This makes it hard to solve the minimum point of the
single-objective optimization function f (n). Fortunately, n! can
be approximated as

√
2πn(e/n)n by Stirling’s formula. Therefore,

the optimization function f (n) can be inferred as an elementary
function in (25):

f (n) = e(n)× D(n)

= (e1n+ e0)×
[

a1p0ρn
1

µ(c)(1− ρ(c))2n·n!
+

a1
µ(c)
+ a0

]
≈(e1n+ e0)×

[
a1p0ρn

1e
n

√
2πµ(c)(1− ρ(c))2nn+3/2

+
a1
µ(c)
+ a0

]
,

(25)

where a0 = a00 + a01.
Similarly, the first constraint condition in (24) can be con-

verted into an elementary inequation group in (26) by substitut-
ing (22) into its left-hand side and applying Stirling’s formula.

p0ρn
1e

n

√
2πµ(c)(1− ρ(c))2nn+3/2

+
1

µ(c)
+ bi≤DQoS, 1≤i≤N. (26)

Then the constraint condition can be further simplified as a
single elementary inequation in (27):

p0ρn
1e

n

√
2πµ(c)(1− ρ(c))2nn+3/2

+
1

µ(c)
+ b̂≤DQoS, (27)

where b̂ stands for the maximum of bi in (28):

b̂ = max
1≤i≤N
{bi} = max

1≤i≤N

{
2W (s)

i +
∑

k∈P(i,c)

2W (s)
k

}
. (28)

In summary, the single-objective optimization model can be
formalized in (29):

argmin
n

(e1n+ e0)

×

[
a1p0ρn

1e
n

√
2πµ(c)(1− ρ(c))2nn+3/2

+
a1
µ(c)
+ a0

]
subject to

p0ρn
1e

n

√
2πµ(c)(1− ρ(c))2nn+3/2

+
1

µ(c)
+ b̂− DQoS≤0,

e1n+ e0 − BCC≤0,
n∈N+.

(29)

6.4. Optimization model solution

The above model in (29) is an optimization problem with
inequality constraints. However, it cannot be solved by applying
Lagrange multipliers and Karush-Kuhn-Tucker conditions, due
to the complexity of its objective function and first constraint.
Fortunately, the objective function can be proved to be convex in
Theorem 6.1.

Theorem 6.1. The objective function in (29) is convex if its all
parameters are positive and ρ1 < n.

Proof. As for the proof of a convex function, it is identical to prove
the positive of its second derivative. Suppose d(n) = h(n)/g(n)+1
where g(n) =

√
2π (1 − ρ(c))2nn+3/2 and h(n) = p0ρn

1e
n, we can

simplify the objective function in (29) as the expression in (30):

f (n) = (e1n+ e0)×
[

a1
µ(c)

d(n)+ a0

]
. (30)

To solve the derivative of g(n), we rewrite it as g(n) =√
2π (1 − ρ(c))2e(n+3/2) ln n. Then, its derivative can be computed

in (31) by the derivation rules of exponential, product and loga-
rithmic functions:

g ′(n) =
√
2π (1− ρ(c))2

(
3
2n
+ ln n+ 1

)
e(n+3/2) ln n

=

(
3
2n
+ ln n+ 1

)
g(n). (31)

Meanwhile, we can also get the derivative of h(n) in (32)
according to the derivation rule of product and exponential func-
tions:

h′(n) = p0(1+ ln ρ1)ρn
1e

n
= (1+ ln ρ1)h(n). (32)

With the derivatives of g(n) and h(n), we can calculate the
derivative of d(n) in (33) in terms of the quotient rule. Note that
ln(n/ρ1) is positive owing to ρ1 < n. Since all parameters are
positive, we can infer the positive of g(n) and h(n). Then, it can
be concluded that d′(n) in (33) is negative.

d′(n) =
g(n)h′(n)− g ′(n)h(n)

g2(n)
= −

( 3
2n
+ ln

n
ρ1

)h(n)
g(n)

. (33)

Then we further achieve the derivative of f (n) in (34) in
accordance with the product rule:

f ′(n) =
a1(e1n+ e0)

µ(c)
d′(n)+

a1e1
µ(c)

d(n)+ a0e1,

=

[
a1e1
µ(c)
−

a1
µ(c)

(e1n+ e0)
( 3
2n
+ ln

n
ρ1

)]h(n)
g(n)

+
a1e1
µ(c)
+ a0e1.

(34)
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For simple expression of f ′(n), we assume a function of n in
(35):

k(n) =
a1e1
µ(c)
−

a1
µ(c)

(e1n+ e0)
( 3
2n
+ ln

n
ρ1

)
. (35)

Then we can compute its derivative in (36) by the derivation
rules of product, reciprocal and logarithmic functions:

k′(n) =
3a1e0
2µ(c)n2 −

a1
µ(c)

ln
n
ρ1

(
2e1 +

e0
n

)
. (36)

With the function k(n), the derivative of f (n) can be simplified
as f ′(n) = h(n)k(n)/g(n)+ a1e1/µ(c)+ a0e1. According to the quo-
tient and product rules, we can eventually compute the second
derivative of f (n) in (37) with the functions g(n), h(n), k(n) and
their derivatives:

f ′′(n) =
g(n)[h(n)k′(n)+ h′(n)k(n)] − g ′(n)h(n)k(n)

g2(n)
,

=
a1
µ(c)

[
(e1n+ e0)ln2 n

ρ1
+

2e0
n

ln
n
ρ1
+

15e0
4n2 +

3e1
4n

]
h(n)
g(n)

.

(37)

As in (37), ln(n/ρ1) is positive owing to ρ1 < n. Since all
parameters are positive, we can further infer the positive of the
function g(n) and h(n) and all other items in (37). Eventually, we
can conclude the positive of f ′′(n). That is to say, the function f (n)
is convex. The theorem is proved.

As for the first constraint in (29), its left-hand side can be
expressed as d(n)/µ(c) − a0 + b̂ − DQoS , where d(n) is defined in
the proof of Theorem 6.1 and its first derivative d′(n) is concluded
to be negative in (33). Thus, we can infer that the left-hand ex-
pression of the first constraint has a negative derivative d′(n)/µ(c).
This implies that the expression decreases monotonically with
the increasing of n, and the first constraint regulates the lower
bound of n represented as nlow . Meanwhile, the second constraint
in (29) regulates the upper bound of n as nup = (BCC − e0)/e1.
With the third constraint that n must be a positive integer, all
three constraints in (29) can be summarized as that n should fall
into an integer range [nlow, nup].

Consequently, we can solve the optimization model in (29) by
searching in the integer range [nlow, nup] for the optimal value
of n with the minimum of the convex objective function f (n).
Table 1 summarizes the solution algorithm of the optimization
model in (29) for the deployments of software-defined WAN.
The algorithm primarily consists of three parts: (a) calculating
intermediate parameters in Line 1–11; (b) determining the upper
and lower bounds of n in Line 12–21; (c) looking for the optimal
value of n in Line 22–32.

Firstly, we calculate all necessary intermediate parameters,
including packet switching delay of each switch in Line 5, and the
arrival rate of packet-in messages at the controller cluster in Line
11. The parameters a0, a1 and b̂ in the optimization model are
computed in Line 6–10 based on network topology information.
Secondly, the upper bound of n is directly gotten from the budget
of the controller cluster in Line 12, and the lower bound of n is
located by calculating packet-in message processing time of the
controller cluster in Line 16, and judging whether it satisfies the
delay requirement of quality of service in Line 17. Note that the
processing rate of packet-in messages must be larger than the
arrival rate of these at the controller cluster in Line 14–15. Thirdly,
we seek for the optimal value of n from its lower bound in Line
24–25, and stop at a higher value of the objective function in Line
26–31 owing to the convexity of the objective function.

7. Experiments

This section evaluates our proposed queueing model of con-
troller cluster with the measurement tool OFsuite_Performance,
performs numerical analysis on packet forwarding delay, and
solves optimal number of controllers under different parameters.

7.1. Queueing model comparison for controller clusters

In our experiments, we utilize the measurement tool OF-
suite_Performance developed by SDNCTC (Global SDN Certified
Testing Center) to evaluate the performance models of SDN con-
troller cluster. The tool measures OpenFlow message processing
capacity of SDN controllers by simulating a variety of network
topologies, a large number of OpenFlow 1.3 switches, and all
types of OpenFlow events. In particular, all simulated OpenFlow
switches are connected to a controller cluster via network in-
terface cards, and send a stream of packet-in messages to the
cluster replying with packet-out messages. The tool records the
sending time of packet-in messages and the arrival time of cor-
responding packet-out messages for each switch, and computes
the arrival rates and the processing rates of packet-in messages
at the controller cluster by inference.

As for SDN controller to be measured, we select the popular
open-source controller OpenDaylight supporting clustering. The
controller is respectively installed in a single-point mode with 1
server and a cluster mode with 3 servers. Then the measurement
tool simulates wide-area networks with the number of switches
varying from 9 to 14 for the single-point mode and from 4 to
9 per controller for the cluster mode. Each simulated switch is
configured to send packet-in messages to the controller cluster
at the rate 1 k/s. We perform iterative testing for 5 times for
each network scenario, and get average controller performance
parameters in Table 2.

As seen from Table 2, packet-out message rates always keep
pace with their corresponding packet-in message rates and av-
erage measured delay stays at millisecond levels for packet-in
message rates below 12 k/s and 21 k/s respectively for 1 and 3
controller servers. However, packet-out message rates will sub-
sequently cut down and average measured delay will sharply
rise to second levels for higher packet-in message rates. Thus
we can infer that the single controller and the controller cluster
respectively processes packet-in messages at an approximate rate
of 12 k/s and 21.5 k/s. Furthermore, it can be noticed that the
processing rate of the controller cluster is disproportionate to that
of the single controller, probably due to additional overheads of
the controller cluster.

Subsequently, we simulate wide-area networks with different
number of switches no more than 11 for the single-point mode
and 7 per controller for the cluster mode. Then we carry out
controller performance evaluation in the same way as above.
Fig. 5 illustrates average measured delay of packet-in messages
across the single controller and the controller cluster. Mean-
while, we get the estimated delay of our proposed model M/M/n
in Fig. 5(b) from (4) and (5), with the number of controllers
n = 3 in the cluster, the varying arrival rates λ(c) and the
processing rate µ(c) = 21.5 k/s of packet-in messages at the
controller cluster. Similarly, the estimated delay of the traditional
model Mk/M/n [11] can be also calculated in Fig. 5(b) with the
above performance parameters and the number of switches per
controller.

As seen from Fig. 5, our proposed model M/M/n has a closer
estimated delays to measured delays than the Mk/M/n model. In
particular, all measured delays slightly go beyond the estimated
ones of the M/M/n model. This is probably ascribed to the
fact that measured delays include message transmission delays
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Table 1
The solution algorithm of the optimization model for SD-WAN deployments.
Input: (a) network topology information G(V , E), including all switches, switch inter-connection relationship, and the switch point where controllers are deployed;
(b) parameters regarding the i switch in V , including packet arrival rate λ

(s)
i , packet processing rate µij of the j step, the probability of a packet belonging to a

new flow qi , and the ratio of proactively installed flow rules αi; (c) controller cluster information, including packet-in message processing rate of a single
controller µ(c) , the cost of each controller e1 , the other cost of the cluster except of its controllers e0 , and the budget ceiling of the controller cluster BCC ; (d)
maximal packet forwarding delay DQoS allowed by the quality of service.
Output: the optimal value of the controller number n.

1. for i ← 1, |V | do
2. calculate the packet switching rate of the ith switch µ

(s)
i in (11) and the variance σ

(s)
i

2
in (12);

3. if λ
(s)
i ≥µ

(s)
i , then

4. exit;
5. calculate the average packet switching time of the ith switch W (s)

i in (13) with λ
(s)
i , µ

(s)
i and σ

(s)
i

2
;

6. calculate the parameter a00 in (21) with W (s)
i (1≤i≤|V |);

7. calculate the parameter a01 in (21) and bi in (23) based on network topology G(V , E) with W (s)
i (1≤i≤|V |);

8. a0←a00 + a01;
9. calculate the parameters a1 in (21) with parameters regarding all switches;
10. b̂← max

1≤i≤|V |
{bi};

11. calculate packet-in message arrival rate of the controller cluster λ(c) in (14);
12. nlow←⌈λ(c)/µ(c)⌉;
13. nup←⌊(BCC − e0)/e1⌋;
14. for i←1, nup do
15. calculate the average sojourn time of packet-in messages in the controller cluster W (c)(i) in (4);
16. if W (c)(i)+ b̂≤DQoS , then
17. break;
18. if i > nup , then
19. exit;
20. nlow←i;
21. if nlow = nup , then
22. return nlow;
23. calculate the value of objective function f (nlow) in (25) with a0 , a1 , e0 , e1 and other parameters;
24. fmin←f (nlow);
25. for i←nlow + 1, nup do
26. calculate the value of objective function f (i) in (25);
27. if fmin > f (i), then
28. fmin←f (i);
29. else
30. break;
31. return i− 1;

Table 2
The controller performance parameters.
(a) 1 controller

Performance parameters The number of switches

9 10 11 12 13 14

Packet-in message rates 9000 10000 11000 12000 13000 14000
Packet-out message rates 9000 10000 11000 12000 11882 11695
Average measured delay (ms) 0.533 0.794 1.43 3.38 62.54 197.75

(b) 3 controllers

Performance parameters The number of switches per controller

4 5 6 7 8 9

Packet-in message rates 12000 15000 18000 21000 24000 27000
Packet-out message rates 12000 15000 18000 21000 20166 18966
Average measured delay (ms) 0.428 0.592 0.715 1.013 192.93 349.45

and propagation delays, besides of the sojourn time of packet-
in messages in controller cluster. Furthermore, estimated delays
of the Mk/M/n model become much greater than measured de-
lays with the increasing number of switches. This phenomenon
is attributed to the characteristics of the Mk/M/n model that
its estimated delays have a strong positive correlation with the
number of packet-in messages in a batch, i.e., the number of
OpenFlow switches.

7.2. Packet forwarding delay

As for a SD-WAN scenario, we numerically analyze the impact
of different parameters on packet forwarding delay. To simplify
the numerical analysis, the network scenario is supposed to be

a complete tree topology with the degree m = 10, and the
root switch connects a controller cluster. Then we can compute
average and maximum distance between a switch and the con-
troller cluster, given the number of switches. In addition, there
are 10 processing steps for packet switching shown in Fig. 3.
With simple assumption of all the packet processing steps with
identical rate in a switch, we can get the relationship between the
packet switching rate and its standard variance as σ

(s)
i =

1
√
10µ(s)

i
.

All other parameters are typically configured as follows. There
are 100 OpenFlow switches with packet switching rate µ

(s)
i =

60 k/s. Each switch receives packets with the rate λ
(s)
i = 20 k/s,

qi = 0.04 of which belong to new flows. Among all flow rules in
each switch, the controller cluster installs αi = 0.8 of them in a
proactive mode. Each controller in the cluster processes packet-in
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Fig. 5. The estimated delay comparison of controller performance models.

Fig. 6. The relationship of packet forwarding delay and packet-in message
processing rate of the controller cluster.

messages at the rate µ(c) = 12 k/s. The above parameter config-
urations are taken as the benchmark of our following numerical
analysis.

With the increasing packet-in message processing rate of a
controller µ(c), we can calculate average packet forwarding delay
D(n) for different number of controllers in the cluster n in Fig. 6.
As shown in Fig. 6, the higher processing rate of a controller,
the lower forwarding delay for identical number of controllers.
In particular, the forwarding delay will become stable nearly to
2.3×10−5 s when the processing rate rise up adequately. This
lower bound of the forwarding delay is primarily generated in
packet queueing and processing on switches. Furthermore, we
can see from Fig. 6 that a controller should be able to process
packet-in messages at the minimal rate 16 k/s, 8 k/s, 5.3 k/s,
4 k/s respectively for 1, 2, 3, 4 controllers. That is to say, the con-
troller cluster should be capable of processing packet-in messages
with the rate 60 k/s.

With the increasing ratio of flow rules proactively installed by
the controller cluster αi, we can calculate average packet forward-
ing delay D(n) for different number of controllers in the cluster
n in Fig. 7. As shown in Fig. 7, the higher ratio of proactively
installed flow rules, the lower forwarding delay for identical num-
ber of controllers. In particular, the forwarding delay is always

Fig. 7. The relationship of packet forwarding delay and the ratio of proactively
installed flow rules.

higher than 2.1×10−5 s even if the ratio of proactively installed
flow rules goes up to 100%. The lower bound of forwarding delay
can be approximated as the total packet delay on switches. More-
over, we can see from Fig. 7 that the controller cluster should
proactively install flow rules with a minimum of 85%, 70%, 55%,
40% respectively for 1, 2, 3, 4 controllers. This is to say, each
controller can only manage 15% of packet-in messages from all
switches.

With the increasing number of OpenFlow switches N , we
can calculate average packet forwarding delay D(n) for different
number of controllers in the cluster n in Fig. 8. As shown in
Fig. 8, the larger number of switches, the higher forwarding delay
for identical number of controllers. In particular, the forward-
ing delay will come close to 2.2×10−5 s when the number of
switches is decreased to 1. This lower bound of forwarding delay
is dominated by the packet delay of queueing and processing on
switches. In addition, we can see from Fig. 8 that the controller
cluster can manage 75, 150, 225, 300 switches at most respec-
tively for 1, 2, 3, 4 controllers. That is to say, each controller can
take charge of 75 switches.

With the increasing packet arrival rate of each OpenFlow
switch λ

(s)
i , we can calculate average packet forwarding delay D(n)

for different number of controllers in the cluster n in Fig. 9. As
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Fig. 8. The relationship of packet forwarding delay and the number of switches.

Fig. 9. The relationship of packet forwarding delay and packet arrival rate at
each switch.

shown in Fig. 9, the higher packet arrival rate at each switch,
the higher forwarding delay for identical number of controllers.
In particular, the forwarding delay will go down to 1.8×10−5 s
when the packet arrival rate comes close to 0. This lower bound
can be considered as the minimum of packet forwarding delay in
such a network scenario. Besides, we can see from Fig. 9 that the
packet arrival rate cannot go beyond 15 k/s, 30 k/s, 45 k/s, 60 k/s
respectively for 1, 2, 3, 4 controllers. This is to say, each controller
can be responsible for packets with the arrival rate 15 k/s at each
switch.

7.3. Optimal number of controllers

The optimal number of controllers is solved by following the
above network scenario and essential parameter configurations.
Additionally, we set capital expenditure parameters regarding the
controller cluster as: the cost of each controller e1 = 20, the other
cost of the cluster e0 = 20, and the budget ceiling of the controller
cluster BCC = 180. This implies that the number of controllers

Fig. 10. The optimal number of controllers for increasing packet-in message
processing rate of a controller.

is limited with the upper bound 9. Moreover, packet forwarding
delay at a switch is confined below DQoS = 1ms by quality of
service.

According to the solution algorithm of the optimization model
of controller cluster deployments in Table 1, we first solve the
optimal number of controllers n for increasing packet-in message
processing rate of a controller µ(c) in Fig. 10. As shown in Fig. 10,
the higher processing rate of a controller, the fewer number of
controllers. In particular, it is optimal to deploy 1, 2, 3, 4, 5, 6, 7,
8 controllers respectively for packet-in message processing rate of
a controller above 17.2 k/s, 8.6 k/s, 5.8 k/s, 4.4 k/s, 3.5 k/s, 3 k/s,
2.6 k/s, 2.3 k/s. Furthermore, there is no solution if a controller
processes packet-in messages with the rate below 2.3 k/s. This
is attributed to the fact that it will need more controllers to keep
low packet forwarding delay demanded by quality-of-service, but
will go beyond the budget ceiling of the controller cluster.

Secondly, we solve the optimal number of controllers n with
the rate µ(c) = 9 k/s for increasing ratio of flow rules proactively
installed by the controller cluster αi in Fig. 11. As shown in Fig. 11,
the higher ratio of proactively installed flow rules, the fewer
number of controllers. In particular, it is optimal to deploy 1, 2,
3, 4, 5, 6, 7, 8 controllers respectively for the ratio of proactively
installed flow rules above 91%, 79%, 69%, 59%, 48%, 38%, 23%,
12%. Moreover, there is no solution if flow rules are proactively
installed with the ratio below 12%. This is attributed to the fact
that there will be too many flow setup requests arrived at the
controller cluster, which leads to high packet forwarding delay
beyond the requirements of quality-of-service.

Thirdly, we solve the optimal number of controllers n for
increasing number of OpenFlow switches N in Fig. 12. As shown
in Fig. 12, the larger number of switches, the more number of
controllers. In particular, it is optimal to deploy 1, 2, 3, 4, 5, 6,
7, 8 controllers respectively for the number of switches no more
than 67, 142, 217, 290, 364, 437, 517, 591. In addition, there is
no solution for the number of switches in excess of 591. This is
attributed to the fact that too many switches will generate exces-
sive packet-in messages, and result in larger packet-in message
processing delay at the controller cluster than that regulated by
quality-of-service.

Fourthly, we solve the optimal number of controllers n for
increasing packet arrival rate of OpenFlow switches λ

(s)
i in Fig. 13.

As shown in Fig. 13, one more controller should be added for a
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Fig. 11. The optimal number of controllers for increasing ratio of proactively
installed flow rules.

Fig. 12. The optimal number of controllers for increasing number of OpenFlow
switches.

smaller increase of packet arrival rate with its increasing at each
switch. In particular, it is optimal to deploy 1, 2, 3, 4, 5, 6, 7,
8 controllers respectively if each switch receives above 13453,
28032, 35680, 36043, 36096, 36109, 36112, 36113 packets per
second. Besides, there is no solution if packet arrives at each
switch with the rate in excess of 36113 per second. This is
attributed to the fact that high packet arrival rate will lead to
large packet switching delay close or even above the maximum
delay allowed by quality-of-service, and it does not make sense
to add more controllers.

8. Conclusion

The SDN paradigm offers numerous benefits for wide-area
networks, like promoting data transfer efficiency, improving ap-
plication performance and reducing deployment costs. However,
it also incurs the performance bottlenecks of logically centralized
controllers, and brings about an inherent penalty to essential
network performance such as packet forwarding delay. Under-
standing the performance limitation of software-defined WAN

Fig. 13. The optimal number of controllers for increasing packet arrival rate at
each switch.

is a prerequisite of its deployments. This paper is motivated to
propose an accurate queueing system of packet forwarding to
derive average packet delay through an OpenFlow switch, and
build an optimization model of controller cluster deployments
to solve the optimal number of controllers in software-defined
WAN.

Experimental measurements with the benchmark OFsuite_
Performance indicate that our proposed queueing model offers
a more precise approximation of controller cluster performance
than existing ones. Furthermore, The numerical analysis on our
proposed queueing model illustrates that packet forwarding per-
formance in software-defined WAN greatly relies on packet-in
message processing rate of the controller cluster, the ratio of
proactively installed flow rules, the number of switches and
packet arrival rate at each switch. The solution of the optimiza-
tion model reveals that the optimal number of controllers is much
more sharply impacted by packet arrival rate at each switch
and packet-in message processing rate of a controller, than the
number of switches and the ratio of proactively installed flow
rules.
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