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Reducing Cumulative Errors of Incremental CP
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CANDECOMP/PARAFAC (CP) decomposition is widely used in various online social network (OSN) appli-

cations. However, it is inefficient when dealing with massive and incremental data. Some incremental CP

decomposition (ICP) methods have been proposed to improve the efficiency and process evolving data, by

updating decomposition results according to the newly added data. The ICP methods are efficient, but in-

accurate because of serious error accumulation caused by approximation in the incremental updating. To

promote the wide use of ICP, we strive to reduce its cumulative errors while keeping high efficiency. We first

differentiate all possible errors in ICP into two types: the cumulative reconstruction error and the prediction

error. Next, we formulate two optimization problems for reducing the two errors. Then, we propose several

restarting strategies to address the two problems. Finally, we test the effectiveness in three typical dynamic

OSN applications. To the best of our knowledge, this is the first work on reducing the cumulative errors of

the ICP methods in dynamic OSNs.
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1 INTRODUCTION

The CANDECOMP/PARAFAC (CP) decomposition can naturally represent high-dimensional data
without loss of information and capture the underline interactions with high interpretability.
Therefore, it is widely used in social network analysis [13, 25, 38], such as network reconstruction
[38], popularity prediction [13, 19], link prediction [8, 11, 52], and recommendation system [14].
Beyond traditional static setting, large amounts of new data are produced rapidly in real-world ap-
plications. For example, Instagram users post 277,777 stories and Twitter users post 511,200 tweets
every single minute in 2019.1 So, it is almost impossible to obtain the global data at once. Even if
the global data are already available, the computation of the CP decomposition is extremely ex-
pensive due to high time and space complexity. Moreover, the changing nature of data evolving
over time makes the CP decomposition inefficient [59, 60].

Recently, more and more incremental CP decomposition (ICP) methods have been developed
for dynamic data over time, which incrementally maintain the CP decomposition of an evolv-
ing tensor, by updating previous CP decomposition results based on newly added data [16, 31,
59, 60]. They are efficient because they reuse the previous results. However, the approxima-
tions in incremental updates cause errors. Moreover, with the increase of new data, the er-
rors increase cumulatively, leading to the serious deviation from the optimal CP decomposi-
tion. So, their accuracy decreases over time quickly in dynamic online social network (OSN)
applications.

We check the performance of an ICP method [60] in three dynamic OSN applications (Figure 1):
dynamic network reconstruction, popularity prediction, and link prediction. We first build an

initial tensor X (0) based on the observable data and conduct its CP decomposition as ini-
tialization. Then, we conduct the ICP method [60] to incrementally reconstruct the network,
predict popularity, and predict links respectively based on new data ΔX (t ) (t ∈ [1,T ]). Detailed
settings are the same as that in Sections 5–7. We find that the accuracy of the ICP method de-
creases over time quickly. In addition, it shows non-uniform error accumulation in different time
periods.

The above experiments validate the existence of cumulative errors of the ICP methods in dy-
namic OSNs. However, as far as we know, there is no work on reducing the cumulative errors.
Thus, there is an urgent need for effective algorithms to improve the accuracy of ICP and promote
its applications in OSNs.

In this article, we strive to reduce the cumulative errors of ICP in time while ensuring a high
efficiency. Our motivations are threefold: (1) identifying the general types of errors generated by
ICP in different applications and studying their fundamental causes. (2) Designing different er-
ror reduction strategies according to different types of errors. (3) Checking the effectiveness of
different strategies in real OSN applications.

Our basic idea is to restart the CP decomposition, by re-performing full CP decomposition on
the tensor combining the new tensor with the old one at certain time points. However, there are
two main challenges have to be addressed, as follows:

(1) Challenge of errors. In different applications, what errors will be generated by the ICP
methods? What are the fundamental causes of these errors? Which types of errors can be reduced
by restarting the CP decomposition?

(2) Challenge of restarting. When to restart the CP decomposition? Restarting time points
are critical to the ICP method, because the effectiveness and efficiency of the CP decomposition
restarting depend on the time points. If restarting too early, it will result in redundant calculation,

1https://www.domo.com/learn/data-never-sleeps-7.
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(a) Dynamic network reconstruction (b) Dynamic network reconstruction (c) Popularity prediction

(d) Popularity prediction (e) Link prediction () Link prediction

Fig. 1. Performance of ICP in dynamic OSN applications. Bars indicate the standard derivations.

and lead to the waste of computation resources. If restarting too late, it will cause serious error
accumulation, and lead to low accuracy.

Keeping the efficiency and accuracy in mind, we strive to reduce cumulative errors with less
restarting times by addressing the above two challenges. Our main contributions are as follows.

(1) We identify the problem of reducing cumulative error of ICP. As far as we know, it is the
first article that identify and study the problem. We believe it will help promote the ICP methods
in more OSN applications.

(2) We identify two types of errors, i.e., the reconstruction error and the prediction error in ICP.
Then we deeply analyze their causes. Based on this, we set our goals as solving two optimization
problems, i.e., minimizing the restarting times while keeping a small cumulative reconstruction
error, and minimizing the restarting times while keeping a small prediction error.

(3) We propose several heuristic restarting methods to solve the above two problems, and they
are based on the time interval, the reconstruction error, the cumulative reconstruction error, the
prediction error, the previous feedback, and the number of changed edges, respectively. We also
deeply discuss the relations among these restarting methods, compare their features, highlight
their advantages and point out possible extensions.

(4) In order to validate the effectiveness of our methods, we apply them in three typical dy-
namic OSN applications of network reconstruction, link prediction, and popularity prediction. We
conduct extensive experiments on several real-world datasets, and determine the best restarting
method for different applications. Moreover, through comparative study with other incremental
and non-incremental methods, we provide some guidelines for ICP in future large and incremental
data applications.

The remaining of this article is organized as follows. Section 2 reviews the related work. Sec-
tion 3 defines two optimization problems for cumulative error reduction. Section 4 proposes several
restarting methods for addressing the two problems. Sections 5–7 apply our methods in different
OSN applications, respectively. Finally, Section 8 concludes the article.
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2 RELATED WORK

2.1 Typical Applications in OSNs

Social networks analysis and applications have attracted much attention [20, 22, 49]. We review
three typical and important applications in this article, as follows.

Network reconstruction aims to infer the network of interactions from the observed func-
tional behavior [30, 57], which is important for better grasping actual functioning of networks
[18, 42]. Network reconstruction has been used widely in social networks [10], web networks
[40], news spread networks [36], biochemical reaction networks [57], and biologically inspired
networks [9]. In this article, similar to [10, 60], the goal of dynamic network reconstruction is to
reconstruct the given network structure information at each time slice.

Link prediction is used to predict future possible links in the network, or predict missing links
due to incomplete data [32], which have been proposed in social networks analysis for decades.
Many researchers summarize existing work [3, 33, 34, 51], and they usually classify link predic-
tion techniques into several groups, such as similarity-based methods, probabilistic and statistical
methods, and factorization-based methods [34].

Among all methods, factorization-based methods have attracted much attention [8, 35], because
matrix factorization or tensor factorization models can extract and use latent features from the
topological structure to perform prediction. Early works mainly adopt matrix factorization-based
techniques to predict link, such as supervised matrix factorization approach [35], singular value
decomposition (SVD) [37], non-matrix factorization approach [61], a graph regularized link matrix
factorization [12] and so on [26]. Other studies extend matrix factorization-based techniques to
coupled analysis of multi-relational data in the form of high-order tensor. Dunlavy et al. [2, 8] use
the CP decomposition to address the problem of temporal link prediction, that is, predicting future
links based on past data, and illustrate the usefulness of exploiting the natural three-dimensional
structure. However, these works above are based on the static graph. Most recently, Zhang et al.
[10] propose Theoretically Instructed Maximum-Error-bounded Restart of SVD (TIMERS) based
on incremental SVD to predict link, which satisfies the dynamic nature of OSNs.

Popularity prediction aims to predict the popularity of a topic at a reference time t , given
the diffusion information of this topic before an indicating time t0 (t0 < t ). Existing works can be
generally classified into three categories: (1) classification prediction that predicts whether a topic
will be popular or not [54, 55]; (2) ranking prediction that ranks and identifies the most important
contents based on their predicted popularity [45, 47]; and (3) precise prediction that predicts how
many users will react to a topic [4, 5]. The first two categories obtain higher accuracy to some
degree, but they sacrifice the details.

Most works on precise prediction are usually from either the macro or the micro perspective.
The former predicts the popularity-level popularity [41, 44], i.e., how many users in total will
react a topic. The latter predicts the user-level popularity [21, 28], i.e, estimates the propagation
probability that a topic propagates from an individual to another. Most recently, [19] proposes and
addresses the problem of group-level popularity prediction, which costs small computation than
the user-level prediction, and is more detailed than popularity prediction.

2.2 CP Decomposition and Incremental CP Decomposition

CP decomposition is a low-rank tensor approximation technique, which decomposes a tensor
into a sum of component rank-one tensors [15]. Because it can capture the underline structure
of high-dimensional data and yield a highly interpretable factorization, it is widely used in OSN
applications [2, 8, 16, 19, 25, 38, 38]. However, the CP decomposition is unpractical in real-word
OSNs because of two limitations: (1) it is a batch method based on the global data, which is difficult
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Table 1. Notations

Notation Explanation
δ the threshold of time interval (or the number of timestamps) for F-time
θ the threshold of cumulative error for F-Cumerror
σ the threshold of reconstruction error for F-Recerror
ξ the threshold of prediction error for F-feedback
η the threshold of the number of changed edges for F-changes
Ω mask tensor to indicate the observable data
J reconstructive error between factor matrices and tensor

ΔJ cumulative reconstruction error caused by ICP
ΔI prediction error caused by ICP
t ,T the variable of timestamps. T is the maximum dynamic timestamp

x , x,X,X Scalar, vector, matrix, and tensor
ΔX a newly added tensor

A1, . . . ,AN factor matrices of an N-order tensor.
A ∗ B, ‖ · ‖ element-wise tensor product, Frobenius norm.
�A,B,C� Kronecker product of factor matrices

and time consuming for tons of data. (2) It is based on the static networks, which cannot meet the
fact that OSNs are dynamic in nature. Nodes and edges may be added or deleted at any time. These
dynamic changes make the CP decomposition unpractical.

More and more ICP methods have been developed to track the CP decomposition online of in-
cremental tensor, which mine the feature of newly added data, and update the previous results
instead of full re-computation. Gujral et al. [16] propose a Sampling-based Batch Incremental Ten-
sor Decomposition algorithm, SAMBATEN, based on CP decomposition. Zhou et al. [60] propose
an efficient incremental CP algorithm (OnlineCP) for online tensors with an arbitrary number of
dimensions. They further propose a new OnlineSCP algorithm for tracking the CP decomposition
of online sparse tensor [59]. Li et al. [31] propose an Online Robust Low-rank Tensor Modeling
method to learn low-rank structures of streaming noisy tensor data robustly.

Existing ICP methods can explore and extract the underlying structure of incremental tensor
with high efficiency, and meet the dynamic nature of data evolving over time in OSNs. However,
low accuracy is a serious obstacle when it is applied in the social network analysis (see Figure 1).
Because all the ICP methods make various approximations in their incremental updating process,
error accumulation is inevitable as newly added data keeps coming.

In order to further promote the widespread use of ICP in OSNs, we focus on improving its
accuracy while ensuring high efficiency. Our differences from other works are threshold: (1) we
try to identify general types of errors, i.e., the reconstruction error and the prediction error in ICP.
(2) We strive to design several heuristic restarting strategies to reduce those errors while ensuring
a high efficiency. (3) We verify the effectiveness of our restarting methods in three dynamic OSN
applications of network reconstruction [10], link prediction [34] and popularity prediction [13, 46].

3 PROBLEM DEFINITION AND SOLUTION OVERVIEW

We identify two types of errors (i.e., the cumulative reconstruction error and the prediction error),
and study their fundamental causes. Then, we propose two cumulative error reduction problems
based on the two errors. Next, we introduce the overview of our solutions. The notations used in
this article are displayed in Table 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 42. Publication date: April 2021.
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Fig. 2. CP decomposition on incremental data. X = Xold + Xnew .

Fig. 3. ICP on incremental data. X = Xold + Xnew .

3.1 Concepts

Definition 3.1 (Reconstruction Error (or Reconstruction Loss)). Given an N -order tensor X and
its factor matrices A1, . . .Ai , . . .AN obtained by the CP decomposition or the ICP methods, the
reconstruction error refers to the loss between the reconstructed tensor by these factor matrices
and the original tensor, denoted by J :

J = ‖X − A1 � · · ·Ai � Ai+1 � · · ·AN ‖. (1)

Example 3.1. In Figures 2 and 3, we illustrate respectively the process of the CP decompo-
sition and the ICP method on a third-order incremental tensor, where X is expanded from
Xold ∈ Rr1×r2×told by appending newly added dataXnew ∈ Rr1×r2×tnew at its time mode. Every time
a newly added tensor Xnew comes, the CP decomposition must calculate the combined tensor X
and compute its factor matrices A, and C from scratch (see Figure 2). So, the reconstruction error
of the CP decomposition is

JCP = ‖X − A � B � C‖. (2)

Meanwhile, the ICP method only updates the previous decomposition results Aold ,Bold and Cold

to get Anew ,Bnew and Cnew according to Xnew (see Figure 3). So, the reconstruction error of ICP
is

J ICP = ‖X − Anew � Bnew � Cnew ‖. (3)

Since the CP decomposition is a low-rank tensor approximation technique, its reconstruction
error always exists, even for the optimal CP decomposition. In addition, all ICP methods make some
approximations in the incremental updating process. The reconstruction error of ICP is constituted
by both the intrinsic error in CP decomposition (i.e., the minimum reconstruction error by the
optimal CP decomposition) and the cumulative reconstruction error caused by approximations in
incremental updates. Details are as follows.

Definition 3.2 (Cumulative Reconstruction Error). The cumulative reconstruction error of
ICP refers to the reconstruction error caused by incremental updates of ICP, excluding the
reconstruction loss by the optimal CP decomposition. For the same incremental tensor, suppose its
reconstruction errors by the optimal CP decomposition and the ICP decomposition are J oCP and
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J ICP , respectively. Then, the cumulative reconstruction error ΔJ caused by ICP can be calculated
as follows:

ΔJ = J ICP − J oCP . (4)

Example 3.2. We also take Figures 2 and 3 as examples. For the same incremental tensor, suppose
the CP decomposition in Figure 2 is the optimal CP decomposition with minimum intrinsic error.
According to Definition 3.2 and Equations (2) and (3), the cumulative reconstruction error of ICP
in Figure 3 can be calculated as follows:

ΔJ = J ICP − J oCP = ‖X − �Anew ,Bnew ,Cnew �‖ − ‖X − �A,B,C�‖. (5)

Definition 3.3 (Prediction Error). In prediction tasks, the prediction error refers to the error be-
tween predicted values by the ICP methods and the true values, denoted by ΔI. For an incremental
tensor X where some data is missing and needs to be predicted, suppose its ground truth tensor

is X′, and the reconstructed tensor by ICP is X̂. Then the prediction error ΔI can be calculated as
follows.

ΔI = ‖ (1 − Ω) ∗ X′ − (1 − Ω) ∗ X̂‖, (6)

where 1 and Ω are tensors with the same size as X, 1 is all-one tensor and Ω is a mask tensor

indicating observable entries in X, and, (1 − Ω) ∗ X′ and (1 − Ω) ∗ X̂ are the missing values and
their predictive values by the ICP methods, respectively.

3.2 Fundamental Causes of Errors

Causes for reconstruction error and cumulative reconstruction error. The reconstruction
errors always exist in the CP decomposition and the ICP decomposition, even in the optimal CP
decomposition. This is because all of them are low-rank tensor approximation techniques. While
the cumulative reconstruction error only exists in ICP for an incremental tensor, and it increases
as newly added data keeps coming. This is because that the ICP method makes approximation
in its incremental updates for each newly added tensor (see Figure 3). In addition, according to
Definition 3.2, the increase of the cumulative reconstruction error results in the increase of the
overall reconstruction error of ICP.

As mentioned before, the reconstruction error J ICP by ICP is constituted by both the intrin-
sic error J oCP and the cumulative reconstruction error ΔJ . Because J oCP is intrinsic in the
CP decomposition, it cannot be reduced by restarting the CP decomposition. While, the cumula-
tive reconstruction error ΔJ (t ), i.e., the margin between the reconstruction error of ICP and the
minimum error of the CP decomposition, can be reduced by restarting.

Causes for prediction error. In prediction tasks, as new data increases, the prediction error of
ICP increases cumulatively. There are two main reasons: (1) as newly added tensor increases, the
ICP method needs to continuously update incrementally. Due to the approximations in incremental
updates, the cumulative reconstruction error and the reconstruction error of the observable data
increase, thus the prediction error of the missing data increases. 2) When a new tensor with some
missing values comes, the ICP method updates the previous results to get new ones, and predicts
the missing data. Then, the ICP method will reuse these new results to update incrementally for
the next new tensor. In this process, the prediction results are taken as the true values for the next
prediction, which further expand the prediction error.

Restarting the CP decomposition can reduce the cumulative reconstruction error of the observ-
able data, and it also can use the arrived data for prediction. So, the prediction error can be reduced
by restarting.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 42. Publication date: April 2021.
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3.3 Problems Definition

In order to reduce serious error accumulation, the ICP methods need to restart CP decomposition
sometimes. That is, at some timestamps, it needs to combine the new data with the current one and
conduct the CP decomposition on the combined data. Inevitably, restarting CP decomposition is
time-consuming and space-consuming. Therefore, we need to determine the proper time points to
restart and reduce the number of restarts, so that the ICP methods with restart strategies reach high
accuracy and keep high efficiency. Then, the key challenge occurs: What are the appropriate time

points to restart the CP decomposition? That is, when to restart the CP decomposition can reduce
the number of restarts and keep a high accuracy? Intuitively, we hope to reduce the number of
restarts while keeping a low reconstruction error or prediction error. So, according to the defined
two types of errors, we formulate our goals into two constrained optimization problems.

P1: Minimizing the restarting times while keeping a small cumulative reconstruction

error. We set a tolerance threshold α1 on the cumulative reconstruction error and then minimize
the total number of restarts. Formally, we denote the error evaluation function asG (·) and whether
to restart at timestamp t as bt ∈ {0, 1} (t ∈ [1,T ]). Then, the optimization objective is as follows:

Minimizeb1, ...,bT

T∑
t=1

bt

s .t .G (X (0), . . . X (T ),
�
A

(t )
1 , . . . ,A

(t )
N

�
, 1 ≤ t ≤ T ) ≤ α1

�
A

(t )
1 , . . . ,A

(t )
N

�
=

{
Results o f CP decomposition onX (t ) i f bt = 1

F (�A(t−1)
1 , . . . ,A

(t−1)
N
�,X (t−1),ΔX (t ) ) otherwise,

(7)

where F (·) is the updating function of the ICP methods. Ifbt = 1, we restart the CP decomposition

on X (t ) ; otherwise, we adopt F (·) to incrementally update the previous factor matrices based on

new data ΔX (t ) .
For the function G (·) in the optimization objective of P1 (see Equation (7)), one approach is to

directly use J ICP (t ), the reconstruction error of ICP at timestamp t . However, according to the
causes analysis (in Section 3.2), we know that the reconstruction error J ICP (t ) of ICP at times-
tamp t is constituted by both the intrinsic error J oCP (t ) and the cumulative reconstruction error
ΔJ (t ). What’s more, only the cumulative reconstruction error ΔJ (t ), i.e., the margin between
the reconstruction error of ICP and the minimum error of the CP decomposition, can be reduced
by restarting the CP decomposition. So, it should be the right measure to guide restart. As most
applications are sensitive to the maximum error, we define G (·) as follows:

G =max1≤t ≤T
J ICP (t ) − J oCP (t )

J oCP (t )
. (8)

Putting Equations (7)–(8) together, we have the formulation of problem P1.

Example 3.3. Taking Figures 2 and 3 as examples, suppose the CP decomposition in Figure 2
is the optimal CP decomposition with minimum intrinsic error. According to Equations (2), (5),
and (8), the error evaluation function G (·) for tensorX reconstruction can be calculated as follows.

G =max1≤t ≤T
‖X (t ) − �A(t )

new ,B
(t )
new ,C

(t )
new �‖ − ‖X (t ) − �A(t ),B(t ),C(t )�‖

‖X (t ) − �A(t ),B(t ),C(t )�‖
. (9)

P2: Minimizing the restarting times while keeping a small prediction error. We set a
tolerance threshold α2 on the prediction error and then minimize the total number of restarts.
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Fig. 4. The illustration of incremental group-level popularity prediction problem [50].

Then the optimization objective for problems P2 is as follows:

Minimizeb1, ...,bT

T∑
t=1

bt

s .t .H
(
X (0), . . . X (T ),Ω(0), . . . Ω(T ),

�
A

(t )
1 , . . . ,A

(t )
N

�
, 1 ≤ t ≤ T

)
≤ α2

�
A

(t )
1 , . . . ,A

(t )
N

�
=

{
Results o f CP decomposition onX (t ) i f bt = 1

F (�A(t−1)
1 , . . . ,A

(t−1)
N
�,X (t−1),ΔX (t ) ) otherwise

Ω(t ) (i, j,k ) =

{
1, i f X (t ) (i, j,k ) is observed

0, otherwise,

(10)

wherebt ∈ {0, 1} (t ∈ [1,T ]) is a boolean variable, indicating whether to restart at timestamp t , and

Ω(t ) is a mask tensor ofX (t ) , indicating the observed entries inX (t ) . The error evaluation function
H (·) here is different from G (·) in problem P1, and it will be defined in specific tasks. Taking
dynamic link prediction and popularity prediction as examples, the error evaluation functionH (·)
can be defined as follows.

In dynamic link prediction, we can use the ICP method to predict links or recover the missing

links in dynamic networks. Specifically, we first build a link tensor X (0) ∈ Rn×n×t0 for n users in
the observable time period (0, t0], which has three modes, n users, n users and the observable

time period (0, t0]. Its element X (0) (i, j,k ) refers to whether there is a link between users i and

j at timestamp k . We first conduct the CP decomposition on X (0) to obtain its factor matrices

as initialization. Then, as newly added data ΔX (t ) ∈ Rn×n×tnew (t ∈ [1,T ]) comes, we use ICP to
update previous factor matrices and predict the missing links incrementally.

In this application, the area under curve (AUC) score [35, 48] is used to measure the prediction

accuracy. For an incremental link tensor X (t ) (t ∈ [1,T ]) at timestamp t , suppose its mask tensor,

ground truth tensor and predictive tensor are Ω(t ) , X′ (t ) , and X̂ (t ) , respectively. Then, we define
the accuracy evaluation functionH as follows:

H =min1≤t ≤TAUCt (X′ (t ), X̂ (t ),Ω(t ) ), (11)

where AUCt is a function to obtain the AUC score at timestamp t based on the ground truth and
predictive values. Since AUC score evaluates the prediction accuracy instead of prediction error,
we use the smallest AUCt (t ∈ [1,T ]) for H . So, for dynamic link prediction, the optimization
objective in Equation (10) is refined asH ≥ α2.

In dynamic popularity prediction, Wang et al. [50] adopt ICP to predict group-level popularity
incrementally. As the illustration in Figure 4, for a target topic p, they first build a group-level pop-

ularity tensor X (0) ∈ R(K+1)×l×t0 , which has three modes, i.e., (K + 1) topics (including K similar

historical topics of p), l user groups, and the observable time period [0, t0]. Its element X (0) (i, j,k )
refers to the accumulative popularity of topic i in group j until timestamp k . Then they conduct

the CP decomposition on X (0) to obtain its factor matrices as initialization. As newly added data

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 42. Publication date: April 2021.
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Fig. 5. Solution overview.

ΔX (t ) ∈ R(K+1)×l×tnew (t ∈ [1,T ]) comes, where p’s group-level popularity values need to be pre-
dicted (see the white part of new data in Figure 4), they use the ICP method to mine the underlying

structure of the current combined tensorX (t ) by appending ΔX (t ) , and predictp’s group-level pop-
ularity at timestamp t .

We use the same framework as [50]. For a topicp, suppose its predicted group-level popularity in

all groups at timestamp t is X̂p, j,t (j = 1, . . . , l ), and the ground truth is X′p, j,t (j = 1, . . . , l ). Then,

we define the error evaluation functionH as follows:

H =max1≤t ≤T

√∑
j (X̂p, j,t − Xp, j,t )2

√
(
∑

j Xp, j,t )2
. (12)

3.4 Solution Overview

To address the problems P1 and P2, our basic idea is to propose some restarting strategies to make
the error evaluation functions (i.e., G (·) andH (·)) less than the given thresholds (i.e., α1 and α2),
and minimize the number of restarts. Thus, we need to find effective indicators of restarting and
set appropriate thresholds for these indicators for restarting the CP decomposition in time. In
particular, when we use G (·) and H (·) in objective functions as indicators, the thresholds in the
restarting strategies are the same as the tolerance thresholds α1 and α2 in Equations (7) and (10).

Our solution overview is shown in Figure 5. In this article, we propose several restarting methods
for the both problems based on their characteristics. For P1, we propose three heuristic restarting
methods, which are based on the time interval (F-time), the reconstruction error (F-Recerror), and
the cumulative reconstruction error (F-Cumerror), respectively. For P2, we propose four heuristic
restarting methods, which are based on the time interval (F-time), the cumulative reconstruction
error (F-Cumerror), the previous feedback (F-feedback), and the newly changed data (F-changes),
respectively.

It is worth noting that F-time and F-Cumerror are not limited to a specific application, and they
can be used for the both problems in different applications. F-time is based on the time interval
from the initial timestamp, and it restarts the CP decomposition once after a fixed time interval.
F-Cumerror is based on the relative cumulative reconstruction error (RCRE), whose calculation is
different in the two problems. In particular, we only calculate the cumulative reconstruction error
of observable data for the problem P2.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 42. Publication date: April 2021.



Reducing Cumulative Errors of Incremental CP Decomposition in Dynamic OSNs 42:11

4 RESTARTING STRATEGIES FOR CUMULATIVE ERROR REDUCTION OF ICP

We describe our restarting methods for problems P1 and P2, respectively. Then, we theoretically
analyze their time complexities. Finally, we discuss their relations, differentiate their features, and
point out possible hybrid approaches.

4.1 Restarting Strategies for the Problem P1

The problem P1 is for the dynamic tensor reconstruction tasks in OSNs, whose primal goal is to
reconstruct the given dynamic tensor over time, for example, dynamic network reconstruction.
Given a dynamic tensor, which evolves along the time mode, we design three restarting strategies
(i.e., F-time, F-Recerror, and F-Cumerror) for the ICP method to reconstruct the incremental tensor
efficiently and accurately. The processes are shown in Algorithm 1.

To be specific, given an initial N -order tensor X (0) ∈ Rr1×···rN−1×t0 , where the last mode is the
time mode, we first conduct the CP decomposition to obtain its factor matrices as the initialization

(Line 1 in Algorithm 1). For each newly added data ΔX (t ) ∈ Rr1×···rN−1×tnew (t ∈ [1,T ]), we use
these restarting strategies to determine whether to restart the CP decomposition or not. If yes, we

calculate the current combined tensor X (t ) by appending ΔX (t ) to the previous tensor X (t−1) at
its time mode, and recalculate its CP decomposition from scratch. Otherwise, we incrementally

update the previous decomposition results only based on ΔX (t ) . Details of all restarting strategies
are described below.

4.1.1 F-time: Fixing the Time Interval δ . We periodically restart the CP decomposition after a
certain time interval δ . The details of F-time are shown in the Procedure of F-time in Algorithm 1
(Lines 2–11). F-time first initiates a variable c for counting time intervals from the initial time t0
(Line 3). Then, for each newly added data ΔX (t ) ∈ Rr1×···×rN−1×tnew (t ∈ [1,T ]), F-time adds tnew to
the variable c , and determines restarting or not. If c is a multiple of δ , F-time calculates the current

tensor X (t ) by appending ΔX (t ) to the previous tensor X (t−1) along the time mode, and restarts

the CP decomposition on X (t ) to obtain its factor matrices A
(t )
1 , . . . ,A

(t )
N

(Lines 6–8); otherwise, it

updates the previous results A
(t−1)
1 , . . .A

(t−1)
N

to obtain A
(t )
1 , . . .A

(t )
N

based on ΔX (t ) by the updating
method F (·) of ICP (Lines 9–10). Finally, it returns the Kruskal operator of these factor matrices

�A(t )
1 , . . . , A

(t )
N
� as the reconstruction results at timestamp t .

Complexity Analysis. The time complexity of the ICP method for a new data slice depends on
a specific incremental updating method, and it is related to the size of newly added data [60]. Given

an initial N -order X (0) ∈ Rr1×···×rN−1×t0 and a new data slice ΔX (t ) ∈ Rr1×···×rN−1×tnew (t ∈ [1,T ]),
we suppose ICP ’s time complexity for processing ΔX (t ) is a functionO ( f (N ,R, S, tnew )), where R
is the rank of the dynamic tensor, indicating the number of latent factors, S =

∏N−1
i=1 ri , and Stnew

is the size of ΔX (t ) . The time complexity of the CP decomposition is related to the size of the
current combined tensor, and it is O (NRS (t0 + t · tnew )) [60], where (t0 + t · tnew ) is the size of
the combined tensor on the time mode, and S (t0 + t · tnew ) is the size of the whole tensor. Since
there areT new data ΔX (t ) , its average time complexity isO (NRS (t0 + (1 +T )/2 · tnew )); the initial
observable time t0 is usually much smaller than other factors, so the average time complexity of
the CP decomposition is O (NRSTtnew ).

The time complexity of F-time is based on the threshold δ of time interval. In the worst case,
the threshold δ is smaller than tnew , then F-time needs to restart the CP decomposition for each
new data ΔX. There are a total of T new data ΔX, so the total time complexity is O (NRST 2tnew ).
Meanwhile, in the best case, the threshold δ is larger than tnew , then F-time only calculates ICP
for each new data. The total complexity is O (T f (N ,R, S, tnew )).
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ALGORITHM 1: Restarting Strategies for Problem P1

Input: X (0) : an initial N -order dynamic tensor.

ΔX (t ) (t ∈ [1,T ]): newly added tensor in timestamp t .
F (·): the updating function derived from an ICP method.

δ , σ , θ : the thresholds of F-time, F-Recerror and F-Cumerror, respectively.

Output: X̂ (t ) (t ∈ [1,T ]): the reconstruction tensor by factor matrices.

1 Initialization stage: calculate the CP decomposition on X0 to obtain A
(0)
1 , A

(0)
2 , . . .A

(0)
N

;

2 Procedure of F-time:

3 initialize the counter of time interval c ← 0;

4 for newly added data ΔX (t ) ∈ Rr1×···×rN−1×tnew (t ∈ [1,T ]) do

5 c ← c + tnew ;

6 if c/δ = 0 then

7 Calculate the current tensor X (t ) ∈ Rr1×...rN−1×(t0+c ) by appending ΔX;

8 Calculate the CP decomposition on X (t ) to obtain A
(t )
1 , . . . , A

(t )
N

;

9 else

10 Update A
(t−1)
1 , . . . , A

(t−1)
N

by using F (·) to get A
(t )
1 , . . . , A

(t )
N

;

11 return X̂ (t ) ← �A(t )
1 , . . . , A

(t )
N
�;

12 Procedure of F-Recerror:

13 for newly added data ΔX (t ) (t ∈ [1,T ]) do

14 Update A
(t−1)
1 , . . . , A

(t−1)
N

by using F (·) to get A
(t )
1 , . . . , A

(t )
N

;

15 Calculate the current tensor X (t ) ∈ Rr1×...rN−1×(t0+c ) by appending ΔX;

16 Calculate the relative reconstruction error RRE(t) with Equation (13);

17 if RRE (t ) > σ then

18 Calculate the CP decomposition on X (t ) to obtain A
′(t )
1 , . . . , A

′(t )
N

;

19 return X̂ (t ) ← �A′(t )
1 , . . . , A

′(t )
N
�;

20 else

21 return X̂ (t ) ← �A(t )
1 , . . . , A

(t )
N
�;

22 Procedure of F-Cumerror

23 for newly added data ΔX (t ) (t ∈ [1,T ]) do

24 Update A
(t−1)
1 , . . . , A

(t−1)
N

by using F (·) to get A
(t )
1 , . . . , A

(t )
N

;

25 Calculate the current tensor X (t ) ∈ Rr1×...rN−1×(t0+c ) by appending ΔX;

26 Calculate the CP decomposition on X (t ) to obtainA
′(t )
1 , . . . , A

′(t )
N

;

27 Calculate the relative cumulative error RCREP1 (t ) with Equation (14);

28 if RCREP1 (t ) > θ then

29 return X̂ (t ) ← �A′(t )
1 , . . . , A

′(t )
N
�;

30 else

31 return X̂ (t ) ← �A(t )
1 , . . . , A

(t )
N
�;

4.1.2 F-Recerror: Fixing the Maximum Relative Reconstruction Error RRE by a Threshold σ . In
F-Recerror, we take the relative reconstruction error (RRE) as a measure to guide when to restart

the CP decomposition. For an N -order dynamic tensor X (t ) at timestamp t , its RRE is denoted as
RRE (t ), which is calculated as follows:

RRE (t ) =
‖X̂ (t ) − X (t ) ‖
‖X (t ) ‖

=
‖�A(t )

1 , . . . ,A
(t )
N
� − X (t ) ‖

‖X (t ) ‖
, (13)
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where A
(t )
1 , . . . ,A

(t )
N

are factor matrices of X (t ) by ICP, and X̂ (t ) is the reconstruction tensor of
these factor matrices.

The details of F-Recerror are shown in Procedure of F-Recerror of Algorithm 1 (Lines 12–21).

For each new data ΔX (t ) (t ∈ [1,T ]), F-Recerror first updates the previous results A
(t−1)
1 , . . . ,A

(t−1)
N

to get A
(t )
1 , . . . ,A

(t )
N

by the ICP method F (·) (Lines 13–14). Then, it calculates the current com-

bined tensor X (t ) , and RRE (t ) with Equation (13) (Lines 15–16). Next, it compares RRE (t ) with the
threshold σ (Lines 17–21): if RRE (t ) is greater than σ , F-Recerror restarts the CP decomposition

on X (t ) , and returns the reconstruction results; Otherwise, F-Recerror returns �A(t )
1 , . . . ,A

(t )
N
� by

the ICP method.
Complexity Analysis. In the worst case, for each new data ΔX, its RRE is larger than σ . Then,

F-Recerror needs to calculate the ICP method and restart the CP decomposition every time, tak-
ing the time complexity of O ( f (N ,R, S, tnew ) + NRSTtnew ). There are a total of T new data, so
the total time complexity is O (T f (N ,R, S, tnew ) + NRST 2tnew ). Meanwhile, in the best case, RRE
is less than σ for each new data ΔX. Then, F-Recerror only calculates ICP, whose time complex-
ity is O ( f (N ,R, S, tnew )). There are a total of T new data ΔX, so the total time complexity is
O (T f (N ,R, S, tnew )).

4.1.3 F-Cumerror: Fixing the Maximum Relative Cumulative Reconstruction Error RCREP1 by

θ . In this strategy, we focus on the cause that leads to the increase of the reconstruction error
J ICP of ICP. According to the causes analysis in Section 3.2, we know that only the part of the
cumulative reconstruction error ΔJ inJ ICP can be reset by restarting the CP decomposition, thus
it could be the right measure to guide restarting. However, it is difficult to calculate the cumulative
reconstruction error ΔJ (t ) by J ICP (t ) − J oCP (t ) directly, because the determination of a CP
rank is NP-hard [17] and there is no optimal (i.e., minimum) loss J oCP proved in theory. Thus, we
conduct the CP decomposition on dynamic tensor at each timestamp, which serves as the optimal
CP decomposition with the minimum loss in this article. The margin between the reconstruction
error of ICP and the minimum loss by the optimal CP decomposition, is the actual cumulative
reconstruction error ΔJ induced by incremental updates. We calculate the relative cumulative
reconstruction error RCREP1 (t ) at timestamp t as follows:

RCREP1 (t ) =
J ICP (t ) − J oCP (t )

J oCP (t )
=
‖X̂ (t ) − X (t ) ‖ − ‖X̂′ (t ) − X (t ) ‖

‖X̂′ (t ) − X (t ) ‖
, (14)

whereX (t ) is the combined tensor at timestamp t , and X̂ (t ) and X̂′ (t ) are the reconstruction tensors

of the factor matrices of X (t ) by ICP and the optimal CP decomposition, respectively.
The details of F-Cumerror are shown in Procedure of F-Cumerror of Algorithm 1 (Lines 22–

31). For each new data ΔX (t ) (t ∈ [1,T ]), F-Cumerror first updates the previous results to obtain

A
(t )
1 , . . . , A

(t )
N

by the ICP method F (·) (Line 24). Next, it calculates the current combined tensor

X (t ) and conducts the CP decomposition X (t ) ≈ �A′(t )
1 , . . . , A

′(t )
N
� (Lines 25–26). Then, it cal-

culates the relative cumulative reconstruction error RCREP1 (t ) with Equation (14) (Line 27). By
comparing RCREP1 (t ) with the given threshold θ , F-Cumerror determines to return the recon-

struction result of A
(t )
1 , . . . , A

(t )
N

by ICP (when RCREP1 (t ) ≤ θ ) or that of A
′(t )
1 , . . . , A

′(t )
N

by the
CP decomposition (when RCREP1 (t ) > θ ) (Lines 28–31).

Complexity Analysis. In order to calculate RCREP1 (t ) (t ∈ [1,T ]), F-Cumerror has to calcu-
late ICP and the CP decomposition for each new data, no matter restarting or not. So, the time
complexity of F-Cumerror is the same as that of F-Recerror in the worst case, and the total time
complexity is O (T f (N ,R, S, tnew ) + NRST 2tnew ).
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4.2 Restarting Strategies for Problem P2

The problem P2 is for the dynamic prediction tasks in OSNs, whose primal goal is to predict the
missing data of the incremental tensor at each timestamp, such as dynamic link prediction and
dynamic popularity prediction [7, 23, 53, 58]. Given a dynamic tensor, where some missing values
need to be predicted, we design four restarting strategies (i.e., F-time, F-Cumerror, F-feedback,
and F-Changs) to determine the appropriate restarting time points. The ICP method with these
restarting strategies can predict the missing data incrementally, efficiently and accurately.

Given an initial N -order tensor X (0) ∈ Rr1×···rN−1×t0 , where the last mode is the time mode, and
t0 is the observable time period, we first calculate its CP decomposition as initialization (Line 1

in Algorithm 2). For each new data ΔX (t ) ∈ Rr1×···rN−1×tnew (t ∈ [1,T ]) with some missing values,
we use the restarting strategy to determine whether to restart the CP decomposition or not. If

restarting, we calculate the CP decomposition on X (t ) , which is obtained by appending ΔX (t ) to

the previous tensor X (t−1) at the time mode. Otherwise, we incrementally update the previous

results based on ΔX (t ) by ICP. Finally, based on these obtained factor matrices, we reconstruct the
tensor and predict the missing data in ΔX (t ) . Details of all restarting strategies are as follows.

4.2.1 F-time: Fixing the Time Interval δ . F-time restarts the CP decomposition periodically after
each certain time period δ . Its restarting mechanism is the same as that in Section 4.1.1, so we do

not repeat its details here. After obtaining the reconstruction result X̂ (t ) for a dynamic tensorX (t )

at timestamp t , F-time calculates (1 − Ω(t ) ) ∗ X̂ (t ) as the predicted values, where Ω(t ) is a mask

tensor of X (t ) , indicating the observed entries of X (t ) .
Complexity Analysis. According to the complexity analysis for F-time in Section 4.1.1, in the

worst case, the total time complexity of F-time for P2 is O (NRST 2tnew ), where O (NRSTtnew ) is
the average time complexity of the CP decomposition for each new data, and T is the number of
newly added data. Meanwhile, in the best case, the total complexity isO (T f (N ,R, S, tnew )), where
O ( f (N ,R, S, tnew )) is the time complexity of ICP for processing a new data slice.

4.2.2 F-Cumerror: Fixing the Maximum Relative Cumulative Reconstruction Error RCREP2 by a

Threshold θ . The difference between F-Cumerror here and the previous one for problem P1 in
Section 4.1.3 is the calculation of relative cumulative reconstruction error RCREP2. For problem
P2, F-Cumerror only calculatesRCREP2 of observable data. So, we redefine RCREP2 (t ) at timestamp
t as follows:

RCREP2 (t ) =
J ICP (t ) − J oCP (t )

J oCP (t )
=
‖Ω(t ) ∗ (X̂ (t ) − X (t ) )‖ − ‖Ω(t ) ∗ (X̂′ (t ) − X (t ) )‖

‖Ω(t ) ∗ (X̂′(t ) − X (t ) )‖

Ω(t )
i, j,k
=
⎧⎪⎨
⎪
⎩

0, i f X (t )
i, j,k

is missinд

1, otherwise,

(15)

where Ω(t ) is a mask tensor of X (t ) , indicating the observed entries in X (t ) ; X̂ (t ) and X̂′ (t ) are the
reconstruction tensors of factor matrices by ICP and the optimal CP decomposition, respectively,
and “∗” is the element-wise tensor product.

The details of F-Cumerror are shown in Procedure of F-Cumerror of Algorithm 2 (Lines 2–10).

For each new tensor ΔX (t ) (t ∈ [1,T ]) with some missing values, F-Cumerror first incrementally

updates the previous results to obtain A
(t )
1 , . . . , A

(t )
N

by the ICP method F (·) (Line 4). Next, it cal-

culates the CP decomposition on the current combined tensor X (t ) ≈ �A′(t )
1 , . . . , A

′(t )
N
� (Line 5).

Based on the above results, it calculates RCREP2 (t ) with Equation (15) (Line 6). Then, compar-
ing RCREP2 (t ) with the given threshold θ , F-Cumerror decides restarting or not (Lines 7–9):

if RCREP2 (t ) is greater than θ , it calculates the reconstruction tensor X̂t = �A′
(t )
1 , . . . , A

′(t )
N
�;
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ALGORITHM 2: Restarting Strategies for Problem P2

Input: X (0) ∈ Rr1×···×rN−1×t0 : the initial dynamic tensor in the observable period [0, t0].

ΔX (t ) t ∈ [1,T ] : newly added tensor at timestamp t .
F (·): the updating function derived from an ICP method.

θ , ξ and η: the threshold of F-Cumerror, F-feedback and F-changes respectively.

Output: {x̂(t ) |t = 1, . . . ,T }: predicted group-level popularity of topic p.

1 Calculate the CP decomposition on X (0) to obtain factor matrices A
(0)
1 , . . . ,A

(0)
N

as initialization;

2 Procedure of F-Cumerror

3 for newly added data ΔX (t ) ∈ Rr1×···×rN−1×tnew (t ∈ [1,T ]) do

4 Use F (·) to update A
(t−1)
1 , . . . ,A

(t−1)
N

to get A
(t )
1 , . . . ,A

(t )
N

;

5 Calculate the current combined tensor X (t ) and its CP decomposition X (t ) ≈ �A′(t )
1 , . . . ,A

′(t )
N
�;

6 Calculate the relative cumulative error RCREP2 (t ) with Equation (15);

7 if RCREP2 (t ) > θ then

8 A
(t )
1 , . . . ,A

(t )
N
← A

′(t )
1 , . . . ,A

′(t )
N

;

9 X̂ (t ) ← �A(t )
1 , . . . ,A

(t )
N
�;

10 return (1 − Ω(t ) ) ∗ X̂ (t ) ;

11 Procedure of F-feedback

12 f laд ← 0;

13 for newly added data ΔX (t ) (t ∈ [1,T ]) do

14 if f laд = 1 then

15 Calculate the current combined tensor X (t ) and its CP decomposition

X (t ) ≈ �A′(t )
1 , . . . ,A

′(t )
N
�;

16 A
(t )
1 , . . . ,A

(t )
N
← A

′(t )
1 , . . . ,A

′(t )
N

;

17 else

18 Use F (·) to update A
(t−1)
1 , . . . ,A

(t−1)
N

to get A
(t )
1 , . . . ,A

(t )
N

;

19 X̂ (t ) ← �A(t )
1 , . . . ,A

(t )
N
�, and get predicted values (1 − Ω(t ) ) ∗ X̂ (t ) ;

20 CalculateH (X (t ) ,Ω(t ) , �A(t )
1 , . . . ,A

(t )
N
�)) with Equation (10);

21 if H reachs the ξ then

22 f laд ← 1;

23 else

24 f laд ← 0;

25 Procedure of F-changes:

26 add_link ← 0;

27 for newly added data ΔX (t ) (t ∈ [1,T ]) do

28 add_link ← add_link+the number of links in ΔX (t ) ;

29 if add_link > η then

30 Calculate the current combined tensor X (t ) and its CP decomposition

X (t ) ≈ �A′(t )
1 , . . . ,A

′(t )
N
�;

31 A
(t )
1 , . . . ,A

(t )
N
← A

′(t )
1 , . . . ,A

′(t )
N

;

32 add_link ← 0;

33 else

34 Update A
(t−1)
1 , . . . ,A

(t−1)
N

by using F (·) to get A
(t )
1 , . . . ,A

(t )
N

;

35 X̂ (t ) ← �A(t )
1 , . . . ,A

(t )
N
�;

36 return (1 − Ω(t ) ) ∗ X̂ (t ) ;
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otherwise, X̂t = �A
(t )
1 , . . . , A

(t )
N
�. Finally, based on X̂ (t ) and the mask tensor Ω(t ) , F-Cumerror

returns the predictive values at timestamp t (Line 10).
Complexity Analysis. No matter restarting or not, F-Cumerror has to calculate the CP de-

composition and ICP for each new data for calculating RCREP2 (t ), whose time complexity is
O ( f (N ,R, S, tnew ) + NRSTtnew ). There are a total ofT new data slices, so the total time complexity
is O (T f (N ,R, S, tnew ) + NRST 2tnew ).

4.2.3 F-feedback: Fixing the Previous Feedback by a Threshold ξ . This strategy is a

purpose-driven strategy. For an incremental tensor X (t ) (t ∈ [1,T ]), the prediction error

H (X′(t−1), X̂ (t−1),Ω(t−1) ) (see Equation (10) for the problem P2) at timestamp t − 1 severs as feed-

back to guide whether to restart at timestamp t . X′ (t−1), X̂ (t−1) , and Ω(t−1) are the ground truth

tensor, the predicted tensor, and the mask tensor ofX (t−1) , respectively. It is worth noting that the
error evaluation functionH (·) has different forms in specific prediction tasks. For example,H (·)
can be expressed as the AUC score in dynamic link prediction (see Equation (11)), and the relative
mean error of group-level (REG) in dynamic popularity prediction (see Equation (12)), respectively.

The Procedure of F-feedback in Algorithm 2 (Lines 11–24) shows its details. F-feedback intro-
duces a variable f laд to indicate whether to restart or not, which is initialized as 0 (Line 12). For

each new data ΔX (t ) (Lines 13–19): if f laд equals 1, F-feedback restarts the CP decomposition

on the current tensor X (t ) , and obtains factor matrices A
(t )
1 , . . . ,A

(t )
N

; otherwise, it incrementally

updates previous results to obtain A
(t )
1 , . . . ,A

(t )
N

by F (·); based on the reconstruction tensor of

these factor matrices and the mask tensor Ω(t ) , F-feedback obtains predicted values at timestamp
t . Finally, it calculates H (·) at timestamp t based on the predicted values and their ground truth,
and sets f laд by comparingH (·) and the given threshold ξ (Lines 20–24). Specifically, whenH ( ·)
is a measure of prediction error, f laд is set as 1 (if H (·) > ξ ), or 0 (if H (·) ≤ ξ ); when H (·) is a
measure of accuracy, f laд is set as 1 (ifH (·) < ξ ), or 0 (ifH (·) ≥ ξ ).

Complexity Analysis. In the worst case, f laд is always 1. Then, F-feedback needs to re-

calculate the CP decomposition for each new data ΔX (t ) t ∈ [1,T ], whose time complexity is
O (NRTStnew ). There are a total of T new data slices, so the total time complexity of prediction
process is O (NRT 2Stnew ). In the best case, f laд is always 0. Then, F-feedback only calculates in-
cremental updates for each ΔX, whose time complexity is O ( f (N ,R, S, tnew )). So the total time
complexity of prediction process is O (T f (N ,R, S, tnew )).

4.2.4 F-changes: Fixing the Number of Newly Changed Edges by the Threshold η. F-changes
restarts the CP decomposition after a fixed number of changed edges. The details of F-changes
are shown in Procedure of F-changes of Algorithm 2 (Lines 25–36). It first introduces a variable
add_link to count the number of newly added links from the last restarting (Line 26). For each

new data ΔX (t ) (t ∈ [1,T ]), it adds the number of links in ΔX to add_link (Line 28), and compares
add_link with the given threshold η (Lines 29–34): if add_link is bigger than η, F-changes restarts
and resets add_link as 0; otherwise, it uses F (·) to update the factor matrices. Finally, F-changes

reconstructs the predicted tensor X̂t based on the factor matrices, and returns the prediction

results (1 − Ω(t ) ) ∗ X̂ (t ) at timestamp t (Lines 35–36).
Complexity Analysis. In the worst case, η is very small, and the number of new added links

in ΔX (t ) t ∈ [1,T ] is larger than η. F-changes needs to recalculate the CP decomposition for each
new data. There are a total of T new data slices, so the total time complexity is O (NRST 2tnew ). In
the best case, η is very large. Then, F-changes does not restart, and only calculates ICP for each
new data. So the total time complexity is O (T f (N ,R, S, tnew )).
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Table 2. Comparison of Restarting Methods

Methods Problems Worst case Best case Mechanism

F-time P1, P2 O (NRST 2tnew ) O (T f ) Time-based, periodical

F-Cumerror P1, P2 O (T f + NRST 2tnew ) O (T f + NRST 2tnew ) Cumulative error

F-Recerror P1 O (NRST 2tnew ) O (T f ) Reconstruction error

F-feedback P2 O (NRST 2tnew ) O (T f ) Previous results

F-changes P2 O (NRST 2tnew ) O (T f ) Changes-based, periodical

1The time complexity of an ICP method for processing each new data ΔX is denoted by f .
2The average complexity of the CP decomposition for ΔX is O (N RST tnew ).

4.3 Discussion

We propose several restarting methods for addressing the two problems P1 and P2. They have no
specific requirements on the ICP method or the incremental updating method. Therefore, they are
flexible to cooperate with any ICP methods. Now, we compare their main features, and discuss the
possible extended restarting methods.

4.3.1 Main Features. We compare all restarting methods on three main features, including the
problems they are suitable for, their time complexities, and their restarting mechanisms and thresh-
old setting strategies. The results are shown in Table 2, where f is a function f (N ,R, S, tnew )
(S =
∏N−1

i=1 ri ), referring to the time complexity of a specific ICP method for processing each newly
added data ΔX.

Problems. Among all the five restarting methods, F-Recerror is suitable for P1 only. F-feedback
and F-changes are suitable for P2. Meanwhile, F-time and F-Cumerror are not limited to spe-
cific problems or applications. They can be used for both problems P1 and P2. F-time restarts the
CP decomposition once after a fixed time interval. F-Cumerror is based on the RCRE. Note that,
F-Cumerror for P2 only calculates the RCRE of observable data, while it is all data for P1.

Time complexity. Among all the five methods, four heuristic restarting methods (i.e., F-time,
F-Recerror, F-feedback, and F-changes) have the same time complexity both in the worst case and
the best case. This is because they only calculate either incremental updates of ICP (in the best
case) or the CP decomposition (in the worst case) for each new data. As for F-Cumerror, it has
to calculate incremental updates of ICP and the CP decomposition for each new data, no matter
restarts or not. So, F-Cumerror costs more time than other methods.

Restarting mechanism and threshold setting. The proposed five restarting methods have
different restarting mechanisms and threshold settings. We classify them into three types: periodic
restarting, error-based restarting, and feedback-based restarting. Details are as follows.

(1) Periodic restarting. F-time and F-changes periodically restart after a certain time interval and
a certain number of changes, respectively. They only need counters to count time interval or the
number of changed edges, and then determine whether to restart based on the counters and the
given thresholds. So, both of them are efficient and easy to implement.

The thresholds for periodic restarting methods, i.e., time interval δ for F-time and the number
η of changed edges for F-changes, depend on the speed of increasing data and the amount of
each new data slice, respectively. In order to reduce the number of restarts while keeping a high
accuracy, when data increase rapidly and the amount of new data is large, small thresholds are
required; when data increase slowly and the amount of new data is small, large thresholds are
suitable.

(2) Error-based restarting. F-Cumerror and F-Recerror are based on RCRE and RRE, respectively.
According to the cause analysis for errors in Section 3.3, RCRE induced by incremental updates
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Table 3. Statistics in Behance and MathOverflow

#Timestamps Timestamp size Total size Initial size Type

Behance 60 4 hours 1,326×12×60 1,326×12×12 Directed weighted

MathOverflow 50 1 week 1,000×1,000×50 1,000×1,000×10 Undirected unweighted

of ICP can be reset by restarting the CP decomposition; while RRE includes the intrinsic loss in
the CP decomposition, which still exists even after restarting. So, RCRE is more suitable to guide
restarting than RRE.

Thresholds for error-based restarting methods mainly depend on user’s tolerance to error. For
F-Recerror, its threshold depends on the user’s requirements for reconstruction accuracy. The
smaller the threshold is, the more restarts it requires, and the closer the obtained result is to
the original tensor. Meanwhile, the threshold of F-Cumerror depends on user’s tolerance to cu-
mulative error. The smaller the threshold is, the closer the obtained result is to the optimal CP
decomposition.

(3) Feedback-based restarting. F-feedback is a purpose-driven method, which determines adap-
tively restarting or not by monitoring the previous prediction results. For example, when we set
the threshold of relative prediction error is 5%, it will restart the CP decomposition when the last
relative prediction error is bigger than 5%. So, F-feedback can restart in time and flexibly, and
achieve a stable performance.

The threshold for feedback-based restarting method depends on user’s tolerance to prediction
error. The smaller the threshold is, the more restarts it needs, and the smaller its prediction error
is.

4.3.2 Possible Extensions. We can combine two or more restarting strategies for a hybrid
restarting framework. Here, we take the hybrid method H1(δ ,θ ) by combining F-time with the
threshold δ of time interval and F-Cumerror with θ as an example. When the time interval of new
data slices is a multiple of the given threshold δ , H1 calculates the RCRE; if RCRE is larger than
the given threshold θ , it restarts the CP decomposition; otherwise, it updates the previous results
incrementally by ICP. Compared with F-time, it does not need to restart the CP decomposition in
every δ time interval. Compared with F-Cumerror, it only calculates RCRE once for δ time interval.
Therefore, the hybrid restarting method would be more flexible and efficient.

In this article, we strive to explore good indicators to guide restarting. Therefore, we mainly
study single indicators and check their effects. We will study more hybrid approaches in future
work.

5 APPLICATION OF PROBLEM P1: DYNAMIC NETWORK RECONSTRUCTION

In this section, we evaluate the empirical performance of our restarting strategies for problem P1
in dynamic network reconstruction, which aims to reconstruct the given dynamic network tensor.

5.1 Experimental Setup

Datasets. We use two real dynamic social networks with different applications for our experi-
ments, Behance [19] and MathOverflow [39]. The statistics are summarized in Table 3.

Behance2 (for information diffusion): A dynamic tensor can be established based on the propa-
gation of multiple topics (i.e., projects) on all user groups over time. It is a third-order tensor of
size 1, 326 (topics ) × 12 (user дroups ) × 60 (timestamps ), whose element refers to the cumulative

2http://cs.ucsb.edu/∼mhoang/gpop.tar.gz.
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appreciating number of a project in an user group until a certain time. The size of the initial tensor
is 1, 326 × 12 × 12.

MathOverflow3 (for link prediction): It is a dynamic network of interactions, which are rep-
resented as undirected links between user nodes with timestamps. After filtering and removing
inactive users, the dataset can build a dynamic tensor with binary entries of size 1,000 (users ) ×
1,000 (users ) × 50 (timestamps ), whose element refers to whether there is an interaction between
two users at a certain time. The size of the initial tensor is 1,000 × 1,000 × 10.

Experimental Settings. Given an initial dynamic network tensor X (0) ∈ Rr1×r2×t0 , first, all

methods calculate the CP decomposition on X (0) to obtain factor matrices as initialization. Then,

for each newly added network tensor ΔX (t ) ∈ Rr1×r2×tnew (t ∈ [1,T ]), different restarting meth-
ods are exploited to decide whether to restart the CP decomposition individually. If a method
decides not to restart, we use the ICP method [60] to incrementally update the previous results.
Otherwise, we use the batch hot of CP decomposition [60], which uses the CP decomposition of
the last timestamp as the initialization for decomposing the current tensor. Finally, we obtain the
reconstruction tensor based on these decomposition results. We run each method with a certain
parameter 10 times, and report the average results and their deviations.

Parameter Settings. Tensor decomposition can preserve most significant information when
rank R is small (i.e., low-rank decomposition) while saving space [25]. So, we use low-rank R = 2
across all experiments unless specified. In addition, the threshold δ of time interval for F-time can
be simplified to represent the number of timestamps, because the datasets have been partitioned
into equal-time intervals. For example, when δ = 2 on Mathoverflow, F-time periodically restarts
the CP decomposition after 2 timestamps (i.e., 2 weeks).

Baselines. We implement ICP with different restarting strategies, and compare them with the
ICP method itself [60] to check the effects of the different restarting methods on ICP in dynamic
network reconstructions.

Metrics. To evaluate the effectiveness of restarting, we use relative error as follows to evaluate
how well different methods can approximate the performance of the optimal CP decomposition.

RE (t ) =
‖X̂ (t ) − X̂′(t ) ‖
‖X̂′(t ) ‖

, (16)

where X̂ (t ) and X̂′(t ) are reconstruction tensors by ICP with a restarting method, and by the op-
timal CP decomposition, respectively. In this article, we conduct the CP decomposition on the
dynamic network tensor for each new data slice as the optimal CP decomposition. We also take
two measurements of RE (t ): the maximum error over all timestamps max (RE) =max1≤t ≤TRE (t )
and the average error avд(RE) = 1

T

∑T
t=1 RE (t ). In addition, the average running time for process-

ing one data slice, measured in seconds, is used to validate the efficiency of algorithms.

5.2 Experimental Results

5.2.1 Performance and Parametric Sensitivity. We analyze the threshold sensitivity of differ-
ent restart methods. For F-time, we vary δ from 1 to 5, then it restarts 48, 24, 16, 12,and 9 times
successively on Behance, and 40, 20, 13, 10,and 8 times on Mathoverflow. For F-Recerror and
F-Cumerror, we adjust their thresholds to make them have the average number of restarts from 9
to 48 on Behance, and from 8 to 40 on Mathoverflow. We compare their relative error and average
running time as in Figures 6 and 7, respectively.

3http://snap.stanford.edu/data/sx-mathoverflow.html.
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(a) F-time for Behance

(a) F-time for MathOverflow (e) F-Recerror for MathOverflow () F-Cumerror for MathOverflow

(b) F-Recerror for Behance (c) F-Cumerror for Behance

Fig. 6. The relative error of different restarting methods for behance and MathOverflow.

(a) F-time for Behance

(a) F-time for MathOverflow (e) F-Recerror for MathOverflow () F-Cumerror for MathOverflow

(b) F-Recerror for Behance (c) F-Cumerror for Behance

Fig. 7. The average running time(s) of different restarting methods for Behance and MathOverflow.

The effect of thresholds on relative error. For F-time (Figures 6(a) and (d)), its RE (t ) curves
fluctuate regularly over time, and have multiple peaks and valleys. Moreover, with the increase
of δ , the time interval between valleys increases, and the value of RE (t ) increases at the same
timestamp. This is because with the increase of δ , its restarting times decrease.
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(a) Mathoverflow (b) Mathoverflow

Fig. 8. The performance of F-Time with varying tensor density.

Table 4. Datasets with Different Density for Mathoverflow

Datasets M1 M2 M3 M4 M5
Density 1.5‰ 1.3‰ 1.1‰ 1‰ 0.8‰

For F-Recerror (Figures 6(b) and (e)), the RE (t ) curves have a period of stability, when the results
are very close to that of the optimal CP decomposition (i.e., RE (t ) is almost equal to 0 in the
beginning on Behance or in the end on MathOverflow). The smaller the threshold σ is, the larger
the number of restarting is, the smaller RE (t ) is, and the longer the stationary period is.

For F-Cumerror (Figures 6(c) and (f)), its RE (t ) curves have many peaks and valleys. Unlike
F-time, its time interval between peak or valleys is not fixed, and has no apparent pattern. In
addition, at the same timestamp, the bigger θ is, the bigger RE (t ) is.

The effect of thresholds on running time. Figure 7 shows that the running time curves
of F-time, F-Cumerror, and F-Recerror increase over timestamps. This indicates that with the in-
crease of newly added data, their running time increases. For F-time (Figures 7(a) and (d)) and
F-Recerror (Figures 7(b) and (e)), at the same timestamps, with the increase of their thresholds,
their running time decreases. Meanwhile, the changes of thresholds θ for F-Cumerror have little
effects on the running time. That is, at the same timestamp, the running time remains constant for
different thresholds. This is because that for each new data, F-Cumerror has to calculate the CP
decomposition, ICP, and the cumulative reconstruction error, no matter restarting or not.

The effect of tensor density. We test the effect of tensor density on the running time by F-
time with δ = 1 as shown in Figure 8. We randomly hide 10%, 20%, 30%, 40%, and 50% links of
Mathoverflow, respectively, and we denote the rest network datasets as M1, M2, M3, M4, and M5,
respectively. We calculate their densities as shown in Table 4. We run 10 rounds on each dynamic
network and report the average results. Figure 8 shows that the average running time of F-time
grows near-linearly with density, and a larger density leads to a longer running time.

The effect of rank R. We study the effect of different ranks by comparing all algorithms with
varying R from 1 to t0 (i.e., R from 1 to 12 on Behance, and from 1 to 10 on MathOverflow). The
results are shown in Figure 9.

In general, the increase of rank R do affect the relative error, the average running time and the
number of restarts. With different ranks R, ICP with restarting methods have much lower relative
errors than ICP itself, while their running time is a bit longer. For instance, compared with ICP itself
on MathOverflow (Figures 9(d) and (e)), when R = 1, ICP with F-time restarting method reduces
the relative error by 95.6% with the cost of 10.5x running time; When R = 10, it reduces the relative
error by 87.1%, with the cost of 14.2x running time. Details are as follows.

(1) Accuracy (Figures 9(a) and (d)). With the increase of R, the relative error of ICP decreases,
and that of ICP with restarting methods has slight changes. What’s more, ICP with our restart-
ing methods has much lower relative error than ICP itself. So, ICP with our restarting methods
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(a) Relative error on B. (b) Average running time on B. (c) Number of restarts on B.

(d) Relative error on M. (e) Average running time on M. () Number of restarts on M.

Fig. 9. Performance of all algorithms with varying rank R on Behance (B.) and MathOverflow (M.).

provide more stable and higher accuracy results than ICP itself. (2) Efficiency (Figures 9(b) and
(e)). As R increases, the running time of all methods increases, because their time complexities
are linearly related to R. (3) Number of restarts (Figures 9(c) and (f)). With the increase of R, the
number of restarts of F-time remains constant; that of F-Recerror decreases due to the decrease
of reconstruction error; and that of F-Cumerror increases due to the increases of the RCRE (see
Section 4.1.3). Meanwhile, the number of restarts of ICP is 0, i.e., it only conducts the incremental
updates on new data.

Taking all together, for different R, ICP with our restarting methods has smaller relative error at
the expense of a little time, and they provide more stable results than ICP itself. Furthermore, we
find that ICP with restarting methods or itself can preserve most significant information when R is
small (i.e., low-rank decomposition), while saving space and running time. Hence, in the following
experiments, we set a low rank R = 2 in all three OSN applications.

5.2.2 Comparative Study. We first compare the proposed different restarting methods in details.
Then, our methods are compared with the baseline in terms of accuracy and efficiency.

Number of restarts. We compare the number of restarts of our methods when fixing their
relative error. We adjust the thresholds of F-time, F-Recerror, and F-Cumerror, so that all methods
achieve the same maximum error. The results are displayed in Figure 10. It shows that F-Cumerror
outperforms other two methods, i.e., it significantly reduces the number of restarts while maintains
the same maximum error. Compared with F-Recerror, F-Cumerror reduces the number of restarts
by 50.5% on Behance, and by 78.7% on MathOverflow.

Relative error. We compare the relative error of our methods when fixing their number of
restarts by adjusting their thresholds. The results are shown in Table 5. We observe that the F-
Cumerror achieves the smallest relative errors (i.e., ave (RE) and max (RE)), followed by F-time.
While F-Recerror has the largest relative errors on the two datasets. These results demonstrate
that the timestamps of restarting are indeed crucial for the ICP method, and the cumulative error
is a good measure to guide when to restart.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 42. Publication date: April 2021.



Reducing Cumulative Errors of Incremental CP Decomposition in Dynamic OSNs 42:23

(a) Behance (b) MathOverflow

Fig. 10. The number of restarts of different methods when fixing the maximum relative error.

Table 5. Comparison in Dynamic Network Reconstruction

(Fixing #restarts, Behance: 12; MathOverflow: 13)

Datasets Methods Ave (RE) Standard deviation Max (RE) Running time

Behance

ICP with

restarting

F-time 0.0611 0.0001 0.7026 0.0034

F-Recerror 0.1186 2.0E-07 0.1372 0.3265

F-Cumerror 0.0198 1.3E-05 0.0619 0.3297

Baseline ICP 0.8092 0.0138 0.9346 0.0007

MathOverflow

ICP with

restarting

F-time 0.0308 3.4E-06 0.1762 0.0788

F-Recerror 0.2684 7.9E-05 0.5653 0.2983

F-Cumerror 0.0288 6.4E-07 0.0987 0.4831

Baseline ICP 0.4945 0.0001 0.5807 0.0075

Comparison with baseline. We compare our methods with the baseline in terms of accuracy
and efficiency as shown in Table 5. Compared with ICP itself, ICP with restarting methods achieves
smaller relative errors and standard deviations at the expense of longer running time.

Accuracy. ICP with our methods have lower relative errors and smaller standard deviations than
the baseline of ICP. In particular, ICP with F-Cumerror has the smallest relative error. This indicates
that ICP with restarting methods can stably achieve higher accuracy than ICP itself, and the RCRE
in F-Cumerror is the good measure to guide when to restart.

Efficiency. ICP costs the least time among all methods, followed by F-time. The restarting mech-
anism of F-time is simple, it only counts the time intervals for determining whether to restart.
Meanwhile, F-Cumerror costs the longest time, because it needs to calculate ICP and the CP de-
composition for each new data.

5.3 Brief Summary

In this section, we apply the ICP method with our restarting strategies in dynamic network recon-
struction. Based on extensive experiments, two main findings are summarized as follows.

(1) Among three restarting methods for problem P1, F-Cumerror outperforms other two meth-
ods: when fixing the number of restarts, F-Cumerror has the minimum error; when fixing the
maximum relative error, F-Cumerror requires the minimum number of restarts. These results
demonstrate that the time points of restarting CP decomposition are indeed crucial for ICP, and
F-Cumerror has better performance in determining the appropriate restarting time.

(2) Taking the accuracy and the efficiency into consideration, we compare our methods with
baseline. The results show that ICP with restarting methods costs a little more running time, but
it provides more stable and higher accuracy results than ICP itself.
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Table 6. Statistics in CollegeMsg and MathOverflow

Time #Temporal #Total #Initial Timestamp
span #Users edges timestamps timestamps size

CollegeMsg 193 days 1,899 59,835 28 6 1 week
MathOverflow 350 days 1,000 506,550 50 10 1 week

6 APPLICATION OF PROBLEM P2: DYNAMIC LINK PREDICTION

In this section, we evaluate the empirical performance of our restarting strategies for problem P2
in dynamic link prediction, which aims to predict the missing links at each timestamp.

6.1 Experimental Setup

Datasets. We use two real-world datasets of CollegeMsg [43] and MathOverflow [39] for evalua-
tion. Their statistics are summarized in Table 6.

CollegeMsg4: It is comprised of private messages sent on an OSN at the University of California,
Irvine. The link (u,v,k ) means that user u sent a private message to userv at time k . We filter and
remove inactive users who have less interaction with others.

MathOverflow5: It is the same as the MathOverflow in Section 5.
Evaluation Methods. We randomly hide 10% of the network, and different methods are con-

ducted on the rest of the network to recover the missing data. We run each method with a certain
parameter 10 times, and report the average results and their deviations.

Baselines. We compare the ICP method with our restarting strategies, with the ICP method
itself [60] and TIMERS [10]. TIMERS is a restarting method based on incremental SVD [6], and is
applied to dynamic link prediction. Instead of predicting concrete number of links, TIMERS is to
predict the probability of edges between nodes in this article. Its prediction result at timestamp t
minus the previous one at timestamp t − 1 is taken as the prediction result of newly added data.

Metrics. We adopt a standard metric, AUC score [35, 48], in our experiments. We calculate the
AUC at each timestamp based on prediction results, denoted as AUCt . The average AUC score
is defined as: avд(AUC ) = 1

T

∑T
t=1 AUCt for the final accuracy. In addition, we use the average

running time for processing one data slice to validate the efficiency of a method.

6.2 Experimental Results

6.2.1 Performance and Parametric Sensitivity. We compare the performance of different restart-
ing methods with different thresholds. For F-time, we vary δ from 1 to 5, then it restarts
22, 11, 7, 5,and 4 times successively on College Msg, and restarts 40, 20, 13, 10,and 8 times suc-
cessively on Mathoverflow. For the other methods, we adjust their thresholds to make them have
the average number of restarts from 4 to 22 on College Msg, and from 8 to 40 on Mathoverflow.
The results are shown in Figures 11 and 12, respectively.

The effect of thresholds on AUC. From Figure 11, we find that the AUC curves of different
restart strategies fluctuate over time and show a downward trend as a whole. The farther the future
is, the harder it is to predict, leading to the decrease of accuracy. At the same timestamp, the AUC
scores of F-time, F-Cumerror, and F-changes decline slightly as their thresholds increase. While
for F-feedback, the bigger its threshold ξ is, the bigger AUC is.

4http://snap.stanford.edu/data/CollegeMsg.html.
5http://snap.stanford.edu/data/sx-mathoverflow.html.
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(a) F-time for C. (b) F-Cumerror for C. (c) F-feedback for C. (d) F-changes for C.

(e) F-time for M. () F-Cumerror for M. (g) F-feedback for M. (h) F-changes for M.

Fig. 11. AUC of four restart methods for College Mag (C. for short) and MathOverflow (M. for short).

(a) F-time for C. (b) F-Cumerror for C. (c) F-feedback for C. (d) F-changes for C.

(e) F-time for M. () F-Cumerror for M. (g) F-feedback for M. (h) F-changes for M.

Fig. 12. Running time of restarting methods for CollegeMsg (C. for short) and MathOverflow (M. for short).

The effect of thresholds on running time. From Figure 12, we find that for F-time and
F-changes, with the increase of thresholds, their average running time decrease, and their curves
fluctuate under the curves with smallest thresholds (i.e., F-time with δ = 1, F-changes with η =
1000). The difference is that the time intervals between the peaks of F-time are the same, but that
of F-changes are different. Meanwhile, for F-Cumerror, it takes almost the same time for different
thresholds θ . In addition, for F-feedback, at the same timestamp, the bigger the threshold ξ is, the
bigger the average running time is. This is because that with the increase of ξ , its tolerance to error
decreases, and it needs to restart more times, leading to the increase of the average running time.

6.2.2 Comparative Study. We compare our methods with the baselines, which are also incre-
mental methods. We keep all methods except ICP itself having the same number of restarts by
adjusting the thresholds. The results are shown in Table 7.

Accuracy. The methods based on the ICP method (i.e., ICP with or without restarting) have
higher accuracy and smaller standard deviations than TIMERS. For example, compared with
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Table 7. Comparison in Link Prediction (Fixing #restarts, CollegeMsg: 7; MathOverflow: 13)

Datasets Methods AUC Standard deviation Running time

College Msg

ICP with restarting

F-time 0.7392 0.0039 0.1785

F-Cumerror 0.7369 0.0069 1.2892

F-feedback 0.7379 0.0041 0.2241

F-changes 0.741 0.0001 0.1456

Baselines
ICP 0.7333 0.0043 0.0253

TIMERS 0.5598 0.0102 3.2758

MathOverflow

ICP with restarting

F-time 0.842 6.7E-07 0.0789

F-Cumerror 0.8393 3.7E-07 0.6121

F-feedback 0.837 8.5E-06 0.1089

F-changes 0.8426 6.9E-07 0.0802

Baselines
ICP 0.8178 3.2E-05 0.0073

TIMERS 0.5526 0.0058 1.4209

TIMERS, ICP with F-time increases AUC by 32.0% on CollegeMsg, and 52.4% on MathOverflow.
This is because as compared with the matrix analysis method (i.e., incremental SVD), the tensor
analysis method (i.e., ICP) can capture the underline structure of high-dimensional data. More-
over, ICP with our restarting strategies has higher accuracy than ICP itself, especially for that
with F-changes. So F-changes, which restarts based on the amount of newly added links, is a good
measure to guide when to restart in links prediction.

In addition, ICP with F-cumerror has higher accuracy but larger standard deviation than ICP
itself on CollegeMsg, which means its performance is volatile. It is worth noting that the per-
formance of F-Cumerror here is quite different from that in dynamic networks reconstruction
(Section 5), where F-Cumerror has the highest accuracy. These results demonstrate that different
restarting methods may be suitable for different applications, and the RCRE may not be a good
indicator of restarting for link prediction.

Efficiency. TIMERS costs much longer time than others. The reasons are that for each new data, it
needs to calculate the loss bound of incremental SVD, and conduct additional operation to obtain
the prediction results due to the limit of matrix. The ICP method with our restarting strategies
costs longer time than the original ICP method because of restarting the CP decomposition. It
again indicates the importance of minimizing restarting times while keeping higher accuracy.

6.3 Brief Summary

In this section, we apply the ICP method with our restarting strategies in dynamic link prediction.
Based on extensive experiments, two main findings are summarized as follows.

(1) When fixing the restarting times, our methods have better performance than the baseline in
terms of accuracy and efficiency, especially F-changes.

(2) The type of application has a great impact on the performance of restarting methods. To be
specific, F-Cumerror is a good indicator of when to restart for problem P1 in dynamic network
reconstruction. While, compared with other restarting methods, it has lower accuracy and longer
running time in link prediction.

7 APPLICATION OF PROBLEM P2: DYNAMIC POPULARITY PREDICTION

Now, we evaluate the performance of our methods for problem P2 in dynamic popularity predic-
tion. The primal goal of popularity prediction is to predict the group-level popularity of the target
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Table 8. Statistics in Twitter and Behance

Time span #Edges #Topics Timestamp size T t0 T − t0
Twitter 22,255 575,819 1,015 4 hours 24 5 19
Behance 85,092 13,428,364 1,326 4 hours 60 12 48

topic incrementally in the future T timestamps, given diffusion information of its historical top-
ics during T timestamps, and its diffusion information during the observable time period [0, t0]
(t0 < T ) [50].

7.1 Experimental Setup

Datasets. We use two real-world datasets of Behance and Twitter in Table 8 for experiments.
Behance6[1]: It is the same as the dataset of Behance in Section 4.
Twitter7[27, 56]: It is an OSN on which users post and interact with tweets. A topic is a hashtag,

whose popularity is the number of times it has been tweeted by users.
Without loss of generality, we convert users networks into undirected networks for simplicity.
Evaluation Methods. Given a target topic p, we first adopt the same preprocess as in [19, 50]:

using multilevel k-way partitioning algorithm [24] to cluster user into l groups according to users’
activities and the network structure, and selecting top-K similar topics for p. Then, we build its

initial group-level popularity tensor X (0) ∈ R(K+1)×l×t0 with three modes (i.e., topic mode, user

group mode and time mode), whose element X (0)
i, j,k

(i ∈ [1,K + 1], j ∈ [1, l],k ∈ [1, t0]) represents

the cumulative popularity of the topic i in group j until the timestamp k . As time goes on, new
data slices keep coming, where p’s group-level popularity is to be predicted. We use ICP with
restarting methods to explore the underlying structure incrementally, so as to predict p’s group-
level popularity at new timestamps incrementally. We run each method with a certain parameter
10 times on all topics, and report their average results.

Complexity Analysis. In order to build a group-level popularity tensor for a topic p, we have
to cluster users into l groups, and we calculate the Euclidean distance between topics according
to their popularity in observable period (0, t0], so as to select the top-K similar topics. The time
complexity of preprocessing isO (m2Tl + |E |) [50], wherem is the total number of candidate similar
topics, l is the number of user groups and |E | is the number of edges in the network structure.
Combining the time complexity of prediction process in Section 4.2, we can obtain the total time
complexity. Taking F-feedback in Section 4.2.3 as an example, its time complexity for popularity
prediction in the worst case is O (NRT 2Stnew ), where N = 3 and S = (K + 1)l . So, in the worst
case, the total time complexity of F-feedback for dynamic popularity prediction is O (m2Tl + |E | +
RT 2Kltnew ).

Baselines. We compare the ICP method with our restarting strategies with the classical CP
decomposition, the ICP method itself [60] and the most recent group-level prediction method,
GPOP [19]. GPOP predicts group-level popularity using the CP decomposition with hierarchical
constraints. However, the GPOP model is completed in a single round, thus it cannot update the
model and the results incrementally over time.

For fair comparison, we use the same datasets (i.e., Behance and Twitter) and the same settings
as in [19, 50], that the number of groups is 12 for Behance, and 11 for Twitter [19], and the number
of similar topics is 60 for Behance, and 80 for Twitter [50].

6http://cs.ucsb.edu/∼mhoang/gpop.tar.gz.
7http://cs.ucsb.edu/∼mhoang/gpop.tar.gz.
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(a) F-time for Behance (b) F-Cumerror for Behance (c) F-feedback for Behance

(d) F-time for Twier (e) F-Cumerror for Twier () F-feedback for Twier

Fig. 13. RMSE with timestamps for Behance and Twitter.

Metrics. We use the standard metric of Root Mean Square Error (RMSE) [29] as the evaluation
metric. Moreover, we use the REG specifically defined for group-level popularity prediction in [19],
as follows:

REG =
1

m

∑
i

√∑
j,k>t0

(Xi jk − X̂i jk )2

√∑
j,k>t0

X2
i jk

,

where m is the total number of topics in the dataset, X̂ contains the predicted group-level popu-
larity for all topics, andX is the ground truth. Finally, the average running time for predicting one
topic in all (T − t0) timestamps is used to validate the efficiency of algorithms.

7.2 Experimental Results

7.2.1 Performance and Parametric Sensitivity. We compare the performance of different restart-
ing methods with different thresholds. For F-time, we vary δ from 1 to 5, then it restarts
48, 24, 16, 12,and 9 times successively on Behance, and 19, 9, 6, 4,and 3 times successively on
Twitter. For other methods, we adjust their thresholds to make them have the average number of
restarts from 9 to 48 on Behance and from 3 to 19 on Twitter. The results are shown in Figures 13
and 14, respectively.

The effect of thresholds on RMSE. For F-time (Figure 13(a) and (d)), apart from δ = 1, its
RMSE curves of F-time fluctuate regularly over time, and have multiple peaks and valleys. These
valleys are always on the RMSE curve of F-time with δ = 1. In addition, with the increase of δ , the
time interval between valleys increases, and the value of RMSE increases at the same timestamp.

For F-Cumerror (Figure 13(b) and (e)) and F-feedback (Figure 13(c) and (f)), their RMSE curves
increase linearly over time; meanwhile, at the same timestamp, the bigger their thresholds (θ for
F-Cumerror or ξ for F-feedback) are, the bigger their RMSE values are.

The effect of thresholds on running time. From Figure 14, we find that the running time
curves of F-time with δ = 1, F-Culerror, F-Recerror, and F-feedback have the same variance
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(a) F-time for Behance (b) F-Cumerror for Behance (c) F-feedback for Behance

(d) F-time for Twier (e) F-Cumerror for Twier () F-feedback for Twier

Fig. 14. Running time(s) with timestamps for Behance and Twitter.

Table 9. Comparison in Popularity Prediction (Fixing #restarts, Behance: 24; Twitter: 9)

Datasets Methods REG Standard deviation Running time

Behance

ICP with restarting

F-time 0.2447 0.0024 0.1624

F-Cumerror 0.2448 0.0037 0.3590

F-feedback 0.2488 0.0023 0.1711

Baselines

ICP 0.9445 0.0074 0.0227

GPOP 0.3174 0.0085 2.7382

CP 0.9604 0.0001 0.2033

Twitter

ICP with restarting

F-time 0.4018 0.0033 0.0736

F-Cumerror 0.5912 0.0120 0.5912

F-feedback 0.4355 0.0033 0.0890

Baselines

ICP 0.9961 0.0009 0.009

GPOP 0.7179 0.0253 6.0791

CP 0.9969 0.0001 0.1405

tendency. The possible reasons include the amount of new data, the density of tensor, and the
training time in the CP decomposition. For F-time (Figure 14(a) and (d)), with the increase of δ ,
the number of restarts decreases, and the number of peaks decreases. The running time curves of
F-time with δ = 2 ∼ 5 fluctuate below that with δ = 1. For F-Cumerror (Figures 14(b) and (e)), the
change of θ has little effects on the running time again. For F-feedback (Figures 14(c) and (f)), the
bigger its threshold ξ is, the shorter the running time is.

7.2.2 Comparison Study. We first compare our restarting methods in details. Then, ICP with
different restarting methods are compared with the baselines in terms of accuracy and efficiency.
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Comparison of different restarting methods. The ICP with restarting parts in Table 9 show
the results of ICP with our restarting methods when fixing the number of restarts (24 times on
Behance and 9 times on Twitter).

Among all methods, F-time has the smallest relative errors (i.e., REG) and it costs the least
running time, followed by F-feedback. It indicates that F-time and F-feedback are more suitable
for dynamic popularity prediction. In particular, for determining whether to restart, F-time only
counts the time interval instead of calculating errors, which makes it cost less running time. In ad-
dition, F-feedback has the minimum standard deviation. This indicates that F-feedback has more
stable performance, because of its flexible and adaptive restarting mechanism based on the previ-
ous prediction error. While, F-Cumerror here has the maximum REG. This indicates that different
restarting methods may be suitable for different applications again, and RCRE is not a good indi-
cator of restarting for popularity prediction.

Comparison with Baselines. We compare our methods with baselines in terms of accuracy
and efficiency as shown in Table 9.

Accuracy. ICP with our restarting methods have lower relative errors than all baselines on the
two datasets. In particular, ICP with F-time has the lowest REG. Compared with GPOP, ICP with
F-time reduces REG by 22.9% on Behance, and 44.0% on Twitter. Meanwhile, it has smaller standard
deviation. Among baselines, GPOP has better performance than the other two methods. The CP
decomposition and ICP itself have the minimum standard deviation. But, they have much higher
prediction error, and cannot be used to predict popularity directly.

Efficiency. ICP with our restarting methods except F-Cumerror achieve higher efficiency than
other non-incremental methods (i.e., GPOP and the CP decomposition). The ICP method itself
costs the least time, but its prediction accuracy is too low to be applied directly. F-Cumerror needs
much time for determining whether to restart, but it still has much higher efficiency than GPOP.

7.3 Brief Summary

In this section, we apply the ICP method with our restarting strategies in dynamic popularity
prediction. Based on extensive experiments, three main findings are summarized as follows.

(1) Compared with other restarting methods, F-time has the higher accuracy and efficiency,
followed by F-feedback. While, F-Cumerror has the maximum error, which is different from its
performance in dynamic networks reconstruction. It indicates that specific restarting methods
are required in different applications, and the RCRE is not a good measure to guide restarting in
popularity prediction.

(2) Compared with baselines of non-incremental methods, our methods have lower relative error
(REG) and higher efficiency, especially F-time. In addition, the ICP method itself costs the lest
running time, but its accuracy is too low to be applied to popularity prediction directly.

8 CONCLUSION

8.1 Discussion

In Section 4.3.1, we analyze the main features of different restarting strategies. We classify the pro-
posed strategies into three types: periodic restarting, error-based restarting, and feedback-based
restarting, and we provide the general rules of threshold setting. Based on the experiments in three
typical applications, here we discuss the threshold setting again.

For F-time, its threshold (i.e., time interval δ ) can be set according to the speed of newly added
data. When the new data increases fast, we can set δ to be shorter (e.g., a few hours); when the
new data increases slowly, we can set δ to be longer (e.g., a few weeks). For example, topics usually
diffuse fast in OSNs, so, in popularity prediction, we set δ as 4, 8, or 12 hours. Meanwhile, the links
between users usually increase slowly in OSNs, so, in link prediction, we set δ as 1, 2, or 3 weeks.
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For F-Recerror and F-Cumerror, their indicators are RRE and RCRE, respectively. So, the range
of their thresholds is [0, 1]. Moreover, according to the analysis in Section 3.2, the reconstruction
error includes cumulative reconstruction error, so the threshold of F-Recerror is much larger than
that of F-Cumerror in OSN applications.

For F-feedback which adaptively determines restarting by monitoring the previous prediction
results, its threshold can be set according to the measure for accuracy. In popularity prediction, we
use relative error as the measure, so the threshold can be set as the maximum acceptable error. In
link prediction, we use the AUC score as the measure, so the threshold can be set as the minimum
expected AUC score.

For F-changes, its threshold can be set according to the amount of each data slice. We adjust the
threshold based on the average number of new links in new data slices.

In summary, threshold settings help to balance the accuracy and efficiency of the ICP method
in OSNs, which deserves more attention to carefully adjust in real applications.

8.2 Conclusion

In order to promote the wide use of the ICP in OSNs and improve its accuracy while ensuring
efficiency, we focus on the cumulative error reduction of ICP in different OSN applications. We
first identity and study two types of errors, the cumulative reconstruction error and the prediction
error, and propose two optimal optimization problems based on these two errors. We then propose
several general restarting strategies to address the cumulative error reduction problems, and we
deeply differentiate their features and suitable scenarios. Finally, we apply our restarting strategies
in three typical OSN applications and we conduct extensive experiments to verify the effectiveness.

In future work, we would like to combine multiple restarting strategies and propose an adaptive
hybrid restarting framework. We are also interested in dynamically adjusting the thresholds of
different strategies.
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