
Citation: Liu, J.; Liu, Z.; Wu, Y.; Li, K.

MBB-MOGWO: Modified Boltzmann-

Based Multi-Objective Grey Wolf

Optimizer. Sensors 2024, 24, 1502.

https://doi.org/10.3390/s24051502

Academic Editor: Carles Gomez

Received: 15 January 2024

Revised: 24 February 2024

Accepted: 24 February 2024

Published: 26 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MBB-MOGWO: Modified Boltzmann-Based Multi-Objective
Grey Wolf Optimizer
Jing Liu 1 , Zhentian Liu 1, Yang Wu 1 and Keqin Li 2,*

1 College of Computer Science, Inner Mongolia University, Hohhot 010021, China; liujing@imu.edu.cn (J.L.);
liuzhentian@cmhi.chinamobile.com (Z.L.); 22109007@mail.imu.edu.cn (Y.W.)

2 Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
* Correspondence: lik@newpaltz.edu

Abstract: The primary objective of multi-objective optimization techniques is to identify optimal
solutions within the context of conflicting objective functions. While the multi-objective gray wolf
optimization (MOGWO) algorithm has been widely adopted for its superior performance in solving
multi-objective optimization problems, it tends to encounter challenges such as local optima and
slow convergence in the later stages of optimization. To address these issues, we propose a Modified
Boltzmann-Based MOGWO, referred to as MBB-MOGWO. The performance of the proposed algo-
rithm is evaluated on multiple multi-objective test functions. Experimental results demonstrate that
MBB-MOGWO exhibits rapid convergence and a reduced likelihood of being trapped in local optima.
Furthermore, in the context of the Internet of Things (IoT), the quality of web service composition
significantly impacts complexities related to sensor resource scheduling. To showcase the optimiza-
tion capabilities of MBB-MOGWO in real-world scenarios, the algorithm is applied to address a
Multi-Objective Problem (MOP) within the domain of web service composition, utilizing real data
records from the QWS dataset. Comparative analyses with four representative algorithms reveal
distinct advantages of our MBB-MOGWO-based method, particularly in terms of solution precision
for web service composition. The solutions obtained through our method demonstrate higher fitness
and improved service quality.

Keywords: Boltzmann selection; multi-objective grey wolf optimizer; optimization algorithm; web
service composition

1. Introduction

The Multi-Objective Optimization Problem (MOP) is widely used to address common
problems in the fields of economics, engineering, and the Internet of Things (IoT). In
the context of IoT with numerous sensors, related studies primarily focus on tasks such
as minimizing request response time and energy consumption [1], developing optimal
scheduling strategies to conserve energy [2], and identifying malicious traffic. These tasks
require a comprehensive consideration of factors and objectives such as service response
time, workload, and energy consumption of each sensor in IoT. However, these objectives
conflict with each other. Therefore, solving the optimization problem under multi-objective
tasks is a critical issue in the current IoT and other important tasks. In contrast, single-
objective optimization usually focuses on just one objective function, so the optimal value
for such a function could be obtained by the best solution. MOP considers two or more
objectives that are usually in conflict; that is, the improvement of one objective may bring
negative effects to other objectives with a very high probability. Thus, equally optimal
solutions should be computed to pursue the trade-off situation among all of the objectives,
which is the Pareto Optimal Set (PS).

In the realm of multi-objective optimization problems (MOPs), the complexity of
the solution set poses challenges for precise algorithms [3]. Conventional approaches

Sensors 2024, 24, 1502. https://doi.org/10.3390/s24051502 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4641-1326
https://orcid.org/0000-0001-5224-4048
https://doi.org/10.3390/s24051502
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051502?type=check_update&version=1

Sensors 2024, 24, 1502 2 of 20

struggle to effectively handle MOPs, prompting the exploration of heuristic [4] and meta-
heuristic algorithms [5] for improved performance. Notable examples include Genetic
Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO),
Fruit Fly Optimization (FOA), and Differential Evolution (DE). Recently, the Multi-Objective
Grey Wolf Optimizer (MOGWO) [6] has emerged as a promising swarm intelligence
algorithm, building upon the foundation of the Grey Wolf Optimizer (GWO). MOGWO
distinguishes itself with a faster convergence speed compared to its counterparts. In its
implementation, MOGWO employs a fixed-size external archive to retain non-dominated
solutions, and a grid-based method evaluates the Pareto front throughout the optimization
process. However, traditional MOGWO exhibits drawbacks such as slow convergence in
the later stages, making it susceptible to the pitfall of local optima.

The traditional Multi-Objective Grey Wolf Optimizer (MOGWO) algorithm consists
of three primary steps: initializing the wolf pack, updating the position of the leader wolf
and the entire wolf pack, and obtaining the solution set through continuous iteration.
MOGWO exhibits a significant level of randomness during the wolf pack initialization.
The algorithm’s search strategy predominantly relies on the values of a and |A| in the
iteration process, both of which decrease as the number of iterations progresses. This
tendency makes the algorithm prone to falling into local optima. Consequently, there is
a need to optimize the search strategy in the MOGWO algorithm, aiming to formulate a
more effective parameter update rule. Simultaneously, the position of the leading wolf
holds crucial importance for the convergence of the MOGWO algorithm. Therefore, the
primary research focus of this paper encompasses optimizing both the search strategy of
the MOGWO algorithm and the selection strategy for the leading wolf. In this paper, a
Modified Boltzmann-Based MOGWO is proposed, named MBB-MOGWO. As an optimized
version of MOGWO, our MBB-MOGWO modifies the convergence factor used in the
position update of a wolf into the variation of cosine law, and adopts Boltzmann selection
strategy to get a better balance in the exploration and exploitation phase. We use multi-
objective benchmark functions in CEC2009 [7] and ZDT [8] to perform the experimental
evaluation. MBB-MOGWO is compared with four representative algorithms, i.e., MOGWO,
NSGA-II, MOPSO, and MOEA/D. The experiment results illustrate that our MBB-MOGWO
method overcomes the flaws in the traditional algorithms, that is, after those two major
aspects of optimizations, MBB-MOGWO executes in fast convergence and well improves
the precision of the solution, furthermore, it could not be trapped in the local optimum
with a high probability.

Furthermore, within the realm of IoT, the web services composition can be leveraged to
construct intricate intelligent systems with numerous sensors. Through the composition of
services encompassing sensor data collection, device control, and user management, func-
tionalities such as smart home automation and remote control can be effectively realized. To
demonstrate the optimization effects of the MBB-MOGWO for solving actual optimization
problems, it is further applied to deal with the MOP in the scenario of composing web ser-
vice components. The MOP in web service composition-related studies is a non-linear and
high-dimensional problem. Web service system is a platform-independent, low-coupling,
and programmable-based software application [9]. The limitations of traditional single
services in meeting the demands of complex tasks have prompted the emergence of web
service compositions. Therefore, it is significant for a web service system that assembles
the existing web services to build a powerful value-added service. The number of existing
services is increasing rapidly. Many services have similar functions but different service
quality attributes, or there are conflicts between services [10]. Therefore, it is a dilemma for
users to select suitable web services for each subtask to make the whole web service system
run optimally. Many related studies have proposed effective solutions for the web service
composition problems, surveyed in [11–14]. So how to compute the optimal solution for
this composition scenario is still very worth in-depth study nowadays. In this paper, we
apply MBB-MOGWO to optimize the MOP issue in the web service composition problem.
The real data records in the QWS dataset [15] are used to evaluate the composition effects.

Sensors 2024, 24, 1502 3 of 20

By comparing with four representative algorithms, our MBB-MOGWO-based method
shows advantages in terms of the solution precision of web service composition.

The main contributions of this study are summarized as follows: (1) We propose a
Modified Boltzmann-Based MOGWO to optimize the Wolf pack position update strategy
in the MOGWO algorithm, so as to reduce the possibility of the algorithm falling into
the local optimal and obtain better solutions. (2) We propose a new leader wolf selection
strategy based on the Boltzmann selection strategy to improve the convergence speed of
the algorithm. (3) The experimental results of several multi-objective test functions show
that the proposed method is effective in terms of the quality and speed of the obtained
solutions. We extend the method to the web service composition problem and verify the
effectiveness of the algorithm.

The rest of our paper is organized as described below. Related work on MOGWO is
discussed in Section 2. Section 3 presents the details about the MBB-MOGWO algorithm.
Section 4 evaluates the performance of our MBB-MOGWO using common multi-objective
benchmark functions. Section 5 integrates the MBB-MOGWO algorithm into the web
service composition problem and evaluates its effects with the real data records in the QWS
dataset. Finally, we conclude our work in Section 6 with future works.

2. Related Work

Compared with single-objective optimization, MOP tends to be more complex, which
would consider two or more objectives and these objectives are usually in conflict. Therefore,
corresponding multi-objective optimization algorithms need to be developed to optimize
these objectives at the same time. Among the recently proposed algorithms, MOGWO is
one of the most popular algorithms, with the advantage of a concise structure and fewer
parameters to be adjusted. We will present a brief discussion of related work from these
three categories in detail as follows.

2.1. Improved Initialization Population

In MOGWO, the first stage initializes population, after which the optimal set of
solutions to the problem is obtained by stepwise iteration. Therefore, it is crucial for
MOGWO to initializing the population. The quality of the initial population is quite
important for global convergence speed, as well as the availability of solutions. A well-
diversified initial population is beneficial to seek out the optimal solution. Luo et al. [16]
were inspired by complex-valued encoding, which greatly expands individual information
capacity. The genes of the gray wolf can be expressed as Equation (1):

xp = Rp + iIp, p = 1, 2, · · · , M (1)

where Rp and Ip indicate the genes of gray wolves. The two variables are updated indepen-
dently, thus enhancing the diversity of the population. Madhiarasan et al. [17] improved
the traditional gray wolf population rank by dividing the gray wolf population into three
groups, namely theta (θ), zeta (ζ) and psi (ψ). During the updating phase, the worst position
in every group is thought over to minimizes the convergence time for better performance.
Long et al. [18] introduced the good point set approach for improving the population ini-
tialization. When the same number is taken, the point sequences got by the good point set
method would be distributed equably in whole feasible region, which get better diversity
of individuals for population initialization.

In original MOGWO, the simple random initial method is used, but the method does
not keep population diversity and converges to local optimum easily.

2.2. Improvements to the Search Mechanism

In the original MOGWO, a and A are used to regenerate the position for grey wolves.
The value of parameter a decreases linearly, hence MOGWO has the weak capability of
exploration and was easy to get into the dilemma of local optimum. Large randomness
is only available when initializing the position of the grey wolves. Muangkote et al. [19]

Sensors 2024, 24, 1502 4 of 20

proposed that two different update strategies for grey wolves’ position are employed. A
new strategy was introduced to calculate the distance vectors, i.e., randomly selected index
values are used to update the vectors for improving randomness. Saremi et al. [20] presents
the updating method for the grey wolves’ positions using the Evolutionary Population
Dynamics (EPD). The worst individuals were removed in each iteration which were reposi-
tioned around the best solutions, such as α, β, δ or random position around the search space,
which obtain better solutions. Malik et al. [21] showed Weighted distance Grey wolf opti-
mizer which modified the original location update strategy of gray wolf, i.e., the weighted
average for three positions is used as the new position instead of a simple average.

The exploration and exploitation phase in original MOGWO depends mainly on the
|A|, while the update of the |A| depends on a. As |A| > 1, the MOGWO would search
for the prey, which called the exploration phase. As |A| < 1, the MOGWO would pay
close attention to the prey in search space, which called exploitation phase. Hence, |A| is
one of the key factors to pursue optimal balance in exploration and exploitation. All the
above papers improved the position update strategy, but the update strategy of |A| is not
modified. Therefore, the algorithm is easy to enter exploitation phase and trap into the
dilemma of local optimum. In our work, the update strategy of a is improved for extending
the length of exploration phase and keeping away from local optimum, i.e., the using a
nonlinear function to update a.

2.3. The Design of Hybrid Algorithms

Part of the literature focuses on integrating multiple algorithms to improve the
MOGWO. Zhang et al. [22] presented a hybrid MOGWO with elite opposition, called
EOGWO, where the elite opposition-based learning method was merged into GWO. Singh
et al. [23] hybridized the Whale Optimizer Algorithm and Mean Grey Wolf Optimizer algo-
rithm, named as HAGWO. In HAGWO, the spiral equation of the former algorithm was
utilized to update the position of three leader wolves, which kept the balance in exploration
and exploitation. Elgayyar et al. [24] used GWO algorithm to efficiently explore the search
space and Bat swarm optimizer (BA) to refine the solution. Similarly, Zhang et al. [25]
hybridized the Biogeography-Based Optimization (BBO) with GWO to fully utilize their
advantages. Tawhid et al. [26] integrated genetic algorithm with GWO. To make the search
solutions more diversified, the population was separated, together with using the genetic
mutation operators towards the whole population. Through experimental results, the
algorithm was effective for finding or approximating global minima. Similarly, Bouzary
et al. [27] integrated a genetic algorithm and grey wolf optimizer algorithm, which was
applied to service composition and optimal selection (SCOS) problems. Mirjalili et al. [28]
proposed a MOGWO using decomposition, which cooperatively approximates the Pareto
solution by defining the neighborhood relations between the scalarized subproblems de-
composed by the multi-objective problem. In this paper, we combine the genetic algorithm
and MOGWO, i.e., the Boltzmann selection is applied to select leader wolves.

3. MBB-MOGWO Design

Brief introduction and related formal definitions about MOP and MOGWO are firstly
presented, and then the design details of our MBB-MOGWO is well explained.

3.1. Multi-Objective Optimization

The MOP is modeled where more than one objective to be optimized at the same
time, and different objectives often conflict with each other. As we improve one objective,
it is likely to cause the deteriorate of other objectives. Therefore, how to make multiple
objectives optimized simultaneously and get a relatively better solution becomes a fatal
problem. MOP could be described by the Formula (2) [29]:

minF(x) = (f1(x), f2(x), ..., fm(x))
s.t. x = (x1, x2, ..., xn) ∈ Ω

(2)

Sensors 2024, 24, 1502 5 of 20

where Ω denotes the feasible domain of the search space; x denotes the n-dimensional
decision variable in Ω; m denotes how many objectives should be optimized. The function
F defines the mapping of m objective functions that to be optimized from the decision space
Ω to the target space.

Unlike single-objective problems, multi-objective problems need to be compromised
in multiple solutions, so that each target is close to the optimal solution. In most cases, a
set of Pareto optimal solutions could be regarded as the solution of a specific MOP. The
relevant definition is presented as follows.

Definition 1 (Dominant relationship). Assume two vectors x∗ =
[
x∗1 , x∗2 , ..., x∗D

]
and x = [x1,

x2, ..., xD]. If ∀d ∈ [1, D], having x∗d ≤ xd and ∃d0 ∈ [1, D], x∗d0
< xd0 , then x∗ dominates x.

Similarly, f (x) dominating f (y) should satisfy Formulas (3):

fi(x) ≤ fi(y) ∀i ∈ [1, 2, ..., m]

f j(x) < f j(y) ∃j ∈ [1, 2, ..., m]
(3)

That is, in the m objective functions, each objective function value of x is not greater than the
objective function value of y, and at least one of them is smaller than y. f (x) dominates f (y) refers
to f (x) is better than f (y).

Definition 2 (Pareto optimal solution). Given a feasible point x, if not exists y ∈ S →
f (y) < f (x), then x is the Pareto optimal solution of the specific MOP. That is, in the feasible domain
space, there is no particle that can dominate the particle x, and we can also call it a non-dominated
solution. Meanwhile, the Pareto Front is constructed from a set of all Pareto optimal solutions.

3.2. An Overview of MOGWO

The MOGWO [6] is a kind of swarm intelligence algorithms that use the class system
and group hunting within the grey wolf race. It has the features of strong convergence,
few parameters, and easy implementation. The grey wolf has a formal hierarchy, that is, α,
β, δ are the leaders in the wolves, and ω represents the group wolves. In MOGWO, each
wolf in the wolves is regarded as a solution. The α represents the current optimal solution,
the β represents the sub-optimal solution, and the δ represents the third-optimal solution.
During the hunting phase, the wolves approach the food position (global optimal solution)
with the lead of α, β, and δ. Through continuous exploration and exploitation, it would
like to find the Pareto optimal solution for the MOP. Then we give the definitions of the
MOGWO with a mathematical model.

Definition 3 (Relative distance). The relative distance between the grey wolf and the prey, as
shown in Equation (4):

D =
∣∣C · Xp(t)− X(t)

∣∣
C = 2 · r1

(4)

where the position of the prey is defined as Xp, and the position of a grey wolf is defined as X. t
is the iteration number, and C is the synergy coefficient vector. r1 is a random number which is
assigned from [0, 1].

Definition 4 (Location update of a wolf). The position of each grey wolf is updated as searching
for prey, as shown in Equation (5):

X(t + 1) = Xp(t)− A · D

A = 2a · r2 − a

a = 2 − 2
MaxIt

t

(5)

Sensors 2024, 24, 1502 6 of 20

where X indicates the updated position of a grey wolf. The convergence factor is represented as a
and r2 is the random number between [0, 1]. MaxIt is the maximum number of iterations. From
the equation, we can see that a decreases linearly from 2 to 0.

Definition 5 (Location update of wolves). The leader wolves guide wolves for searching and
surrounding the prey (to find the global optimal solution) by updating their positions, as shown in
Equation (6):

Dα = |C1 · Xα − X| X1 = Xα − A · Dα

Dβ =
∣∣C2 · Xβ − X

∣∣ X2 = Xβ − A · Dβ

Dδ = |C3 · Xδ − X| X3 = Xδ − A · Dδ

X(t + 1) =
X1 + X2 + X3

3

(6)

where Xα, Xβ, and Xδ represent the current position vectors of α, β and δ respectively, and X is
the position of the ω. Dα, Dβ, Dδ indicates the relative distances between the ω and the leader
wolves. Besides, X1, X2, X3 are the directions and steps of the ω to the leader wolves, and X(t + 1)
is the newly grey wolves’ position after updating. The location update of the grey wolves is shown
in Figure 1.

Figure 1. Location update of wolves.

MOGWO has two phases of exploration and exploitation. Grey wolves would be scat-
tered throughout the space and search for prey as |A| > 1, which is called the exploration
phase. Otherwise, as |A| < 1, grey wolves would concentrate the prey in a certain area,
which is called exploitation phase as shown in Figure 2.

There are two main strategies in the MOGWO algorithm: one is the archiving strategy,
and the other one is the leader selection mechanism. The archiving strategy saves the
optimal wolf generated by each iteration, and the leader selection mechanism uses roulette
to select the leader wolf from the archive. In the selection phase, the probability that a
wolf is chosen is inversely proportional to the number of wolves in its group, as shown in
Equation (7):

Pi =

(
1
Ni

)c
(7)

where c is the pressure parameter for selecting the leader (c > 1), Ni is the sum of wolves
in the i-th group, and Pi is the probability that the wolf is selected.

Sensors 2024, 24, 1502 7 of 20

Figure 2. Exploration and exploitation phase.

The MOGWO algorithm has the features of fewer parameters and faster convergence.
However, the fast convergence sometimes does not bring benefits in the exploration phase.
The linear variation of the convergence factor and the leader selection mechanism with
roulette resulted in a bad balance between exploration and exploitation in the early stage.
The insufficient exploration will result in the dilemma of local optimum and it is hard to find
the global optimal solution. Therefore, we modify the MOGWO algorithm in Section 3.3.

3.3. The Modified Boltzmann-Based MOGWO

In this section, we mainly modified the MOGWO algorithm from two aspects. We
improve the convergence factor first and then revise the leader selection mechanism.

3.3.1. Improving the Convergence Factor

The convergence factor with linear variation is easy to get into insufficient exploration
in the early stage and decreasing diversity, which will make the algorithm fall into local
optimum. Therefore, we use the convergence factor based on the variation of cosine law as
shown in Equation (8) to replace the linear variation:

a = 2 cos
(

t
MaxIt

· π

2

)
(8)

After the modification, the convergence factor is changed nonlinearly according to
the increased iterations MaxIt. Thus variation curve is a convex function. That is, at the
beginning phase, since the convergence factor a decreases slowly, the algorithm has strong
exploration ability and the diversity increases. In such time periods, the algorithm could
not trap into local optimum. Entering the later phase, the convergence factor a decreases
faster, which overcomes the flaws of the slow convergence in the later stage in traditional
algorithms, and obtains the global optimal solution. Improving the convergence factor
could get better effects in the exploration and exploitation process, making the algorithm
more likely to get the optimal solution.

3.3.2. Improving the Leader Selection Mechanism

In the MOGWO algorithm, the leader wolf is traditionally selected using a roulette-
based probability mechanism. However, this method can lead to a reduction in the diversity
of the wolf population, causing the algorithm to converge prematurely. To address this
issue, we replace the roulette selection strategy with the Boltzmann selection strategy. The
Boltzmann strategy, widely employed in machine learning and adaptive control, offers
flexibility by not requiring knowledge of the objective function’s state (discrete, continuous,
or divisible). Instead, the probability of selection is determined based on the estimated
values of alternative solutions. Consequently, this modification enhances the likelihood of

Sensors 2024, 24, 1502 8 of 20

the search algorithm escaping local optima. The Boltzmann selection strategy is well used
to select the leading wolf, as shown in Equation (9):

Pi =
exp(fi

T)

∑Xn
i=1 exp(fi

T)

T = T0(0.99c−1)

(9)

where fi indicates the fitness value of the i-th grey wolf, c is the number of iterations, T0
is the initial temperature, T refers to the current temperature, and Xn is the number of
grey wolves. The fitness value of the i-th wolf is inversely proportional to wolves numbers
where located, i.e., fi =

1
Ni

.

3.3.3. MBB-MOGWO Algorithm

The execution flow of the MBB-MOGWO algorithm is presented in Figure 3.

Figure 3. The execution flow of the MBB-MOGWO.

The major operations are detailed discussed as following steps.

• Initializing the grey wolves and parameters.
• Calculating the target value of each search agent. A search agent is a wolf.
• Finding the non-dominated solutions and initializing the archive.
• Selecting the leader α from the archive and temporarily remove it; then selecting the

leader β from the remaining archive and temporarily remove it too; finally selecting
the leader δ and putting back the leader α, the leader β. So far, the leader wolves have
been selected.

Sensors 2024, 24, 1502 9 of 20

• Updating the position according to the location update equations in Section 3.2 for each
search agent. During the update phase, all search agents are continually approaching
the optimal solution.

• Returning the archive (and Pareto fronts should be that of all non-dominated solutions
in this archive) if iterations reach to the maximum; otherwise, updating a, A, and C,
recalculating the target values of all search agents, and updating the archive. There
are four rules to follow when updating an archive:

S1: If the new solution is dominated by solutions in original archive, it cannot enter
into the archive.

S2: If the new solution dominates at least one solution in original archive, the domi-
nated solution is deleted as well as the new solution enters into the archive.

S3: If the new solution has nothing to do with solutions in original archive, the new
solution is archived.

S4: If the archive is full, randomly deleting the solution in the most crowded grid,
and the new solution is entered into that least crowded grid.

• Using the Boltzmann selection strategy to reselect the α, β, δ, and return to the previous
step to determine if the next round of search to be continued.

The core pseudo codes of our MBB-MOGWO algorithm are provided in Algorithm 1.

Algorithm 1 Core pseudo codes of the MBB-MOGWO
Input: initial number of the grey wolves n,

the termination criteria MaxIt,
the size of archive ArcSize

Output: the current optimal candidate solution set archive
1: Initialize the grey wolves Xi(i = 1, 2, ..., n), t, MaxIt
2: a = 2 cos(t

MaxIt ·
π
2)

3: Xi.cost = CalculateAgent(Xi.position)
4: archive = GetNonDominatedParticles(X, ArcSize)
5: Xα = ChooseLeader(archive) and Remove Xα from the archive
6: Xβ = ChooseLeader(archive) and Remove Xβ from the archive
7: Xδ = ChooseLeader(archive) and Re-add Xα, Xβ to the archive
8: while (t < MaxIt) do
9: for each Xi do

10: UpdatePosition(Xi)
11: end for
12: Update a with a = 2 cos(t

MaxIt ·
π
2)

13: Re-calculate Xi.cost and archive
14: if archive is full then
15: Delete solutions in the most crowded grid and add new solution according to S4
16: else
17: Update the archive according to S1–S3
18: end if
19: Xα = ChooseLeader(archive) and Remove Xα from the archive
20: Xβ = ChooseLeader(archive) and Remove Xβ from the archive
21: Xδ = ChooseLeader(archive) and Re-add Xα, Xβ to the archive
22: t = t + 1
23: end while
24: return archive

4. Experiments and Results Analysis

To verify whether the modified algorithm can improve the deficiencies of the tra-
ditional algorithm. We tested with the CEC 2009 and ZDT benchmark functions and
compared them with the four representative algorithms.

Sensors 2024, 24, 1502 10 of 20

4.1. Experiment Environment

The experiment configurations are shown in the Table 1.

Table 1. Configurations in experiment.

Environment Configurations

CPU 2 core 2.60 GHz
Memory 12 GB
Disk 1T
OS Windows 8.1
Software Matlab R2016a

The key parameters in the experiments are set without loss of generality. The max-
imum of iterations is set to 250. The number of grey wolves is set to 100. The initial
temperature is set to 800. We perform experiments in the way that each algorithm tests
20 times for each benchmark function.

4.2. Performance Metrics

We use HV (hypervolume) [30], IGD (Reverse Generation Distance) [31], and Spread [32]
as experimental indicators, which are widely used to evaluate the performance of multi-objective
optimization methods, including the convergence and diversity of algorithm solutions.

HV represents the volume of the region in the target space as shown in Equation (10):

HV(S, R) = volume

 |S|⋃
i=1

vi

 (10)

where the number of non-dominated solution sets is defined as |S|, and vi represents the
hyper-volume computed according to the i-th solution in the solution set and reference
point. R are the extreme (bounding) solutions. The larger the HV metric, the better the
convergence and diversity of the algorithm solutions.

IGD indicates the average distance from every reference point to nearest solution, as
shown in Equation (11):

IGD(P, P∗) =
∑x∈P∗ miny∈Pdis(x, y)

|P∗| (11)

where P are solutions obtained by the algorithm, P∗ are the extreme (bounding) solutions,
dis(x, y) represents the Euclidean distance between point x and point y. The IGD metric
serves as a comprehensive measure for evaluating both the convergence and diversity of
an algorithm, providing insights into its overall accuracy. A smaller IGD value indicates
improved performance of the algorithm.

Spread measures the breadth of the solutions, as shown in Equation (12):

Spread(S, P) =
d f + dl + ∑

|S|−1
i=1 |di − d|

d f + dl + (|S| − 1)d
(12)

where the Euclidean distance between consecutive solutions is indicated as di, and d is
the average value of all di. The minimum Euclidean distances from solutions in S to the
extreme (bounding) solutions of the P is referred as d f and dl . Thus, as the Spread metric
getting smaller, the spread of the solutions are surely better.

4.3. Results and Discussion

We use multi-objective performance metrics to evaluate the five algorithms. Each
algorithm runs 20 times on the benchmark functions of UF2, UF5, UF9, ZDT2 and ZDT3.

Sensors 2024, 24, 1502 11 of 20

UF2 and ZDT2 are unconstrained continuous dual-objective functions, UF5 is an uncon-
strained discrete dual-objective function, ZDT3 is an infinitely-constrained discontinuous
dual-objective function, and UF9 is a tri-objective function. We calculate the mean and
standard deviation of the HV, IGD, and Spread as metrics, and the final results are shown
in Table 2.

Table 2. Mean and standard deviation of the performance metrics.

Algorithm Metrics UF2 UF5 UF9 ZDT2 ZDT3

HV 0.3091 ± 0.0460 0.0024 ± 0.0104 0.0206 ± 0.0475 0.0430 ± 0.0466 0.5158 ± 0.0724
NSGA-II IGD 0.0078 ± 0.0012 0.2196 ± 0.0580 0.0090 ± 0.0030 0.0269 ± 0.0162 0.0193 ± 0.0030

Spread 1.0888 ± 0.1522 1.2265 ± 0.1032 0.9944 ± 0.0909 0.8030 ± 0.1767 0.8542 ± 0.0329

HV 0.6045 ± 0.0062 0 ± 0 0.3345 ± 0.0658 0.2776 ± 0.0137 0.7283 ± 0.0179
MOEA/D IGD 0.0019 ± 2.7069 × 10−4 0.4188 ± 0.1165 0.0034 ± 4.4090 × 10−4 0.0018 ± 6.3647 × 10−4 0.0031 ± 0.0017

Spread 0.7475 ± 0.1646 1.0695 ± 0.1167 1.0511 ± 0.0911 0.3438 ± 0.1153 1.0077 ± 0.0663

HV 0.6024 ± 0.0103 0 ± 0 0.2064 ± 0.0695 0.1092 ± 0.0316 0.3316 ± 0.0285
MOPSO IGD 0.0026 ± 0.0011 0.2998 ± 0.0827 0.0042 ± 5.9027 × 10−4 0.0136 ± 0.0022 0.0250 ± 0.0014

Spread 0.7375 ± 0.0674 1.0074 ± 0.0773 0.7592 ± 0.0792 0.9352 ± 0.0763 1.0409 ± 0.0293

HV 0.6055 ± 0.0092 0.0011 ± 0.0034 0.3243 ± 0.0995 0.3310 ± 0.0016 0.7766 ± 0.0026

MOGWO IGD 0.0017 ± 2.4507 × 10−4 0.1923 ± 0.0536 0.0029 ± 7.8542 × 10−4 7.8441 × 10−5 ± 6.7862 ×
10−6

2.1368 × 10−4 ± 6.1963 ×
10−5

Spread 0.8535 ± 0.0745 0.9000 ± 0.2035 0.7686 ± 0.0643 0.8255 ± 0.0429 1.1257 ± 0.0425

HV 0.6074 ± 0.0058 0.0084 ± 0.0376 0.3322 ± 0.0769 0.3316 ± 0.0017 0.7786 ± 0.0019

MBB-MOGWO IGD 0.0016 ± 1.2076 × 10−4 0.1864 ± 0.0542 0.0029 ± 6.7108 × 10−4 7.3189 × 10−5 ± 9.5475 ×
10−6

1.1580 × 10−4 ± 2.4036 ×
10−5

Spread 0.8528 ± 0.0814 0.8699 ± 0.1373 0.7368 ± 0.0684 0.7022 ± 0.0270 0.9885 ± 0.0343

The bold format indicates the optimal results in the table.

The comparative analysis reveals that our method consistently outperforms other
algorithms in most cases, as indicated by superior performance metrics. We identified
the optimal values for each metric across different algorithms. Across the five benchmark
functions, our method consistently achieves optimal average Inverted Generational Dis-
tance (IGD) values. Furthermore, except the UF9 function, our method also attains optimal
average Hypervolume (HV) values. In the case of the UF9 function, although the MOEA/D
algorithm demonstrates a higher average HV, its average Spread is excessively large, indi-
cating a limited distribution range for solutions. This suggests that the solutions obtained
by the MOEA/D algorithm may lack the precision achieved by our method. However, for
UF2, ZDT2, and ZDT3, although HV and IGD perform better, the spread value is large,
indicating that the scalability of the solution is affected.

To demonstrate the accuracy of our work, we compare the non-dominated solutions
generated by MOEA/D and MBB-MOGWO with the true Pareto fronts of UF9. We observe
the coverage of the solutions to assess their accuracy. The comparison results are depicted
in Figures 4 and 5.

Figure 4. The solution coverage of MOEA/D on UF9.

Sensors 2024, 24, 1502 12 of 20

The blue dots represent the true Pareto fronts of the benchmark function UF9, and
the red dots represent the non-dominated solutions obtained by the MOEA/D algorithm
and MBB-MOGWO algorithm. The more the red dots fall on the blue dots, the higher the
coverage of the solutions. From Figures 4 and 5, we can see that the solutions obtained by
our method have a wider coverage and higher accuracy.

Figure 5. The solution coverage of MBB-MOGWO on UF9.

According to Table 2, MOPSO has the lowest average Spread on the UF2 function,
MOEA/D has the lowest average Spread on the ZDT2 function, and NSGA-II has the
lowest Spread on the ZDT3 function. But MBB-MOGWO has the optimal average IGD and
average HV on these functions. On ZDT2 and ZDT3 functions, the average IGD is even
two orders of magnitude lower than the above algorithms. Therefore, although the average
Spread of MBB-MOGWO is not the lowest, the solution obtained is better. Below we take
the ZDT2 function as an example to prove that our algorithm can get a better solution. The
results are shown in Figures 6 and 7.

The blue dots and red dots in the figures still represent the reference solutions and the
obtained solutions, respectively. We also can see that the solutions obtained by our method
have a wider coverage and higher accuracy.

Overall, by comparing the values of the multi-objective performance metrics of the five
algorithms on the five benchmark functions and plotting the coverage of the solutions, we
find that our method has faster convergence and diversity. Besides, the solutions obtained
by our method have a wider coverage and higher accuracy.

Figure 6. The solution coverage of MOEA/D on ZDT2.

Sensors 2024, 24, 1502 13 of 20

Figure 7. The solution coverage of MBB-MOGWO on ZDT2.

5. MBB-MOGWO-Based Web Service Composition

In this section, we transform the web service composition problem into a QoS-aware
multi-objective optimization problem. By optimizing metrics in qG, the optimal solution
for the web service composition can be obtained. Then how to optimize multiple metrics in
qG is key point. Besides, we apply the modified algorithm proposed previously to the web
service composition scenario and evaluate it with QWS dataset.

5.1. Modeling the Web Service Composition

Usually, web services have functional attribute and QoS attribute. The functional
attribute refers to the functions that the web service can provide. The QoS attribute
includes a series of metrics such as throughput, response time, reliability, and availability.
In optimization problems within the IoT domain, these metrics and functions are employed
to gauge critical attributes such as the cost of resource scheduling, system stability, and
real-time performance associated with sensors. When users select different web services
to combine, the higher QoS means the better service quality and the better composition
solution, with the premise that the function is satisfied. Since QoS has multiple metrics
to measure the quality of service, we can abstract the web service composition problem
into a QoS-aware multi-objective optimization problem. Below we abstract the web service
composition and give some relative definitions.

Definition 6 (QoS multi-tuple). QoS means the quality of a web service. The QoS multi-tuple is
represented by the vector Q := (q1, q2, ..., qm), where m represents QoS has a total of m metrics, qi
represents the value of the i-th metric in m, i ∈ [1, m].

QoS attributes often have two categories. One aspect refers to the positive attributes, i.e., the
bigger attribute values cause the better QoS, such as throughput, availability or reliability, etc. The
other aspect refers to the negative attribute, i.e., the bigger attribute values cause the worse QoS,
such as price or response time, etc.

Definition 7 (Abstract web service). We define the abstract web service as a two-tuple T :=
(Q, Seq), where Q means the QoS of specific web service and Seq means the execution relationship
between the web services.

There are four execution relationships between the web services: sequence, loop, parallel, and
branch, as shown in Figure 8.

The sequence relationship means that all subtasks are executed one by one; the parallel relation-
ship means that all subtasks are executed at the same time, which does not interfere with each other;
the loop relationship refers to the subtasks being executed iteratively; the branch relationship means
that only one branch will be selected for execution.

Sensors 2024, 24, 1502 14 of 20

Figure 8. Execution relationships of web services.

Definition 8 (Abstract web service composition). We define the abstract web service composition
as a tri-tuple S := (s, qG, w), where s = (T1, T2, ..., Tk), i.e., a web service composition s consists
of k different web services; qG = (qg1, qg2, ..., qgm) represents the global QoS of the web service
composition; qgi represents the value of the i-th metric in m global QoS metrics, i ∈ [1, m];
w = (w1, w2, ..., wm) represents the weight of each QoS metric, and w1 + w2 + ... + wh = 1.

Through the above abstract description, we transform the web service composition problem
into a QoS-aware multi-objective optimization problem. By measuring the qG of the web service
composition, we can judge the pros and cons of the combination solutions. The qG is a combination
of the Q := (q1, q2, ..., qm) of each web service in the composition. Different execution sequences
have different aggregation equations to calculate the qG which consists of qgi. As shown in Table 3,
qgi, i ∈ [1, 6] represents the six QoS metrics, and qG = (qg1, qg2, ..., qg6).

Table 3. Aggregation equations.

QoS Metric Sequence Branch
(n Selected) Parallel Loop

(k Times)

Response Time ∑k
i=1 qi maxn

i=1 qi maxk
i=1 qi k ∗ qi

Reliability ∏k
i=1 qi ∏n

i=1 qi ∏k
i=1 qi (qi)

k

Availability ∏k
i=1 qi ∏n

i=1 qi ∏k
i=1 qi (qi)

k

Throughput mink
i=1 qi minn

i=1 qi mink
i=1 qi qi

Latency ∑k
i=1 qi maxn

i=1 qi maxk
i=1 qi k ∗ qi

Success Rate ∏k
i=1 qi ∏n

i=1 qi ∏k
i=1 qi (qi)

k

5.2. Application of MBB-MOGWO on Web Service Composition

The execution flow of MBB-MOGWO-based web service composition is shown in
Figure 9.

The key content of combining the MBB-MOGWO with the web service composition
mainly includes initializing the positions of the wolves, calculating the costs of all wolves,
and updating the positions of the wolves. In these three parts, we have adopted encoding,
fitness function and position update strategy, which make our method more reasonable.
We will discuss the three parts as follows.

5.2.1. Encoding

In the scenario of web service composition, the global QoS depends on the execution
relationship between each subtask. This paper considers the sequential workflow. We
assume that each wolf represents a solution to the web service composition. Each wolf has
a position vector and a cost vector. The dimension of the wolf’s position is the number of
required subtasks. The range of each dimension is the candidate services for the subtask.
We need to select one of the candidate services for every subtask and save the global QoS
as the cost vector of Wolf. Finally, by comparing the cost, the MBB-MOGWO algorithm
updates the archive and obtains the optimal web service composition.

Sensors 2024, 24, 1502 15 of 20

Figure 9. The execution flow of MBB-MOGWO-based service composition.

In order to make the algorithm more suitable for web service composition problem,
we use integer coding to indicate which candidate service is selected for each subtask.
For example, S := (s, qG, w), where s = (T1,3, T2,4, T3,1, T4,2). That is, the web service
composition has four subtasks, subtask 1 selects the candidate service 3, subtask 2 selects
the candidate service 4, and so on. s is the position vector of a grey wolf, and S represents
each grey wolf.

5.2.2. Fitness Function
In the optimization process, we need to judge the adaptability of each wolf through

the fitness function, and retain the wolves with higher fitness, so that the wolves continue
to approach the optimal solution. Since QoS has two types of attributes, i.e., positive
attribute and negative attribute, we transform the web service composition problem into a
bi-objective problem that optimizes the positive attribute and the negative attribute, shown
in Formula (13):

minP(x) = −(T(x)× w1 + A(x)× w2 + S(x)× w3, ...)

minN(x) = (t(x)× w4 + l(x)× w5 + p(x)× w6, ...)

(13)

where P represents the positive attribute, T, A, and S represent throughput, availability,
and success rate respectively; N represents the negative attribute, t, l, and p represent
response time, latency, and price respectively. w = (w1, w2, w3, w4, w5, w6, ...) is the weight
of each QoS metric. The smaller the values of P and N, the higher the fitness of wolf, that
is, the better the solution of the web service composition.

In the fitness function, each QoS metric (such as T(x)) is calculated by the aggregation
equation in Section 5.1. Since the values of the different metrics have large differences,

Sensors 2024, 24, 1502 16 of 20

normalization processing is required before they are used. Assuming qh represents the h-th
metric of the QoS attribute, we use Equation (14) to normalize all the metrics:

qh =

qh−qmin

h
qmax

h −qmin
h

qh is the positive metric

qmax
h −qh

qmax
h −qmin

h
qh is the negative metric

(14)

after normalization, all values are stipulated between [0, 1].

5.2.3. Position Update

In MBB-MOGWO algorithm, the position information of the wolves’ changes within a
continuous range, and the calculation rules involved in the algorithm are also for contin-
uous variables. However, as we presented in previous subsection, the candidate service
for each subtask is a discrete number based on integers, so we need to discretize the
continuous variables.

There are usually three main discretization strategies, probability processing, operator
redefinition, and direct conversion. However, the method of probabilistic processing has
too few application scenarios, and operator redefinition has higher complexity. Therefore,
we use the direct conversion method to discretize the position information of the wolves.
After each position is updated, we replace the actual position of the grey wolf with the
nearest value from the actual position in the discrete domain. Despite there may be cases
where lots of continuous variables point to the same discrete variable, the calculation results
show that in the high dimensional optimization problem, after the discretization processing,
the algorithm still has high stability and does not fall into local optimum.

5.3. Experiments and Results Analysis

According to the NFL theorem [33], no perfect optimization methods exist to solve
all kinds of optimization issues. The superiority of the optimizer to a type of problems is
not necessarily useful for another type of problems. So we need to make an evaluation of
our modified method. We select the QWS dataset that is commonly used in web service
composition problems to evaluate our method. The QWS dataset contains 2507 real web
service data [15], and a total of 9 QoS metrics are counted. The 9 QoS metrics and their
descriptions are shown in Table 4.

Table 4. The QoS metrics in QWS dataset.

ID QoS Metrics Description Units

1 Response Time from request sent till response received ms
2 Availability ratio of successful to total invocations %
3 Throughput sum of invocations for a period of time b/s
4 Success Rate ratio of response number to request number %
5 Reliability ratio of error to total messages %
6 Compliance conformance percentage between a specific WSDL and WSDL specification %
7 Best Practices compliance percentage between a specific web service and WS-I Basic Profile %
8 Latency time cost of server processing specific request ms
9 Documentation Measurement for documenting WSDL %

Among these QoS metrics, we have selected six more important metrics, which are
availability, reliability, throughput, response time, success rate and latency. The response
time and latency are negative attributes, and the rests are positive attributes. We select
2500 data in QWS dataset to conduct experiments. We assume that a web service composi-
tion consists of 10 subtasks, and each subtask has 250 candidate services.

In the experiments, we compare the MBB-MOGWO algorithm with NSGA-II algo-
rithm, MOEA/D algorithm, MOPSO algorithm and MOGWO algorithm. The experiment

Sensors 2024, 24, 1502 17 of 20

environment is the same as Section 4.1 and the key parameters are configured as follows.
The maximum of iterations is set to 100. The number of grey wolves is set to 100. Initial
temperature is set to 600. We perform experiments in the way that each algorithm tests
20 times.

To evaluate our method, we calculated the best, worst, average, and standard deviation
of HV in 20 web service composition experiments for each algorithm, which is shown
in Table 5. The analysis demonstrates that in both the best and worst cases, the HV
values of MBB-MOGWO consistently surpass those of other algorithms, with the average
result being the highest. This suggests that the MBB-MOGWO algorithm exhibits superior
convergence and diversity in addressing web service composition problems. Notably,
among the five algorithms, MBB-MOGWO boasts the lowest standard deviation of HV,
indicating enhanced stability compared to its counterparts.

Table 5. Comparison results of the HV.

HV NSGA-II MOEA/D MOPSO MOGWO MBB-MOGWO

Worst 0 0 0.2500 0.3200 0.3600
Best 0.5700 0.7300 0.9000 0.9300 0.9500

Average 0.2980 0.2865 0.5330 0.5885 0.6305
STD. Dev. 0.1591 0.2314 0.1880 0.1566 0.1514

To further illustrate the advantages of the MBB-MOGWO algorithm, we averaged
the experimental results of 20 tests for each algorithm and plotted the change trend of the
fitness values, which shown in Figures 10 and 11.

The abscissa represents iterations, and the ordinate represents the fitness values of
the positive/negative attribute. From the figures, we can see that the fitness values of all
methods increased rapidly at the beginning of the experiment. With iteration increases,
the trend of fitness values tends to be stable. Finally, the fitness of our method is higher
than the baseline algorithms. That is, the QoS of the web service composition found by our
method is better.

Through the evaluation, we find that the MBB-MOGWO algorithm shows better
performance on the web service composition problem, which has fast convergence speed
and diversity. By balancing the exploration and exploitation phases, it does not easily fall
into a local optimum, which improves the accuracy of the solution. So the MBB-MOGWO
algorithm is more conducive to finding a better quality web service composition.

Figure 10. Fitness of the positive attribute.

Sensors 2024, 24, 1502 18 of 20

Figure 11. Fitness of the negative attribute.

6. Conclusions

In this paper, MBB-MOGWO is proposed to make novel improvements towards
MOGWO. MBB-MOGWO proposes the convergence factor used in the position update of
a wolf as the variation of cosine law and introduces the Boltzmann selection strategy to
maintain a better balance in the exploration and exploitation phase. To verify our method,
we use multi-objective benchmark functions to make the evaluation and compare our
method with four representative algorithms. By comparing the multi-objective performance
metrics IGD, HV, and Spread, we demonstrate that the MBB-MOGWO algorithm had better
convergence and diversity. Besides by comparing the coverage of the Pareto front, we find
that the solution found by our method had higher precision and wider coverage. Then
we apply the MBB-MOGWO algorithm to the actual scenario, i.e., computing optimal
web service composition. We use 2500 real data records in the QWS standard dataset for
the experiment and compare our method also with four representative algorithms. By
comparing the changes of the fitness and performance metric HV, the experiment results
show that the solutions found via the MBB-MOGWO algorithm have higher fitness and
better service quality. Our future research entails the application of the MBB-MOGWO
algorithm to various real-world tasks, including IoT resource scheduling and energy
optimization associated with sensors. This endeavor is aimed at substantiating the practical
viability and scalability of the algorithm in diverse and complex scenarios.

Author Contributions: Conceptualisation, J.L., Z.L., Y.W. and K.L.; formal analysis, J.L., Z.L. and
Y.W.; methodology, J.L., Z.L. and Y.W.; supervision, K.L.; validation, Y.W.; writing original draft, Y.W.;
writing review and editing, J.L. and K.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by the Natural Science Foundation of Inner Mongolia of
China (No.2023ZD18); the Inner Mongolia Science and Technology Plan Project (No.2020GG0187);
and the Engineering Research Center of Ecological Big Data, Ministry of Education.

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Sensors 2024, 24, 1502 19 of 20

References
1. Kumrai, T.; Ota, K.; Dong, M.; Kishigami, J.; Sung, D. Multiobjective Optimization in Cloud Brokering Systems for Connected

Internet of Things. IEEE Internet Things J. 2017, 4, 404–413. [CrossRef]
2. Adhikari, M.; Narayana Srirama, S. Multi-objective accelerated particle swarm optimization with a container-based scheduling

for Internet-of-Things in cloud environment. J. Netw. Comput. Appl. 2019, 137, 35–61. [CrossRef]
3. Chen, M.; Yan, Y. QoS-aware Service Composition over Graphplan through Graph Reachability. In Proceedings of the 2014 IEEE

International Conference on Services Computing (SCC), Anchorage, AK, USA, 27 June–2 July 2014; IEEE: Piscataway, NJ, USA;
pp. 544–551.

4. Wang, C.; Ma, H.; Chen, G. EDA-Based Approach to Comprehensive Quality-Aware Automated Semantic Web Service Composi-
tion. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July 2018; ACM:
New York, NY, USA, 2018; pp. 147–148.

5. Nakamura, L.H.V.; Cunha, A.L.V.; Estrella, J.C.; Santana, M.J.; Santana, R.H.C. A Comparative Analysis of Algorithms for
Dynamic Web Services Composition with Quality of Service. In Proceedings of the 19th Brazilian Symposium on Multimedia and
the Web, Salvador, Brazil, 5–8 November 2013; ACM: New York, NY, USA, 2013; pp. 217–224.

6. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.d.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion
optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]

7. Zhang, Q.; Zhou, A.; Zhao, S.; Suganthan, P.; Liu, W.; Tiwari, S. Multiobjective optimization Test Instances for the CEC 2009
Special Session and Competition. Mech. Eng. 2008, 1–30. Available online: https://www.al-roomi.org/multimedia/CEC_
Database/CEC2009/MultiObjectiveEA/CEC2009_MultiObjectiveEA_TechnicalReport.pdf (accessed on 1 December 2023).

8. Deb, K.; Sinha, A.; Kukkonen, S. Multi-objective test problems, linkages, and evolutionary methodologies. In Proceedings of
the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 8–12 July 2006; ACM: New York, NY, USA, 2006;
pp. 1141–1148.

9. Alonso, G.; Casati, F.; Kuno, H.; Machiraju, V. Web Services—Concepts, Architectures and Applications; Springer: Berlin/Heidelberg,
Germany, 2004.

10. Ju, C.; Ding, H.; Hu, B. A Hybrid Strategy Improved Whale Optimization Algorithm for Web Service Composition. Comput. J.
2023, 66, 662–677. [CrossRef]

11. Chattopadhyay, S.; Banerjee, A.; Banerjee, N. A Fast and Scalable Mechanism for Web Service Composition. ACM Trans. Web 2017,
11, 26. [CrossRef]

12. Jatoth, C.; Gangadharan, G.R.; Buyya, R. Computational Intelligence-based QoS-aware Web Service Composition: A Systematic
Literature Review. IEEE Trans. Serv. Comput. 2015, 10, 475–492. [CrossRef]

13. Shehu, U.; Epiphaniou, G.; Safdar, G.A. A survey of QoS-aware web service composition techniques. Int. J. Comput. Appl. 2014,
89, 10–17. [CrossRef]

14. Lemos, A.L.; Daniel, F.; Benatallah, B. Web Service Composition: A Survey of Techniques and Tools. ACM Comput. Surv. 2015,
48, 33. [CrossRef]

15. QWS Dataset. QWS Dataset: A Real Data Records. 2008. Available online: https://github.com/qwsdata/qwsdataset (accessed on
15 December 2023).

16. Luo, Q.; Zhang, S.; Li, Z.; Zhou, Y. A Novel Complex-Valued Encoding Grey Wolf Optimization Algorithm. Algorithms 2015, 9, 4.
[CrossRef]

17. Madhiarasan, M.; Deepa, S.N. Long-Term Wind Speed Forecasting using Spiking Neural Network Optimized by Improved
Modified Grey Wolf Optimization Algorithm. Int. J. Adv. Res. 2016, 4, 356–368. [CrossRef]

18. Long, W.; Zhao, D.; Xu, S. Improved grey wolf optimization algorithm for constrained optimization problem. J. Comput. Appl.
2015, 35, 2590–2595.

19. Muangkote, N.; Sunat, K.; Chiewchanwattana, S. An improved grey Wolf optimizer for training q-Gaussian Radial Basis
Functional-link nets. In Proceedings of the 2014 International Computer Science and Engineering Conference (ICSEC), Khon
Kaen, Thailand, 30 July–1 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 209–214.

20. Saremi, S.; Mirjalili, S.Z.; Mirjalili, S.M. Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 2015,
26, 1257–1263. [CrossRef]

21. Malik, M.R.S.; Mohideen, E.R.; Ali, L. Weighted distance Grey wolf optimizer for global optimization problems. In Proceedings
of the IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12
December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

22. Zhang, S.; Luo, Q.; Zhou, Y. Hybrid Grey Wolf Optimizer Using Elite Opposition-Based Learning Strategy and Simplex Method.
Int. J. Comput. Intell. Appl. 2017, 16, 1750012. [CrossRef]

23. Singh, N.; Hachimi, H. A New Hybrid Whale Optimizer Algorithm with Mean Strategy of Grey Wolf Optimizer for Global
Optimization. Math. Comput. Appl. 2018, 23, 14. [CrossRef]

24. Elgayyar, M.A.; Emary, E.; Sweilam, N.; Abdelazeem, M. A Hybrid Grey Wolf-Bat Algorithm for Global Optimization. In
Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications (AMLTA), Cairo,
Egypt, 22–24 February 2018; Springer: Cham, Switzerland, 2018; pp. 3–12.

25. Zhang, X.; Kang, Q.; Cheng, J.; Wang, X. A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf
Optimizer. Appl. Soft Comput. 2018, 67, 197–214. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2565562
http://dx.doi.org/10.1016/j.jnca.2019.04.003
http://dx.doi.org/10.1016/j.eswa.2015.10.039
https://www.al-roomi.org/multimedia/CEC_Database/CEC2009/MultiObjectiveEA/CEC2009_MultiObjectiveEA_TechnicalReport.pdf
https://www.al-roomi.org/multimedia/CEC_Database/CEC2009/MultiObjectiveEA/CEC2009_MultiObjectiveEA_TechnicalReport.pdf
http://dx.doi.org/10.1093/comjnl/bxab187
http://dx.doi.org/10.1145/3098884
http://dx.doi.org/10.1109/TSC.2015.2473840
http://dx.doi.org/10.5120/15681-4466
http://dx.doi.org/10.1145/2831270
https://github.com/qwsdata/qwsdataset
http://dx.doi.org/10.3390/a9010004
http://dx.doi.org/10.21474/IJAR01/1132
http://dx.doi.org/10.1007/s00521-014-1806-7
http://dx.doi.org/10.1142/S1469026817500122
http://dx.doi.org/10.3390/mca23010014
http://dx.doi.org/10.1016/j.asoc.2018.02.049

Sensors 2024, 24, 1502 20 of 20

26. Tawhid, M.A.; Ali, A.F. A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memetic
Comput. 2017, 9, 347–359. [CrossRef]

27. Bouzary, H.; Chen, F.F. A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service
composition and optimal selection in cloud manufacturing. Int. J. Adv. Manuf. Technol. 2019, 101, 2771–2784. [CrossRef]

28. Zapotecas-Martínez, S.; García-Nájera, A.; López-Jaimes, A. Multi-objective grey wolf optimizer based on decomposition. Expert
Syst. Appl. 2019, 120, 357–371. [CrossRef]

29. Ngatchou, P.; Zarei, A.; El-Sharkawi, M.A. Pareto Multi Objective Optimization. In Proceedings of the 13th International
Conference on Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10 November 2005; IEEE: Piscataway,
NJ, USA, 2005; pp. 84–91.

30. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. IEEE Trans. Evol.
Comput. 1999, 3, 257–271. [CrossRef]

31. Reyes-Sierra, M.; Coello, C.A. Improving PSO-based multi-objective optimization using crowding, mutation and 6-dominance. In
Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization (EMO), Guanajuato, Mexico, 9–11
March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 505–519.

32. Jiang, S.; Ong, Y.S.; Zhang, J.; Feng, L. Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization.
IEEE Trans. Cybern. 2014, 44, 2391–2404. [CrossRef] [PubMed]

33. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12293-017-0234-5
http://dx.doi.org/10.1007/s00170-018-3028-0
http://dx.doi.org/10.1016/j.eswa.2018.12.003
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1109/TCYB.2014.2307319
http://www.ncbi.nlm.nih.gov/pubmed/25415945
http://dx.doi.org/10.1109/4235.585893

	Introduction
	Related Work
	Improved Initialization Population
	Improvements to the Search Mechanism
	The Design of Hybrid Algorithms

	MBB-MOGWO Design
	Multi-Objective Optimization
	An Overview of MOGWO
	The Modified Boltzmann-Based MOGWO
	Improving the Convergence Factor
	Improving the Leader Selection Mechanism
	MBB-MOGWO Algorithm

	Experiments and Results Analysis
	Experiment Environment
	Performance Metrics
	Results and Discussion

	MBB-MOGWO-Based Web Service Composition
	Modeling the Web Service Composition
	Application of MBB-MOGWO on Web Service Composition
	Encoding
	Fitness Function
	Position Update

	Experiments and Results Analysis

	Conclusions
	References

