
Knowledge-Based Systems 280 (2023) 111042

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Variational mode decomposition and sample entropy optimization based
transformer framework for cloud resource load prediction
Jiaxian Zhu a, Weihua Bai a, Jialing Zhao a, Liyun Zuo b, Teng Zhou c,d,∗, Keqin Li e

a School of Computer Science, Zhaoqing University, Zhaoqing 526061, China
b School of Computer Science, Guangdong University of Petrochemical Technology, Zhanjiang 525000, China
c School of Cyberspace Security, Hainan University, Haikou 570228, China
d Centre for Smart Health, The Hong Kong Polytechnic University, Kowloon, Hong Kong
e Department of Computer Science, State University of New York, New Paltz, New York 12561, USA

A R T I C L E I N F O

Keywords:
Cloud resource prediction
Encoding representation
Multidimensional hidden factors
Sample entropy
Variational mode decomposition

A B S T R A C T

The efficient prediction of cloud resource demand plays a crucial role in resource allocation and scheduling in
cloud data centers, helping to optimize resource utilization and improve service quality. However, accurately
predicting cloud resource demand poses challenges due to the failure of prediction models in real-world
scenarios, such as extreme load peaks, and the limitation of computation burden on the global characterization
capability. To effectively handle single-variable cloud resource load time series with multidimensional hidden
factors, we propose a sample entropy-optimized variational model decomposition transformer (VMDSE-
Tformer) for cloud resource scheduling. Hereby, we decompose the time series through variational model
decomposition, and then reconstruct the subsequence collection using sample entropy calculation. Then, we
use a class Transformer framework with a multi-head self-attention mechanism to learn deep features and
obtain encoding representations of each component sequence. We conduct sufficient experiments on three
benchmark datasets by comparing them with five state-of-the-art models. Notably, the MAPE of VMDSE-
Tformer is improved by about 60% compared to LSTNet. The results demonstrate the superior performance of
our VMDSE-Tformer in terms of predicting task sequence intensity, CPU, and RAM resource demand. Therefore,
VMDSE-Tformer can serve as a powerful and efficient tool to predict resource demand in cloud data centers,
with implications for more effective resource management and service delivery.
1. Introduction and motivations

Infrastructure resources such as central processing unit (CPU), mem-
ory, network bandwidth, and storage constitute the main components
of cloud resources and serve as a crucial support environment for col-
laborative cloud–edge-end applications. Accurate computation resource
load demand prediction is a key technique for intelligent cloud resource
control and scheduling in data centers, which plays an important role
in the operation and management of task and resource scheduling
systems. Predicting and allocating appropriate computing resources for
cloud–edge-end collaborative application execution can better support
the operation of various services to improve resource utilization, reduce
production costs, and save energy while enhancing overall system
performance [1–3]. To accurately predict cloud resource demands can
better enable pre-allocation and management control of various re-
sources and adapt to load changes in cloud data center systems, which
can provide intelligent decision-making references to reduce energy
consumption and costs and improve system performance. Management

∗ Corresponding author at: School of Cyberspace Security, Hainan University, Haikou 570228, China.
E-mail addresses: baiweihua@zqu.edu.cn (W. Bai), teng.zhou@hainanu.edu.cn (T. Zhou).

of resource scheduling based on cloud resource load prediction is one
of the most strategic and necessary research areas in cloud computing.
Inaccurate demand prediction can result in overloading or congestion
in cloud resource allocation and scheduling, which will affect task
scheduling plans. Based on the task intensity and request data for
various resources in a time series, predicting task intensity and cloud
resource demands is the core task of load prediction models in cloud
data centers, and an indispensable part of intelligent and perception-
based cloud resource scheduling systems. The demand for task intensity
or cloud resource load is carried by various observable factors (e.g.,
user type, application service type, price fluctuations in resources or
traffic) and invisible factors (e.g., time periods, regions, and application
structures) that interact. It forms the basis for integrated task and
resource allocation, control, and scheduling. In cloud data centers,
the obtained data are present as univariate time series, reflecting the
demand for CPU, RAM, storage, and other resources [4–7]. However,
vailable online 4 October 2023
950-7051/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2023.111042
Received 28 July 2023; Received in revised form 25 September 2023; Accepted 28
 September 2023

https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
mailto:baiweihua@zqu.edu.cn
mailto:teng.zhou@hainanu.edu.cn
https://doi.org/10.1016/j.knosys.2023.111042
https://doi.org/10.1016/j.knosys.2023.111042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.111042&domain=pdf

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.

i
c
n
e
a
h

this seemingly simple univariate time series is actually the result of the
combined effects of various explicit or implicit factors, such as user
types, application service types, and price fluctuations, as well as the
demands of applications. The key to solving prediction problems lies
in exploring the strong coupling relationships among hidden factors
within the univariate time series, where the analysis and extraction of
features can improve the predictability of cloud resource loads and the
accuracy of prediction models.

The analysis of univariate time series to predict cloud resource
loads has attracted great interest in the field of cloud computing, and
various traditional prediction approaches have been proposed, such as
Kalman Filtering (KF), Support Vector Machine (SVM), Autoregressive
Integrated Moving Average (ARIMA), Fuzzy Linear Regression, and
neural network models such as Long Short-Term Memory (LSTM), Gra-
dient Boosting Regression Trees (GBRTs), Artificial Neural Networks
(ANNs), eXtreme Gradient Boosting (XGBoost), and Recurrent Neural
Networks (RNNs) [2,3,8,9]. These approaches have limitations and
drawbacks when dealing with cloud resource demand loads that exhibit
unobservable latent and multidimensional dependent features as well
as long-term temporal dependencies.

Recent studies [10–12] propose to optimize the structure of asso-
ciated datasets to enhance logical mining, using the Hopfield neural
network to obtain optimal logical rules from correlations and learn
to extract the corresponding rules, and experimentally verifying the
effectiveness of mining optimal logical rules to analyze data. However,
since no associated univariate time-series dataset is available, it is not
feasible to optimize the structure of the associated dataset and mine
optimal logical rules. Hence this method is not suitable for analyzing
such data.

In cloud data centers, the cloud resource demand lacks support
from observable factors and contains multidimensional hidden factors,
such as the diversity of users, complexity of applications, network
bandwidth fluctuations, and temporal differences, which interact to
affect cloud resource demand. To improve the accuracy and reliability
of cloud data center load forecasting, we propose VMDSE-Tformer, an
attention mechanism framework for resource scheduling prediction.
The VMDSE-Tformer leverages the robustness of multiple adaptive
Wiener filters to process noisy univariate cloud resource demand se-
quences and does not require mutually independent latent variables
by sample entropy-optimized variational mode decomposition (VMD).
Our framework handles the load time series of univariate cloud re-
source demand that encompasses multidimensional hidden factors. The
efficacy of the state uncertainty level of each decomposition com-
ponent is evaluated through its sample entropy. After selecting the
optimal embedding dimension 𝐾 (the number of modes) and similarity
tolerance 𝜏, a sample data structure is constructed for constructing
the predictive model. A class of Transformer framework based on
Multi-head Self-attention is used to learn the strong spatiotemporal
correlation features and internal latent factors from each mode com-
ponent sequence, which results in a representation code that captures
multi-correlation information at each timestamp. After concatenating
all the mode features, a neural network with one hidden layer is
used for regression learning on the concatenated representation codes
to complete cloud resource load forecasting. The cloud resource load
prediction model aims to forecast application requests for task flow,
CPU, RAM, and other resource scheduling for the next 2–4 h based
on a univariate time-tagged historical data segment, e.g., the histor-
cal data 3 or 6 h before the prediction time point, by analyzing
loud data. The framework employs a multi-head attention mecha-
ism with multi-hidden-factor feature fusion learning based on sample
ntropy optimized high-embedding-dimension modal decomposition,
nd is also suitable for other time series applications such as public
ealth [13] or traffic flow forecasting [14].

This paper makes the following contributions:
2

• A data processing and prediction model uses multi-head attention
to learn hidden features of single-variable time-series through
VMD based on sample entropy selection;

• A learning mode focuses on the strong coupling correlation fea-
tures between multiple independent factors within a single-
variable time series and presents a learning framework to fuse
strongly coupled correlation features and hidden factor features
in the modal component sequence regarding their position or time
point;

• Experimental results on a dataset of service task sequences and
resource request sequences in cloud data centers validate the
performance of the proposed model in handling time-series data
on task and cloud resource loads. The proposed model achieves
an average improvement of 24.31%, 10.5%, and 9.75% on MAPE,
RMSE, and RSE, respectively, compared to Transformer on the
Workload dataset. It also outperforms LSTNet [15] with average
improvements of 59.65%, 34.8%, and 28.2% by the same metrics,
respectively.

The rest of this paper is organized as follows. In Section 2, we briefly
review the related works. A VMDSE-Tformer model for cloud resource
scheduling is presented in Section 3. In Section 4, we present the pa-
rameter selection and optimization techniques for VMD, as well as the
reconstruction of subsequences for the model. Sufficient experiments
in Section 5 demonstrate the superiority of the proposed method. In
Section 6, we conclude and discuss future work.

2. Related work

The analysis of cloud resource usage and the development of load
prediction models rely primarily on time-series datasets constructed
from a continuous set of data points in cloud data centers, capturing
critical metrics such as CPU utilization, RAM usage, and bandwidth
applications over time. These datasets form the fundamental basis for
this research. Many studies have investigated and developed mod-
els for time-series data obtained from resource monitoring in cloud
data centers using traditional techniques [8–12,16] such as Kalman
Filter (KF), Autoregressive Integrated Moving Average (ARIMA), Ran-
dom Forest (RF), Support Vector Regression (SVR), eXtreme Gradient
Boosting (XGBoost), and Long Short-term Memory (LSTM), to forecast
cloud resource loads by analyzing raw time-series data on resource
demands and constructing predictive models based on fitting or regress-
ing historical data. AbdElminaam et al. [10] developed an analytics
and prediction framework using a quantum genetic algorithm to op-
timize a Kalman filtering neural fuzzy system to analyze and predict
Google’s server cluster data. To analyze and forecast Key Performance
Indicator (KPI) time-series data of cloud servers, Gyeera et al. con-
structed a prediction framework utilizing optimized Kalman filtering
techniques [11]. Mehdi et al. [12] proposed a hybrid model, Fuzzy Au-
toregressive Integrated Moving Average (FARIMA), combining ARIMA
and fuzzy regression techniques, utilizing the SOFA sliding window
strategy to construct a more accurate prediction model for cloud com-
puting traffic forecasting. Anupama [16] proposed a hybrid forecasting
model, Seasonal Autoregressive Integrated Moving Average (SARIMA),
that integrates statistical and machine learning techniques to predict
seasonal and non-seasonal workloads in cloud environments. The lin-
earity of statistical regression models, such as simple and multiple
linear regression, is insufficient to capture the time-varying and nonlin-
ear load patterns of cloud resource demands [17–19], and hence such
approaches are unsuitable to process such data sequences.

Machine and deep learning and neural networks offer novel ap-
proaches to forecast cloud resource demand loads based on time-series
data. Unlike statistical regression and signal fitting, machine learning
demonstrates greater accuracy for predicting nonlinear cloud resource
loads and peaks. Their algorithms have enhanced the precision of

load prediction models for cloud resource demand [9,20,21]. The

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.

b
t
t
t
s
n
l
p
m
l
t
i

3

o
s
t
c
a
t
m
e
t
r
r

s

𝑙

RCP-CL prediction model uses an integrated parallel and stacked one-
dimensional convolutional neural network (1D-CNN) layer adjusted by
analyzing the autocorrelation and partial autocorrelation of CPU uti-
lization for kernel size and dilation rate, along with an LSTM network
to model random fluctuations for multi-step CPU utilization predic-
tion [21]. A multivariate prediction model using convolutional neural
network (CNN) with LSTM forecast CPU, memory, and network us-
age [22]. Vector autoregression analysis was performed on the input
data to filter out linear interdependencies. LSTM modeled irregular
time trends in time information. Residual data were computed and
fed into a CNN layer to extract the complex features of each virtual
machine usage component to achieve accurate multidimensional usage
pattern prediction. A load prediction method based on Deep Belief Net-
works (DBNs) accurately predicts system loads in cloud data centers,
to improve profit, satisfy user Service Level Agreements (SLAs) [23],
and dynamically allocate resources based on predicted system loads.
A Multi-Factor Fuzzy Long Short-Term Memory network (MF-LSTM)
combined various mechanisms to construct a cloud proactive autoscal-
ing system [24]. Preprocessing adopted fuzzy techniques to reduce
the volatility of monitoring data, while LSTM was utilized to predict
multi-variable time-series data for resource consumption. An adaptive
window size selection method based on deep learning was proposed to
alleviate the issues of inaccurate estimation resulting from significant
unrelated observation data for training on a large fixed sliding window,
or inaccurate prediction resulting from rapid estimation degradation
due to a small window [25], dynamically constraining the sliding
window size, capturing the local trend in the latest resource utilization
data, and establishing an estimation model for each trend cycle.

With increasingly complex time-series data, researchers have pro-
posed methods to analyze cloud resource load demand data sequences.
An online incremental learning method predicted the runtime of tasks
in cloud service workflows [26], improving predictive accuracy through
task execution sequence features such as CPU utilization, memory
usage, and I/O activity. Nawrocki et al. [27] applied machine learn-
ing methods and multi-layer perceptron (MLP) models to provide
predictive guidance for cloud resource reservation in short- and long-
term network services. Osypanka et al. [20] combined machine learn-
ing techniques with load prediction, computation service feature ex-
traction, long-term planning for cloud resource utilization, adaptive
anomaly detection, and continuous monitoring to establish a cost-
effective cloud resource supply plan and generate knowledge for the
optimization system and its workload patterns. A data-driven adaptive
prediction model for cloud resource usage adaptively adjusted the fore-
casting pattern to generate short- and long-term cloud resource usage
plans [28], accommodating temporary or permanent usage changes
with different load characteristics. DTDR-ALSTM improved the perfor-
mance of an attention-based long short-term memory (ALSTM) network
by reconstructing multidimensional data using dynamic time-delay
to account for the time-varying impacts of transfer times between
industrial process variables during feature extraction [29], utilizing
the dynamics between predictive and related variables to enhance
the identification of key features extracted from the optimal data.
Techniques such as MODALS [30], RGAN, RCGAN, STFT, TimeGAN,
GRATIS [31], MAR, MODALS, PBA, and WGAN-gp have been employed
to handle time-series data [30,32–36].

Many studies have investigated the correlations among cycles, rel-
ative positions, time dependencies, and long-term impact involving a
single-variable historical sequence when analyzing time-series data [20,
26–28], but neglected to fully capture the complex spatiotemporal
dependencies among correlations and the multiple effects of exogenous
factors, which generate the sequence data in a latent factor form over
different time periods. Ultimately, this limits the understanding of the
complex relationships and underlying mechanisms of the generated
sequence data. Various approaches have been proposed to predict
cloud resource loads based on time-series data, but with limitations
3

such as nonlinearity, multiple unknown latent coupling correlation k
Table 1
Notations used in this paper.

Symbol Description

𝑙𝑥 The input time series length.

𝑋𝑡
𝑒𝑛 The known input of the time series data.

𝑋𝑡
𝑜𝑢𝑡 The forecast data.

𝐵𝐼𝑀𝐹 𝑡
𝑖 The 𝑖th modal component by VMD.

𝑆𝐸𝑣 The estimated values of sample entropy for each modal
component.

𝜙𝑘(𝑡) A non-monotonically decreasing phase function.
𝑟𝑘(𝑡) The 𝑘th variational mode decomposition.
𝜔𝑘(𝑡) The central frequency of 𝑟𝑘(𝑡).
𝛿𝑐 The clustering threshold.
𝛿0 The noise threshold.
𝑋𝑡

𝑝𝑖𝑛 The Decoder input sequence of the lower branch in the
VMDSE-Informer.

𝑆 𝑡
𝑑𝑒𝑣 The sample entropy-based optimization of the VMD

reconstruction subsequence algorithm.

features, high-dimensional and mutually independent single-variable
time-series data, and data sequences with various types of time-series
coupling correlations, such as global trends and periodicity. Conse-
quently, the prediction performance of these methods requires further
improvement. The prevailing analytical frameworks for cloud resource
load forecasting typically incorporate spatiotemporal correlation mod-
els based on observable factors in time-series data, but suffer from
incomplete information structures, which can hinder the prediction
of spatiotemporal dependency features. Current methods cannot effec-
tively integrate spatiotemporal correlation, local feature correlation,
and global multidimensional dependency through a single variable
when dealing with nonlinear and complex data that may include latent
factors and noise. We propose a novel approach to extract potential
latent factors by utilizing 𝐾-embedding dimension mode decomposition
ased on a single-variable time series. A multidimensional represen-
ation learning framework utilizes a self-attention network to fuse
he features of each mode component, to more effectively analyze
he dynamics reflected at different temporal granularities within the
patiotemporal structure. By training the proposed framework, the
etwork can learn and explore the inherent spatiotemporal correlation
ogic rules hidden within the single-variable time-series dataset. The
roposed framework encodes different temporal granularities using a
ultiple-head attention mechanism, effectively extracting and fusing

ocal dependencies and global correlation rules, to fully capture the spa-
iotemporal dependency characteristics of internal and external factor
ntegration.

. VMDSE-Tformer: A cloud resource load prediction model

The time series of a single variable represents the combined effects
f multiple related factors. An effective method to explore the relation-
hips between these hidden factors within the time series dataset is
o employ multidimensional decomposition and analyze the temporal
oupling and correlation between the decomposed variables, as well
s their own trend changes. Based on the concept of decomposing
he time series data of a certain type of cloud resource load into
ultiple dimensions, we performed high-dimensional decomposition to

xplore the inherent multidimensional latent factors. After analyzing
he sample entropy (SE) of each component, the time series data were
econstructed based on a Transformer framework to build the cloud
esource load prediction model, VMDSE-Tformer.

The important symbols used throughout the paper with their de-
cription are listed in Table 1.

Assuming the input time-series length of the prediction model is
𝑥, which is used as the input length of the encoding module, the

𝑡
nown input of the time-series data of a single variable is 𝑋𝑒𝑛 =

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 1. Overall architecture of the VMDSE-Tformer model.
{

𝑥𝑡𝑡−𝑙𝑥 , 𝑥
𝑡
𝑡−𝑙𝑥+1

,… , 𝑥𝑡𝑡−1 ∣ 𝑥
𝑡
𝑖 ∈ R1

}

, representing the original data of a
set of cloud resource demands from time 𝑡 − 𝑙𝑥 to time 𝑡 − 1. We
developed the VMDSE-Tformer load prediction model to forecast data
𝑋𝑡

𝑜𝑢𝑡 =
{

𝑥𝑡𝑡, 𝑥
𝑡
𝑡+1,… , 𝑥𝑡𝑡+𝜆−1 ∣ 𝑥

𝑡
𝑖 ∈ R1

}

for the upcoming 𝜆 steps based on
the historical data of the previous 𝑙𝑥 steps’ historical data.

3.1. VMDSE-Tformer framework

Fig. 1 shows the framework of VMDSE-Tformer, which has four
modules: (1) VMD-Decomposer using VMD to extract latent variables
within the time series; (2) SE-optimizer based on subsequence recon-
struction using SE to conduct subsequence selection by measuring the
self-similarity of each mode component; (3) VMD-SE-Informer Encoder
incorporating a Self-Attention mechanism for feature extraction and
capture of spatiotemporal interactions across multiple projection spaces
of different latent variables; and (4) VMD-SE-Informer Decoder, respon-
sible for subsequence fusion and decoding prediction, capturing tem-
poral coupling associations within multidimensional subsequence data
and resulting in reconstructed output predictions. These modules aim to
achieve accurate cloud resource load prediction by effectively process-
ing and analyzing the complex spatiotemporal information contained
in the time series data.

Fig. 1 shows the training and prediction process of VMDSE-Tformer,
along with its overall architecture. VMD-Decomposer uses VMD to
decompose the input vector 𝑋𝑡

𝑒𝑛 into 𝑛 modal components {𝐵𝐼𝑀𝐹 𝑡
1,

𝐵𝐼𝑀𝐹 𝑡
2,… , 𝐵𝐼𝑀𝐹 𝑡

𝑛}, 𝐵𝐼𝑀𝐹 𝑛 ∈ 𝑟𝑛(𝑡) with different central frequen-
cies, where 𝐵𝐼𝑀𝐹𝑛 ∈ 𝑟𝑛(𝑡) and 𝑟𝑛(𝑡) represents the 𝑛th modal com-
ponent. Due to the limited input length 𝑙𝑥 of the prediction model,
the SE-optimizer calculates the estimated values of sample entropy
(𝑆𝐸𝑣) for each modal component, 𝑆𝐸𝑣 =

{

𝑆𝐸𝑣𝑡1, 𝑆𝐸𝑣𝑡2,… , 𝑆𝐸𝑣𝑡𝑛
}

,
whose values are used to optimize the selection of 𝑘 modal com-
ponents with overlaid time stamp sequences, and the concatenated
subsequence is combined with source data sequence 𝑋𝑡

𝑒𝑛 to generate
the reconstructed subsequence to serve as input for VMD-SE-Informer
Encoder, which employs two encoders to apply the 𝑃𝑟𝑜𝑏𝑠𝑝𝑎𝑟𝑒 Self-
attention [37] mechanism on

{

𝐵𝐼𝑀𝐹 𝑖 + 𝑇 𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝
}

and 𝑋𝑡
𝑒𝑛, which

enables the extraction of spatiotemporal coupled correlation features
from the subsequence set. Feature fusion is performed on the indepen-
dently encoded results using a fully connected neural network layer.
4

During the prediction phase, VMD-SE-Informer Decoder receives 𝑋𝑡
𝑑𝑒 =

{

𝑋𝑡
𝑖𝑛, 𝑚𝑎𝑠𝑘𝑒𝑑(𝑋0)

}

as input, where 𝑋𝑡
𝑖𝑛 represents known temporal data

with length 𝑖𝑥, and 𝑚𝑎𝑠𝑘𝑒𝑑(𝑋0) represents the predicted portion, which
consists of a sequence of length 𝜆, with all values set to 0. Using the
VMD_SE -Based model, the obtained parameters are utilized to perform
the VMD of the 𝑋𝑡

𝑖𝑛 segment, and the resulting sequence is appended
with time stamps (Time Stamp) before being combined with 𝑋𝑡

𝑑𝑒 to
serve as the input of VMD-SE-Informer Decoder. The decoding process
leverages the learned parameters from the VMD-SE-Informer Encoder,
which include

{

(𝐾𝑣𝑚𝑑_𝑠𝑒, 𝑉𝑣𝑚𝑑_𝑠𝑒), (𝐾𝑖𝑛, 𝑉𝑖𝑛), (𝑊𝑓 , 𝑏𝑓)
}

, and the prediction
is finally generated via a fully connected layer.

To briefly describe the overall data processing process in the model,
firstly, the historical sequence is decomposed into 𝑛-order modes using
the variational mode decomposition method. Then, each mode is ana-
lyzed using sample entropy, followed by clustering based on the central
frequency of sample entropy for each mode. From the resulting 𝑛-order
modes, 𝑘 suitable mode decomposition components are selected and
reconstructed into a 𝑘-dimensional sequence group, which serves as the
input for the prediction model encoding. Consequently, the model takes
the reconstructed sequence as a comprehensive input in the form of a
𝑘-dimensional sequence group.

3.2. VMD-decomposer

3.2.1. Constructing a variational model
The construction of causal relationship models typically relies on

assumptions, and the discovery of the causal structure within dynamic
systems from observable time series data carries significant theoretical
and practical implications. Cloud resource demand load time series con-
sist of resource requests from various users with different frequencies,
and are affected by multiple latent variables, such as requirements,
network bandwidths, and time intervals. The sensitivity of hidden
causal relationships within time series data to factors like their fre-
quency in the dataset has been demonstrated [38–40]. An effective
auxiliary method for mining these is to decompose the cloud resource
demand sequence into different frequency scales using modal analysis
to enable the identification of frequency characteristics associated with
different data acquisition methods. VMD is a fully non-recursive signal
processing method that enables adaptive determination of bandwidth

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.

𝑟

𝜔

f
(
m

3

w
d
t

s
t
c
𝑑

and frequency of signals, effectively decomposing non-stationary multi-
component amplitude- and frequency-modulated signals into single-
component amplitude and frequency-modulated modal components.
VMD addresses the variational problem and enables estimation of
corresponding modal components while appropriately balancing errors
between modes [41,42]. VMD-Decomposer applies VMD to time series
data of cloud resource demand loads to extract modal component in-
formation at different frequency scales. Through an iterative search for
the best-fit solution, it determines the center frequency and bandwidth
of each VMD mode, and adaptively decomposes the data to characterize
each hidden variable at its unique frequency.

As shown in Fig. 1, VMD-Decomposer utilizes VMD to decompose
the original time-series data of cloud resource demand loads, repre-
sented as 𝑓 (𝑡) = 𝑋𝑡

𝑒𝑛, into 𝑛 modal components. This is achieved by
computing 𝑛 band-limited intrinsic mode functions (BIMFs). The 𝑘th
VMD is defined as

𝑟𝑘(𝑡) = 𝐴𝑘(𝑡) cos
(

𝜙𝑘(𝑡)
)

(1)

𝜔𝑘(𝑡) = 𝜙′
𝑘(𝑡) =

𝑑𝜙𝑘(𝑡)
𝑑𝑡

, (2)

where 𝐴𝑘(𝑡) is the instantaneous amplitude of the 𝑘th modal component
𝑟𝑘(𝑡), 𝑘 = 1, 2,… , 𝑛, with central frequency 𝜙𝑘(𝑡); 𝜔𝑘(𝑡) is a non-
monotonically decreasing phase function ; and 𝑡(𝑡 > 0) represents
time.

By applying the Hilbert transform, the one-sided spectrum of the
analytic signal of 𝑟𝑘(𝑡) can be obtained as
[

𝛿(𝑡) + 𝑖
𝜋𝑡

]

∗ 𝑟𝑘(𝑡) (3)

where 𝛿(𝑡) is the unit impulse function and i is the imaginary unit.
Based on Eq. (3), the bandwidth assessment of each modal compo-

nent can be defined as
[(

𝛿(𝑡) + 𝑖
𝜋𝑡

)

∗ 𝑟𝑘(𝑡)
]

𝑒−𝑖𝜔𝑘𝑡, (4)

where 𝜔𝑘 is the central frequency of the 𝑘th modal component 𝑟𝑘(𝑡), and
𝑒−𝑖𝜔𝑘𝑡 is an exponential term indicating the complex central frequency.

Estimates of the bandwidths of modal components 𝑟𝑘(𝑡) are obtained
by calculating the 𝐿2 norm of the gradient of the demodulated sig-
nals. The constrained variational model expression constructed for the
original input sequence 𝑓 (𝑡) is

⎧

⎪

⎨

⎪

⎩

min{𝑟𝑘},{𝜔𝑘}

{

∑𝑛
𝑘=1

‖

‖

‖

‖

𝜕𝑡
[(

𝛿(𝑡) + 𝑖
𝜋𝑡

)

∗ 𝑟𝑘(𝑡)
]

𝑒−𝑖𝜔𝑘𝑡
‖

‖

‖

‖

2

2

}

.

s.t. ∑𝑛
𝑘=1 𝑟𝑘(𝑡) = 𝑓 (𝑡)

(5)

To obtain the optimal solution of the constrained variational model
Eq. (5), it is transformed into an unconstrained variational model prob-
lem using quadratic penalty function terms and Lagrange multiplier
operators. The resulting extended Lagrangian function is derived as

𝐿
({

𝑟𝑘
}

,
{

𝜔𝑘
}

, 𝜆
)

= 𝛼
𝑛
∑

𝑘=1

‖

‖

‖

‖

𝜕𝑡
[(

𝛿(𝑡) + 𝑖
𝜋𝑡

)

∗ 𝑟𝑘(𝑡)
]

𝑒−𝑖𝜔𝑘𝑡
‖

‖

‖

‖

2

2

+
‖

‖

‖

‖

‖

𝑓 (𝑡) −
𝑛
∑

𝑘=1
𝑟𝑘(𝑡)

‖

‖

‖

‖

‖

2

2

+

⟨

𝜆(𝑡), 𝑓 (𝑡) −
𝑛
∑

𝑘=1
𝑟𝑘(𝑡)

⟩

,

(6)

where 𝛼 is a quadratic penalty factor, 𝜆(𝑡) is the Lagrange multiplier
operator, and ⟨∙⟩ represents the inner product.

The optimal solution for the unconstrained variational model in
Eq. (6) is obtained by iteratively updating 𝑟𝑘, 𝜔𝑘, and 𝜆 using the
alternate direction method of multipliers (ADMM). The corresponding
update formulas for each iteration are

̂𝑚+1𝑘 (𝜔) =
𝑓 (𝜔) −

∑

𝑖≠𝑘 �̂�𝑖(𝜔) +
𝜆𝑚(𝜔)

2

1 + 2𝛼
(

𝜔 − 𝜔𝑚
𝑘
)2

(7)

𝑚+1
𝑘 =

∫ ∞
0 𝜔 |

|

|

�̂�𝑚+1𝑘 (𝜔)||
|

2
𝑑𝜔

∞ | 𝑚+1 |

2
(8)
5

∫0 |

|

�̂�𝑘 (𝜔)|
|

𝑑𝜔
�̂�𝑚+1𝑘 (𝜔) = �̂�𝑚𝑘 (𝜔) + 𝜏

(

𝑓 (𝜔) −
𝑛
∑

𝑘=1
�̂�𝑚+1𝑘 (𝜔)

)

, (9)

where �̂�𝑚+1𝑘 (𝜔), 𝑓 (𝜔), �̂�𝑖(𝜔), and �̂�(𝜔) are the respective Fourier trans-
orms of 𝑟(𝑡), 𝑓 (𝑡), 𝑟(𝑡), and 𝜆(𝑡); 𝑚 is the iteration number, 𝑚 + 1 is the
𝑚 + 1)th iterative update, 𝜔𝑚+1

𝑘 is the center frequency of the current
odal component, and 𝜏 is the noise tolerance.

.2.2. Modal component decomposition algorithm
Based on the fundamental principles of VMD discussed earlier,

e present Algorithm 1 𝐶𝑎𝑙_𝑢(𝑓 (𝑡), 𝛼, 𝜀, 𝜏), which provides an adaptive
ecomposition of the cloud resource demand load sequence to obtain
he 𝑘th modal component 𝑟𝑘(𝑡).

Algorithm 1 𝐶𝑎𝑙_𝑢(𝑓 (𝑡), 𝛼, 𝜀, 𝜏).
Input:𝑓 (𝑡), 𝛼, 𝜀, 𝜏; The parameters are as follows: cloud resource
demand load sequence; the balancing parameter of the data-fidelity
constraint; tolerance of the convergence criterion; and noise-slack.
Output: 𝑟𝑘(𝑡),𝜔𝑘(𝑡);
1. Initial

{

𝑟1𝑘(𝜔)
}

,
{

𝜔1
𝑘
}

, 𝜆1𝑘(𝜔), 𝑚 = 0;
2. Do {
3. 𝑚 = 𝑚 + 1;
4. Calculate_r

(

�̂�𝑚+1𝑘 (𝜔)
)

; // Eq. (7)
5. Calculate_w

(

𝜔𝑚+1
𝑘

)

; // Eq. (8)
6. Update_l

(

�̂�𝑚+1𝑘 (𝜔)
)

; // Eq. (9)

7. e =
∑

𝑘
‖

‖

‖

�̂�𝑚+1𝑘 −�̂�𝑚𝑘
‖

‖

‖

2

2
‖

‖

‖

�̂�𝑚𝑘
‖

‖

‖

2

2

; // Calculate the tolerance of the convergence

criterion.
8. } While (𝜀 > e);
9. Return 𝑟𝑘(𝑡), 𝜔𝑘(𝑡).

3.3. SE-optimizer

3.3.1. Estimating sample entropy of time series data
Sample entropy (SE) [43] is an improved method to measure the

complexity of time-series data. Since SampEn is commonly used to
assess the complexity and irregularity of time series in some research,
which is often associated with non-stationarity [44], we use it to
extract features from the sequences. By computing the SE of each mode
component 𝑟𝑘(𝑡) obtained through VMD, we can compare and evaluate
their relative complexity for selecting appropriate component subsets
for reconstructing the subsequence set from the mode component set.

The similarity tolerance parameter 𝛾 ranges from 10% to 25% of the
tandard deviation of the original data sequence. Assuming a similarity
olerance 𝛾 = 0.2 and an embedding dimension of 2 (𝑑 = 2), the
alculation process of SE can be expressed as Calculate_SE(𝑋𝑡

𝑒𝑛, 𝑙𝑥, 𝛾,
):

(1) Given a cloud resource demand data sequence 𝑋𝑡
𝑒𝑛 =

{

𝑥𝑡𝑡−𝑙𝑥 ,

𝑥𝑡𝑡−𝑙𝑥+1,… , 𝑥𝑡𝑡−1 ∣ 𝑥
𝑡
𝑖 ∈ R1

}

=
{

𝑦1, 𝑦2,… , 𝑦𝑁
}

, where 𝑁 = 𝑙𝑥, we recon-
struct it as a matrix:

𝑌 =
⎡

⎢

⎢

⎣

𝑦1 ⋯ 𝑦𝑁−𝑑+1
⋮ ⋱ ⋮
𝑦𝑑 ⋯ 𝑦𝑁

⎤

⎥

⎥

⎦

; (10)

(2) The distance between 𝑌𝑖 and 𝑌𝑗 in 𝑌 is defined as

𝐷𝑑
(

𝑌𝑖, 𝑌𝑗
)

= max𝑘=0…𝑑−1

(

|

|

|

𝑌𝑖+𝑘 − 𝑌𝑗+𝑘
|

|

|

)

,
1 ≤ 𝑘 ≤ 𝑑 − 1, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁 − 𝑑 + 1,

(11)

where 𝑘 is the step size.
(3) For each 𝑌𝑖, we count the number of 𝑗(1 ≤ 𝑗 ≤ 𝑁 − 𝑑, 𝑗 ≠ 𝑖),

which satisfies the condition 𝐷𝑑
(

𝑌𝑖, 𝑌𝑗
)

≤ 𝛾, denoted as

𝐵𝑑 (𝛾) = 1 num
{

𝐷
(

𝑌 , 𝑌
)

≤ 𝛾
}

, 1 ≤ 𝑖 ≤ 𝑁 − 𝑑; (12)
𝑖 𝑁 − 𝑑 − 1 𝑑 𝑖 𝑗

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.

o

𝐵

d

𝐵
S
𝑆
w
c
s
t
t
p
o
d

c
d
d
c
t
E
m
d
o
i

1
m
p
t

(4) We calculate the average value of 𝐵𝑑
𝑖 (𝛾) as

𝐵𝑑 (𝛾) = 1
𝑁 − 𝑑

𝑁−𝑚
∑

𝑖=1
𝐵𝑑
𝑖 (𝛾); (13)

(5) Let 𝑑 = 𝑑 + 1, and repeat steps (1)–(4) to calculate 𝐵𝑑+1
𝑖 (𝛾) and

btain

𝑑+1(𝛾) = 1
𝑁 − 𝑑

𝑁−𝑚
∑

𝑖=1
𝐵𝑑+1
𝑖 (𝛾). (14)

Under the similarity constraint parameter 𝛾, the sample entropy is
efined as

SampEn(𝑑, 𝛾) = lim
𝑁→∞

{

− ln
(

𝐵𝑑+1(𝛾)
𝐵𝑑 (𝛾)

)}

, (15)

where 𝑋𝑡
𝑒𝑛 is a finite time-series of length 𝑙𝑥, so the sample entropy

when 𝑁 is known is

SampEn(𝑑, 𝛾,𝑁) = − ln
(

𝐵𝑑+1(𝛾)
𝐵𝑑 (𝛾)

)

. (16)

Sample entropy can be used as a measure of non-stationarity [45,
46]. A larger value of SampEn(𝑑, 𝛾,𝑁) indicates higher complexity of
the sequence.

3.3.2. Subsequence reconstruction using sample entropy-based strategy
Based on 𝑛 modes components {𝐵𝐼𝑀𝐹1, 𝐵𝐼𝑀𝐹2,…, 𝐵𝐼𝑀𝐹𝑛 ∣

𝐼𝑀𝐹𝑛 ∈ 𝑟𝑛(𝑡)} obtained from VMD, we derived the corresponding
ampEn

(

𝑑, 𝛾, 𝑙𝑥
)

values 𝑆𝐸𝑣 =
{

𝑆𝐸𝑣𝑡1, 𝑆𝐸𝑣𝑡2,… , 𝑆𝐸𝑣𝑡𝑛
}

. By referencing
𝐸𝑣𝑡0 of the original data sequence 𝑋𝑡

𝑒𝑛, a subset of subsequences
as selected. We chose 𝑆𝐸𝑣𝑡𝑖 that were both similar and far from the

orresponding 𝑖th mode component in 𝑆𝐸𝑣𝑡0. We excluded subsequence
ubsets with values close to or greater than that of 𝑆𝐸𝑣𝑡0, and utilized
his subset, together with the original sequence, as input to the encoder
o extract features for reconstructing the original sequence. Thus, we
ropose a sample entropy-based subsequence reconstruction method to
btain causal relationship features of the latent variables in the original
ata sequence by optimally solving for two core parameters.

(1) To select the appropriate number of VMD mode components, the
entral frequency 𝜔𝑛(𝑡) obtained by performing VMD on the original
ata sequence changes with the number of mode components 𝑛. As the
ecomposed mode components approach a specific value, 𝜔𝑘(𝑡) tends to
onverge. The presence of mode mixing is more likely to occur when
wo adjacent mode components possess similar central frequencies.
mpirical observations suggest that increasing the number of VMD
ode components 𝑛 can lead to less distinct features of the original
ata’s hidden variables. To avoid the loss or mixing of modes while
btaining better latent variable features, we start the search with an
nitial number of mode components 𝑛0 = 3.

Assuming 𝑘(𝑘 ≥ 3, 𝑘 ∈ 𝑁) mode components, the maximum central
frequency among these 𝑘 components is 𝜔max

𝑘 (𝑡) = max
{

𝜔𝑘
𝑖 (𝑡)

}

, (𝑖 =
, 2… , 𝑘), while the minimum central frequency is 𝜔min

𝑘 (𝑡) =
in
{

𝜔𝑘
𝑖 (𝑡)

}

, (𝑖 = 1, 2… , 𝑘). The optimal number of VMD mode com-
onents for this given raw data is 𝑛 = 𝑘 if 𝑘 simultaneously satisfies
wo conditions:
((

𝜔max
𝑘 (𝑡) − 𝜔max

𝑘−1(𝑡)
)

≫
(

𝜔max
𝑘+1(𝑡) − 𝜔max

𝑘 (𝑡)
))

and
((

𝜔max
𝑘+1(𝑡) − 𝜔max

𝑘 (𝑡)
)

≈
(

𝜔max
𝑘+2(𝑡) − 𝜔max

𝑘+1(𝑡)
)) (17)

((

𝜔min
𝑘−1(𝑡) − 𝜔min

𝑘 (𝑡)
)

≫
(

𝜔min
𝑘 (𝑡) − 𝜔min

𝑘+1(𝑡)
))

and
((

𝜔min
𝑘 (𝑡) − 𝜔min

𝑘+1(𝑡)
)

≈
(

𝜔min
𝑘+1(𝑡) − 𝜔min

𝑘+2(𝑡)
))

.
(18)

(2) We choose an appropriate subset 𝜙 from the known VMD mode
components by determining the optimal number of mode components
𝑛 using step (1), and then, according to the SampEn

(

𝑑, 𝛾, 𝑙𝑥
)

values
that correspond to the 𝑛 mode components, and based on the following
conditions, select a suitable subset of 𝜙 =

{

𝑟𝑛𝜇(𝑡) ∣ 𝜇 ∈ {1, 2,… , 𝑛}
}

from
the 𝑛 mode components.

As described in Section 3.3.1, let 𝑆𝐸𝑣 = {𝑆𝐸𝑣𝑡1, 𝑆𝐸𝑣𝑡2,… , 𝑆𝐸𝑣𝑡𝑛}
represent the SampEn

(

𝑑, 𝛾, 𝑙
)

values corresponding to the 𝑛 mode
6

𝑥

components. We denote the 𝑆𝑎𝑚𝑝𝐸𝑛 of the original data sequence
as 𝑆𝐸𝑣𝑡0. We select the reconstructed subsequence set based on the
following conditions, with 𝛿𝑐 and 𝛿𝑜 serving as the respective clustering
and noise thresholds:

• When |

|

|

𝑆𝐸𝑣𝑡0 − 𝑆𝐸𝑣𝑡𝑖
|

|

|

< 𝛿𝑐 , then 𝑟𝑛𝑖 (𝑡) ∉ 𝜙. To avoid overfit-
ting during training, and since the reconstructed subsequence
set contains the original data sequence, the mode components
with 𝑆𝑎𝑚𝑝𝐸𝑛 values less than 𝛿𝑐 compared to the original data
sequence can be neglected;

• When 𝑆𝐸𝑣𝑡𝑗 −𝑆𝐸𝑣𝑡0 ≫ 2𝛿𝑜, then 𝑟𝑛𝑗 (𝑡) ∉ 𝜙. Mode components with
𝑆𝑎𝑚𝑝𝐸𝑛 values far from and larger than 2𝛿𝑜 compared to 𝑆𝐸𝑣𝑡0
are considered to be noise, and can also be discarded;

• 𝜙 =
{

𝑟𝑛𝜇(𝑡) ∣ 𝜇 ∈ {1, 2,… , 𝑛} . and 𝜇 ≠ 𝑖 and 𝜇 ≠ 𝑗}.

The pseudocode for Algorithm 2, 𝑂𝑉 𝑆_𝑆𝑒𝑞𝑠𝑒𝑡(𝑑, 𝛾, 𝑓 (𝑡)), is based on
the VMD SampEn-optimized reconstructed subsequence algorithm.

Algorithm 2 𝑂𝑉 𝑆_𝑆𝑒𝑞𝑠𝑒𝑡(𝑑, 𝛾, 𝑓 (𝑡))
Input:𝑑, 𝛾, 𝑓 (𝑡);//The parameters are as follows: the embedding di-
mension 𝑑 = 2; the similarity tolerance 𝛾 = 0.2; the time series 𝑓 (𝑡).

Output: 𝜙; //The subset 𝜙 from the 𝑛 mode components.
1. Initial 𝑘 = 3, 𝑑 = 2, 𝛾 = 0.2, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝐹𝑎𝑙𝑠𝑒;
2. For (𝑖 = 1𝑡𝑜𝑘 + 2) 𝐶𝑎𝑙_𝑢(𝑓 (𝑡), 𝛼, 𝜖, 𝜏);
3. While (Conditions=𝐹𝑎𝑙𝑠𝑒) {
4. 𝜔max

𝑘 (𝑡) = Getmax𝜔();
// 𝜔max

𝑘 (𝑡) = max
{

𝜔𝑘
𝑖 (𝑡)

}

, (𝑖 = 1, 2… , 𝑘).
5. 𝜔min

𝑘 (𝑡) = Getmin𝜔();
// 𝜔min

𝑘 (𝑡) = min
{

𝜔𝑘
𝑖 (𝑡)

}

, (𝑖 = 1, 2… , 𝑘)
6. If Conditions 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑑 // Eq. (17) - Eq. (18) are satisfied.
7. Conditions=Ture;
8. 𝑛 = 𝑘; // Obtaining the optimal number of

VMD modal components 𝑛.
9. Else 𝑘 = 𝑘 + 1;
10. 𝐶𝑎𝑙_𝑢(𝑓 (𝑡), 𝛼, 𝜖, 𝜏); // Get the VMD set of 𝑘 + 1.
11. } // End of 𝑊 ℎ𝑖𝑙𝑒(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 = 𝐹𝑎𝑙𝑠𝑒).
12. For (𝑖 = 1𝑡𝑜𝑛) 𝑆𝑎𝑚𝑝𝐸𝑛(𝑑, 𝛾, 𝑙𝑥, 𝑖);
13. 𝑆𝑎𝑚𝑝𝐸𝑛(𝑑, 𝛾, 𝑙𝑥, 0);
14. 𝛿 = 𝐶𝑎𝑙_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝐸𝑣[]) ∶ ∕∕ Calculating the

𝛿𝑐 , 𝛿𝑜;
15. If

(

|

|

|

𝑆𝐸𝑣𝑡0 − 𝑆𝐸𝑣𝑡𝑖
|

|

|

< 𝛿𝑐 or 𝑆𝐸𝑣𝑡𝑗 − 𝑆𝐸𝑣𝑡0 ≫ 2𝛿𝑜
)

;
16. 𝜙∖𝑖, 𝑗; ∕∕ Discarding the corresponding modal

components.
17. Return 𝜙.

Based on the VMD sample entropy, the reconstruction subsequence
algorithm is optimized to obtain the VMD modal component subset,
which is merged with the original data sequence to form the input of
the predictive model for reconstruction subsequence 𝑆(𝑆 ∈ R(|𝜙|+1)×𝑙𝑥 ,
𝑘 = |𝜙|), as illustrated in Fig. 1.

3.4. VMD-SE-informer

The reconstructed subsequences, optimized based on the VMD sam-
ple entropy, are encoded using the multi-layer multi-head self-attention
module of Transformer, designed to capture the interactions and fea-
tures of hidden factors in a single time-series across different temporal
and spatial dimensions in multiple projection spaces. As shown in
Fig. 1, the input of VMD-SE-Informer is 𝑆 =

{

𝐵𝐼𝑀𝐹1, 𝐵𝐼𝑀𝐹2,… ,
𝐵𝐼𝑀𝐹𝑘,X𝑡

𝑒𝑛
}

, 𝑘 = |𝜙|, where 𝐵𝐼𝑀𝐹𝑖 ∈ R1×𝑙𝑥 , 𝑆 ∈ R(𝑘+1)×𝑙𝑥 , 𝑖 =
1, 2,… , 𝑘.

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 2. Transformer encoder.

3.4.1. VMD-SE-informer encoder
Two branches of three-layer multi-head attention modules are con-

structed within the VMD-SE-Informer Encoder, each layer comprising a
multi-head self-attention encoder. The initial input sequence of encoder
𝑆(0) is augmented with position encoding 𝑊𝑝𝑜𝑠, such that each element
𝑠𝑡 is represented as 𝑠𝑡 +𝑊𝑝𝑜𝑠𝑡 . So, we define

𝑆(0) =
{

𝑠1 +𝑊pos 1
, 𝑠2 +𝑊pos 2

,… , 𝑠𝑇 +𝑊pos 𝑇

}

, (19)

where 𝑊pos 𝑡
∈ R𝐷, 𝐷 = |𝜙| is the number of sequences in the

reconstruction subsequence set.
As shown in Fig. 2, during the encoding process of the multi-

head self-attention encoder in each layer, multiple trainable matrices
𝑊 ℎ

𝑞 ,𝑊 ℎ
𝑘 ,𝑊 ℎ

𝑣 , ℎ are applied to the self-attention model in 𝐻 projection
spaces. The 𝑄𝑢𝑒𝑟𝑦, 𝐾𝑒𝑦𝑠, and 𝑉 𝑎𝑙𝑢𝑒𝑠 in the corresponding projection
spaces are calculated as

MultiHead (𝑆) = 𝑊0
[

head 1;… , head 𝐻
]

headℎ =
(

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
)

= sof tmax

(

𝑄ℎ𝐾𝑇
ℎ

√

𝑑𝑘

)

𝑉ℎ

⎧

⎪

⎨

⎪

⎩

𝑄ℎ = 𝑊 (ℎ)
𝑞 𝑆

𝐾ℎ = 𝑊 (ℎ)
𝑘 𝑆 ∀ℎ ∈ {1, 2,… ,𝐻},

𝑉ℎ = 𝑊 (ℎ)
𝑣 𝑆

(20)

where 𝑑𝑘 is the dimension of the column vectors of input matrices
𝑄ℎ and 𝐾ℎ, 𝑑𝑣 is the dimension of column vectors of 𝑉ℎ, 𝑊0 ∈
R𝐷×𝐻𝑑𝑣 is the output projection matrix, and 𝑊 (ℎ)

𝑞 ∈ R𝐷×𝑑𝑘 , 𝑊 (ℎ)
𝑘 ∈

R𝐷×𝑑𝑘 , 𝑊 (ℎ)
𝑣 ∈ R𝐷×𝑑𝑣 are trainable matrices.

As shown in Fig. 1, the VMD-SE-Informer Encoder comprises three
Transformer encoders of different scales for the original data sequence
and reconstruction subsequence set. Each encoding layer is calculated
using a multi-head self-attention module and a nonlinear 𝐹𝑁𝑁(⋅)
feedforward neural network applied on a per-position basis. In Fig. 2,
residual connections are applied to connect the output of the previous
layer to the current layer during the computation of each layer in
the encoder, followed by layer normalization. 𝐹𝑁𝑁(⋅) refers to a
fully connected layer with two layers, connected by a 𝑅𝑒𝐿𝑢 activation
function, which is defined as

𝐹𝑁𝑁(𝑣) = 𝑊2𝐹𝑁𝑁 ReLU
(

𝑊1𝐹𝑁𝑁𝑣 + 𝑏1𝐹𝑁𝑁
)

+ 𝑏2𝐹𝑁𝑁 , (21)

where 𝑣 ∈ 𝑆(𝑙) denotes the vector at each position in the input sequence
of the previous layer, 𝑊1𝐹𝑁𝑁 and 𝑊2𝐹𝑁𝑁 are the weight matrices of the
two-layer neural network, and 𝑏1𝐹𝑁𝑁 and 𝑏2𝐹𝑁𝑁 are the biases of the
two corresponding layers, which are all trainable network parameters.
The connection weights between layers in the encoder are calculated
dynamically by the self-attention mechanism.
7

3.4.2. The internal structure
As traditional Transformer training utilizes a multi-head self-

attention mechanism [47], it consumes a large amount of training
time and memory. To improve the training efficiency, reduce the
time, and minimize the consumption of server memory while main-
taining training and prediction performance, VMD-SE-Informer adds
1D convolutional layer compression between every two layers of the
three encoders. A dual self-attention mechanism is adopted in each
encoder, and sampling-style attention calculation is utilized on the
reconstruction subsequence set to reduce the computational complexity
during training.

(1) Dual Self-attention Mechanism Calculation Model for Internal Self-
attention Strategy

We adopt a calculation model with a dual self-attention mech-
anism, which improves training efficiency without reducing model
accuracy [37]. For the encoder that processes the reconstruction sub-
sequence set 𝑆, the attention estimation formula for the 𝑖th query in
each self-attention is

𝐸
(

𝑞𝑖, 𝐾
)

= max
𝑗

{

𝑞𝑖𝑘𝑇𝑗
√

𝑑𝑘

}

− 1
𝑙𝑥

𝑙𝑥
∑

𝑗=1

𝑞𝑖𝑘𝑇𝑗
√

𝑑𝑘
. (22)

We compute the attention using 𝐸
(

𝑞𝑖, 𝐾
)

for each position of the
sequence. Then, we retrain the 𝜇 highest 𝐸

(

𝑞𝑖, 𝐾
)

values obtained from
the sampled positions, where 𝜇 = 𝛼 ln 𝑙𝑥, and 𝛼 = 5. The rest

(

𝑙𝑥 − 𝜇
)

positions is averaged as

�̄�
(

𝑞𝑖, 𝐾
)

= 1
𝑙𝑥

𝑙𝑥
∑

𝑗=1

𝑞𝑖𝑘𝑇𝑗
√

𝑑𝑘
= mean(𝑉). (23)

The self-attention formula for the encoder that processes the recon-
struction subsequence set 𝑆 can be derived from Eqs. (22) and (23) as

𝑆
(

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
)

= sof tmax

(

𝑄ℎ𝐾ℎ
𝑇

√

𝑑𝑘

)

𝑉ℎ. (24)

𝑄ℎ has two components calculated using Eqs. (23) and (24). The
first component corresponds to the top 𝜇𝐸

(

𝑞𝑖, 𝐾
)

values at their cor-
responding positions, while the values corresponding to the remaining
positions are averaged to obtain the second component, �̄�

(

𝑞𝑖, 𝐾
)

. This
attention calculation method [37,48] is commonly used to provide a
good balance between accuracy and efficiency.

To exploit the inherent correlation of the original sequence 𝑋𝑡
𝑒𝑛 as

much as possible, the full self-attention calculation formula is preserved
for the self-attention of the 𝑋𝑡

𝑒𝑛 processing encoder,

𝑋
(

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
)

= sof tmax

(

𝑄ℎ𝐾ℎ
𝑇

√

𝑑𝑘

)

𝑉ℎ. (25)

(2) The Internal Structure of Encoder
The VMD-SE-Informer Encoder handles the reconstruction subse-

quence 𝑆 and original univariate sequence 𝑋𝑡
𝑒𝑛 in separate branches.

We apply different self-attention strategies to capture the intrinsic
spatiotemporal features in these two sequences, i.e., the downsampled
𝑇 𝑜𝑝 − 𝜇 self-attention strategy (Eq. (24)) for the reconstruction sub-
sequence, and the Full-attention strategy (Eq. (25)) for the original
univariate sequence. The branches and feature compression structure
of the VMD-SE-Informer Encoder are shown in Fig. 3.

As illustrated in Fig. 3, we employ a novel approach to extract
feature information with varying emphasis from different sequences
and improve training efficiency while reducing the memory consump-
tion of the server [37]. By leveraging the compression capability of
convolutional networks [49], we incorporate a one-dimensional convo-
lution (𝐶𝑜𝑛𝑣1𝐷) in two branches. We employ Max Pooling and Average
Pooling in two branches as shown in Fig. 3. The Max Pooling in
the upper branch extracts feature texture, specifically emphasizing the
extraction of spatiotemporal edge feature information that contains the

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 3. The internal structure of VMD-SE-Informer.
demand mutation in the reconstructed subsequence 𝑆. In the lower
branch, the Average Pooling preserves inherent smoothness and feature
information related to resource demand in the sequence, with a focus
on retaining the overall data characteristics of the original univariate
sequence 𝑋𝑡

𝑒𝑛 and transmitting it to the next sampling layer.
According to the structure of the Encoder in Fig. 3, data compression

and information transfer between layers 𝑙 and (𝑙+1) in the two branches
are defined as

𝑆(𝑙+1) = MaxPool1d
(

ELU
(

Conv 1𝑑
([

𝑆(𝑙)]
𝐴𝐵𝑙𝑜𝑐𝑘

)))

(26)

𝑋𝑡 (𝑙+1)
𝑒𝑛 = AvgPool1d

(

𝐸𝐿𝑈
(

Conv 1𝑑
([

𝑋𝑡 (𝑙)
𝑒𝑛

]

𝐴𝐵𝑙𝑜𝑐𝑘
)))

, (27)

where MaxPool1d(⋅) and AvgPool 1𝑑(⋅) respectively denote Max Pooling
and Average Pooling, with 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1. The
activation function 𝐸𝐿𝑈 (⋅) is

𝐹 (𝑥) =
{

𝑥, 𝑥 > 0
𝛼 (𝑒𝑥 − 1) , 𝑥 ≤ 0

. (28)

Conv1d(⋅) represents a one-dimensional CNN, and [⋅]𝐴𝐵𝑙𝑜𝑐𝑘 refers to the
Multi-Head Attention module in the corresponding encoding layer.

These two branches extract different data features and fuse them
through a fusion layer, and then output by a fully connected layer.

𝑀out = 𝑊out

(

Concat
(

�̄�, 𝑋𝑡
𝑒𝑛

))

+ 𝑏out , (29)

where 𝑀out , �̄�, 𝑋𝑡
en ∈ R

1
4 𝑙𝑥 , where 𝑊out is the weight matrix of the

fusion layer, 𝑏𝑜𝑢𝑡 is the bias matrix of the fusion layer, �̄� and 𝑋𝑡
𝑒𝑛

are the respective feature outputs of the upper and lower branches
of the Encoder, as shown in Fig. 3, and Concat(⋅) represents sequence
concatenation.

3.4.3. Decoder and training optimizer
In the prediction model, the length of the known input sequence

used for guidance is 𝑙𝑝𝑖, and the length of the predicted output sequence
is 𝑙𝑝𝑜. 𝑋𝑡

𝑝𝑖𝑛 is the Decoder input sequence of the lower branch in VMD-
SE-Informer, with length 𝑙𝑝𝑖 + 𝑙𝑝𝑜. The first 𝑙𝑝𝑖 elements are known as
𝑋𝑡

𝑝𝑖, and the last 𝑙𝑝𝑜 elements are initialized as 0, and referred to as 𝑋𝑡
𝑝𝑜.

Hence we can write

𝑋𝑡
𝑝𝑖𝑛 = Concat

(

𝑋𝑡
𝑝𝑖, 𝑋

𝑡
𝑝𝑜

)

∈ R1×
(

𝑙𝑝𝑖+𝑙𝑝𝑜
)

. (30)

According to the processing procedure in Fig. 2, we employ the sam-
ple entropy-based optimization of the VMD reconstruction subsequence
algorithm, Algorithm 2 𝑂𝑉 𝑆𝑆𝑒𝑞𝑠𝑒𝑡(⋅), to process 𝑋𝑡

𝑝𝑖 as

𝑆𝑡 = 𝑂𝑉 𝑆 Seqset
(

𝑑, 𝛾,𝑋𝑡
)

∈ R(|𝜙|+1)×𝑙𝑝𝑖 , (31)
8

dev − 𝑝𝑖
where 𝜙 is the reconstructed subsequence set obtained by Algorithm
2 𝑂𝑉 𝑆_𝑆𝑒𝑞𝑠𝑒𝑡(⋅); 𝑆𝑡

𝑑𝑒𝑣 is the input reconstructed subsequence of the
Decoder in Fig. 2 after formatting, and (|𝜙|+1) is the dimension of the
reconstructed subsequence.

The objective of the prediction model is to forecast the resource
demand for a future period of length 𝑙𝑝𝑜. To achieve this, we obtain the
reconstructed subsequence set 𝑆𝑡

𝑑𝑒𝑣 from the historical data sequence
of the known guidance portion through VMD sample entropy optimiza-
tion. The input sequence 𝑆𝑡

𝑑𝑒𝑖𝑛 of the upper branch’s Decoder is formed
by concatenating the Mask sequence 𝑆𝑡

𝑑𝑒0, with length 𝑙𝑝𝑜, with each
data element initialized to 0. Define

𝑆𝑡
dein = Concat

(

𝑆𝑡
dev , 𝑆𝑡

de 0
)

∈ R(|𝜙|+1)×
(

𝑙𝑝𝑖+𝑙𝑝𝑜
)

. (32)

The input sequences for prediction are generated by adding a time
dimension parameterized by date and time to 𝑋𝑡

𝑝𝑖𝑛 and 𝑆𝑡
𝑑𝑒𝑖𝑛, respec-

tively.
Let 𝑦 denote the model’s predicted output sequence, and 𝑦 the

original data sequence. According to the prediction objective of VMD-
SE-Informer, we aim to forecast the resource scheduling demand for the
future 𝜏 periods. The loss function of the prediction model is

𝑂𝑆𝑆 = 1
𝑛
∑

‖�̂� − 𝑦‖2 �̂�, 𝑦 ∈ R𝜏 . (33)

To accelerate convergence during training, we apply the backprop-
agation (BP) algorithm on the partial derivative of the loss function
value, denoted as 𝛥𝛿(𝑟), of the prediction model at the 𝑟th round of
training to learn the network parameters. Furthermore, we optimize
the model’s parameters using the Adam optimizer,

𝜌(𝑟+1) = 𝜌(0)
(

1 − 𝛽𝑟2
1 − 𝛽𝑟1

)1∕2

(34)

𝜃(𝑟+1) = 𝛽1𝜃
(𝑟) +

(

1 − 𝛽1
)

𝛥𝛿(𝑟) (35)

𝜗(𝑟+1) = 𝛽2𝜗
(𝑟) +

(

1 − 𝛽2
) (

𝛥𝛿(𝑟)
)2 (36)

𝛿(𝑟+1) = 𝛿(𝑟) − 𝜌(𝑟+1) ∗ 𝜃(𝑟+1)∕
(√

𝜗(𝑟+1) + 𝜀
)

, (37)

where 𝜌(0) is the initial learning rate, which is 0.01 during training. The
learning rate 𝜌(𝑟+1) for the next round is calculated based on the initial
learning rate 𝜌(0) using Eq. (34). 𝜃(𝑟+1) and 𝜗(𝑟+1) are respectively the
first-order exponential smoothing values of the gradients and the first-
order smoothing values of the gradients squared during the training
process. 𝛿(𝑟+1) is the updated network parameter set acquired by the
prediction model in the new round, which is calculated using Eq. (37).
The initial values of 𝐴𝑑𝑎𝑚 optimizer parameters 𝛽1, 𝛽2, and 𝜀 for the
prediction model are set to 0.9, 0.999, and 10−8, respectively.

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 4. Box plots of CPU utilization for 45 randomly selected servers in Alibaba Cluster Trace dataset.
4. Data reconstruction and formatting

4.1. Dataset and prediction objective

To forecast user demand for cloud resources, we use the two most
commonly used datasets in cloud resource scheduling research, i.e.,
Google Cluster Trace [50] and Alibaba Cluster Trace,1 as test experi-
mental datasets to validate the proposed algorithm and the accuracy of
the prediction model. Google Cluster Trace contains the workload data
of about 25, 462, 157 scheduling tasks executed by more than 670,000
workloads on approximately 12,000 physical servers during a 29-day
period. Alibaba Cluster Trace contains the task scheduling data for 4023
servers during an 8-day period. For Alibaba Cluster Trace, we randomly
selected 45 servers and observed and recorded their CPU utilization
during each time period. The box plot results of the statistical analysis
are presented in Fig. 4.

According to the statistics, the majority of the CPUs in the servers
have utilization rates ranging from 20% to 50%, with an average of
approximately 27%. Therefore, it is more effective to allocate cloud
resources to predict the workload intensity, CPU, and memory needs
of the entire data center, so as to better utilize idle resources such as
CPU and memory. By applying the cloud resource scheduling prediction
model and extracting the historical data series features in different
time windows of Google Cluster Trace, we predicted the corresponding
workload intensity, CPU, and memory utilization rates for a future time
period.

Based on Google Cluster Trace, if we set the length of the time
window to 2 min and 5 min, we can obtain data sequences with
respective lengths of 20,880 and 8352 data points, showing the work-
load intensity, CPU, and memory utilization rates for the entire data
center in the corresponding time window. Depending on the resource
scheduling window requirements of the data center, the input length of
the prediction model can be set as 60, and the output length can be set
as 60, 30, or 15. This corresponds to the predicted workload intensity,
CPU, and memory utilization rates for the upcoming 1 h and 2.5 h,
respectively, based on historical data with input time lengths of 2 and
5 h.

4.2. Parameter selection and optimization for VMD

The number of VMD mode components has a significant impact on
the reconstructed subsequence. In the prediction model, the input is
only a small segment of the historical data in the source data sequence.
Here, a random interval sampling method is applied to extract succes-
sive data sequences with a length of 𝑃𝑒 from the source data sequence of
length 𝐿𝑠 as a sample. The reasonable selection rule for the number of
VMD mode components proposed in Section 3.3.2 is used to analyze the
optimal selection parameter of the number of VMD mode components.

1 https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace_2018.md.
9

Fig. 5. Box plots of the distribution of the highest central frequencies of various orders
of VMD mode components obtained by random interval sampling.

Fig. 6. Box plots of the distribution of the lowest central frequencies of various orders
of VMD mode components obtained by random interval sampling.

To ensure random and independent samples, the sampling interval
in the sequence should not be set too small; otherwise, there may be
large correlations among the samples, which could affect the reliability
of the analysis. Random interval sampling can generate samples with
different intervals, and the number of samples is 𝑚 = 3 ∗ 𝐿

𝑠∕𝑃𝑒, ensur-
ing that the mean follows a normal distribution and is representative.
Here, 𝐿𝑠 is the length of the source data sequence, and the length of
a sample sequence is 𝑃𝑒. When analyzing the task sequence of Google
Cluster Trace, 𝑃𝑒 = 120 is taken as the sample in a length of 𝐿𝑠 = 14616
(70% of the source data sequence is used as the training set), and the
VMD mode component number 𝑛 is selected for analysis.

There were 363 samples obtained by random interval sampling, and
Algorithm 1 𝐶𝑎𝑙_𝑢(𝑓 (𝑡), 𝛼, 𝜖, 𝜏) was applied to obtain the highest and
lowest central frequencies of each order of VMD mode components,
with 𝑛 ∈ {3, 4,… , 17}. The distribution box plots of the highest and
lowest central frequencies are shown in Figs. 5–6.

After obtaining the central frequencies of each order of VMD mode
components, the difference in central frequency between adjacent two-
level mode components was further calculated, and the resulting plot

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 7. Line chart of difference in central frequency between adjacent VMD modal
components.

Fig. 8. Line charts of all 14-order VMD modal components for the randomly selected
sample.

is shown in Fig. 7, where the curve is the line chart of the difference
in the highest central frequency between adjacent VMD modal compo-
nents, and the histogram represents the difference in the lowest central
frequency between adjacent VMD modal components. According to
the rules of selecting the number of VMD modal components, and
based on the statistical results of Figs. 5–7, it can be known that when
the corresponding number of VMD modal components is 𝑛 = 14, the
distributions of both the highest and lowest central frequencies tend
to be stable, and the subsequent increase in the number of modal
components has little influence on the central frequency. As shown in
Fig. 7, the absolute value of the central frequency difference between
𝑛 = 14 and 𝑛 = 15 (denoted as ‘‘14_15_d’’, representing the central
frequency difference between modal components BIMF14 and BIMF15)
tends to be closer to 0; hence to ensure that VMD has stronger feature
distinctiveness and more meaningful analysis for predicting the task
sequence intensity of Google Cluster Trace, the number of VMD modal
components was selected as 𝑛 = 14.

An adjacent data sequence of length 120 was taken from the task se-
quence of Google Cluster Trace (with a time interval window of 2 min)
and decomposed into various-order modal component figures based on
VMD, with a modal component number of 14, as shown in Fig. 8. While
some BIMFs shown in Fig. 8 may exhibit unconventional patterns, their
decomposition is based on the optimization of a variational principle,
which may not prioritize intuitive interpretability.
10
Fig. 9. Boxplot of sample entropy distribution of VMD modal components.

Fig. 10. Line chart of sample entropy means and clustering diagram of sample entropy
values.

When analyzing and predicting the CPU and memory scheduling of
Google Cluster Trace, the same rule was applied to select the number of
VMD modal components for a time window of 2 min, with the numbers
being 7 and 9, respectively.

4.3. Reconstruction of subsequences

VMD is applied to decompose the dataset sequences into modal
components so as to fit the important characteristic factors inherent in
the original data sequences as closely as possible across different spatial
and frequency domains. After obtaining the VMD modal components of
the cloud resource demand sequence, each contains different amounts
of valid information, and a given one may also be a noise component.
Therefore, it is necessary to select the modal component with the
maximum amount of valid information as much as possible, so that
the constructed modal component set can effectively restore the char-
acteristics of the original data sequence and improve the effectiveness
of the reconstructed subsequences for the prediction model. Here, the
sample entropy of each order modal component is calculated, and the
subsequences are reconstructed after clustering based on the sample
entropy results using Algorithm 2 𝑂𝑉 𝑆_𝑆𝑒𝑞𝑠𝑒𝑡(𝑑, 𝛾, 𝑓 (𝑡)).

The task sequences of Google Cluster Trace were sampled using the
method described in Section 4.2, resulting in 363 samples. The sample
entropy of the 14-order VMD modal components corresponding to each
sample was calculated. Fig. 9 shows the boxplots of the sample entropy
distribution for the original data sequence and all sample sequences.
Fig. 10 shows the corresponding line chart of the sample entropy mean
values and the clustering diagram of their sample entropy values. The
sample entropy means of the VMD modal components for each order
corresponding to all samples were clustered as shown in Table 2.

Fig. 10 presents the differences between the sample entropies of
each order by plotting the sample entropy (line) of the 14-order VMD
modal components and of the original data sequence (straight line),
and the scatter plot on the left side of Fig. 10 is obtained by mapping
each sample entropy to the vertical axis. The clustering results among

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 11. Formatting of encoder input data.
Table 2
Summary and clustering table of sample entropy mean values of VMD modal
components for each order.

Class Model series VMD-SE𝑛_Avg Kernel

1 BIMF1 0.1265 BIMF1
2 BIMF14 0.4232 BIMF14
3 BIMF2 0.7120 BIMF2
4 BIMF13 1.0207 BIMF13

5
BIMF3 1.3254

Source-seriesSource-series 1.3511
BIMF12 1.4349

6
BIMF4 1.6297

BIMF10BIMF10 1.6304
BIMF11 1.6899

7 BIMF5 1.8235 BIMF5

8

BIMF6 1.8949

BIMF9BIMF9 1.9525
BIMF7 1.9979
BIMF8 2.0082

sample entropies are observed. According to the subsequence recon-
struction strategy based on sample entropy proposed in Section 3.3.2,
the clustering threshold 𝛿𝑐 and noise threshold 𝛿𝑜 were calculated at
the 95% confidence level based on the sample entropy mean 𝑆𝐸𝑛𝑠𝑠 =
1.351 of the original data sequence (source-series), which gives 𝛿𝑐 =
(

𝑆𝐸𝑛𝑠𝑆 ∗ 95%
)

∕𝑛 = 1.351 ∗ 95%∕14 = 0.092 and 𝛿𝑜 = 𝑆𝐸𝑛𝑠𝑠 ∗ 95% =
1.351 ∗ 95% = 1.284, where 𝑛 is the number of VMD modal components,
taken as 14. By clustering with the minimum number of classes, the
14-order VMD modal components are divided into the minimum of 8
classes using 𝛿𝑐 = 0.092, as shown in Table 2.

As shown in Table 2, since 𝛿𝑜 = 1.284, the sample entropies of
BIMF1–BIMF14 are not far from the sample entropy of the origi-
nal data sequence; hence all categories are valid. In addition, since
the sample entropies of 𝐵𝐼𝑀𝐹3, 𝑆𝑜𝑢𝑟𝑐𝑒 − 𝑠𝑒𝑟𝑖𝑒𝑠, and 𝐵𝐼𝑀𝐹12 are
close, i.e., they have similar features compared to the original data
sequence, sequences in the same category as the original sequence
can be discarded. Finally, the reconstructed subsequence set contains
seven subsequences, i.e., 𝐾 = 7, in the encoder input of Fig. 1.
The corresponding categories of data sequences are {BIMF1(BIMF1)},
{BIMF14(BIMF14)}, {BIMF2(BIMF2)}, {BIMF13(BIMF13)}, {BIMF4,
BIMF10, BIMF11 (BIMF10)}, {BIMF5(BIMF5)}, and {BIMF6, BIMF9,
BIMF7, BIMF8 (BIMF9)}, where parentheses indicate the clustering
nucleus. Cloud resource demand changes are complex, and are affected
by multiple factors, exhibiting nonlinearity, non-stationarity, and com-
plexity. To make the features of the reconstructed subsequences more
prominent, clustering nucleus sequences are selected as class represen-
tatives within the same category, and sequences outside the clustering
nucleus within the same category can be discarded. As a result, the
reconstructed subsequence set of task sequences in Google Cluster
11
Trace is Series 𝑆𝑒𝑡 = {𝐵𝐼𝑀𝐹1, 𝐵𝐼𝑀𝐹14, 𝐵𝐼𝑀𝐹2, 𝐵𝐼𝑀𝐹13, 𝐵𝐼𝑀𝐹10,
𝐵𝐼𝑀𝐹5, 𝐵𝐼𝑀𝐹9}. A similar analysis can be applied to the CPU and
memory demand sequences for Google Cluster Trace, as described
above.

4.4. Data formatting

When training the prediction model for cloud resource scheduling,
the input sequence 𝑋𝑒𝑛 of the Encoder has length 𝑙𝑥. As 𝐾 = 7
is obtained from the VMD modal decomposition in Section 4.3, the
Encoder has two branches, as shown in Figs. 1 and 3, for the original
data sequence and reconstructed subsequence set, respectively. The
processing and transformation of the data format are illustrated in
Fig. 11, where the original task sequence is univariate time-series data
that undergo 𝑉𝑀𝐷(𝑙𝑥, 𝑛 = 14) modal decomposition with a specified K
value (𝐾 = 7) in Section 4.3 to obtain the 14-order modal components.
𝐾 modal components are selected and transformed with timestamps
to obtain the R𝑙𝑥×𝐾 representation, which serves as the input for
the Reconstructed Series Encoder. The other part of the input is the
original data sequence with length 𝑙𝑥, which is directly transformed
with timestamps to obtain the R𝑙𝑥×1 representation and serves as the
input for the Source Series Encoder.

5. Experiments and results analysis

5.1. Experimental objectives and evaluation metrics

Two experiments were conducted to verify the effectiveness of
VMDSE-Tformer, the proposed prediction model for cloud resource
scheduling based on a sample entropy modal decomposition attention
mechanism. (1) The effectiveness and validity of the model struc-
ture were verified through ablation experiments, where the prediction
model structure was modified to evaluate the effectiveness of VMD
and sample entropy in reconstructing subsequences, and the effective-
ness of adopting a dual-branch structure (processing the reconstructed
subsequence and original data sequence, as shown in Fig. 3); (2) The
predictive performance of the proposed VMDSE-Tformer model was
compared with that of popular and state-of-the-art algorithms such
as Informer [37], Transformer [51], Autoformer [52], LSTM [53],
LSTNet [15], and TCN [54] with respect to task sequence strength, CPU,
and memory requirements.

The evaluation metrics used were Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE), and Relative Standard Error
(RSE),

In the experiments, the evaluation metrics used were Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and Rela-
tive Standard Error (RSE), which were used as comparative indices for
analysis. The corresponding formulas for these metrics are:

𝑀𝐴𝑃𝐸 = 1
𝑛
∑

|

|

|

�̂�𝑖 − 𝑦𝑖 |
|

|

× 100% (38)

𝑛 𝑖=1 | 𝑦𝑖 |

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Table 3
Main parameter configurations of VMDSE-Tformer.

Module parameter Parameter configuration and description

VMD Modal component 𝑛:14(Task)/9(CPU)/7(Memory)
SE Number of sub-sequences 𝐾:7(Task)/5(CPU)/4(Memory)

VMD-SE-Informer

Multi-Head(8)/Encoder layers(2)/ Decoder layers(1),
Dimension of model(512), Feedforward(2048), Dropout(0.1),
Learning Rate(0.01), Batch Size(32)
MaxPool1d()/AvgPool1d():
kernel_size(3),stride(2),padding(1)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

�̂�𝑖 − 𝑦𝑖
)2 (39)

𝑅𝑆𝐸 = 100%
𝑛

√

√

√

√

√

∑𝑛
𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2

∑𝑛
𝑖=1

(

𝑦𝑖 − �̄�
)2

, (40)

where �̂�𝑖 is the predicted value of the model, 𝑦𝑖 is the true data
with average �̄�, and n is the number of samples. MAPE was used to
measure the average degree of error in prediction results and evaluate
the accuracy and reliability of the prediction model. RMSE measured
regression analysis error and the model’s predictive ability. RSE is the
ratio of actual prediction variance to total observed variance, expressed
as a percentage. A smaller RSE generally indicates a better predictive
ability of the model.

5.2. The configuration of experimental parameter

The experimental hardware used was Tencent Cloud GPU Comput-
ing Type GN7 (8 cores, 32 GB, 5 Mbps, GPU 1× NVIDIA T4). Google
Cluster Trace was divided into three categories of sequence types: task
request intensity, CPU resource request, and memory resource request.
A total of 20,880 samples were extracted based on 2-min statistical
results, including 8352 task request intensity sequence samples that
were further divided with 5-min statistics. During model training and
validation, the dataset was partitioned into training, validation, and
test sets in a 7 ∶ 2 ∶ 1 ratio. Table 3 presents the main parameter
configurations for VMDSE-Tformer.

5.3. Experimental results and analysis

5.3.1. Ablation experiment analysis
Using the Google Cluster Trace dataset, a set of 20,880 samples

was obtained by analyzing the task request intensity sequence at 2-
min intervals for the validation experiment. The necessity of the source
sequence 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑() branch and the use of sample entropy for the
reconstruction subsequence in VMDSE-Tformer was analyzed.

Let VInformer−𝑖 denote the experimental results of VMD modal com-
ponent 𝑖 (𝑖 = {3, 5, 7}) without using the source sequence 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑()
branch. Let V_SInformer−𝑖 denote the experimental results of VMD
modal component 𝑖 (𝑖 = {3, 5, 7}) with the source sequence 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑()
branch, but without using sample entropy for the reconstruction sub-
sequence. VMDSE-Tformer is the proposed prediction model.

When only using VMD and not the 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑() branch of the
source sequence, the 𝑉 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑟−𝑖, 𝑖 ∈ {3, 5, 7} model was tested at
prediction requirements of (120,60,60), (90,60,30), and (60,45,20)
with 3rd−, 5th−, 𝑎𝑛𝑑 7th-order VMD, respectively. MAPE, RMSE, and
RSE were analyzed and compared with the proposed prediction model,
as shown in Table 4. Fig. 12 shows the improvement of the proposed
prediction model.

As shown in Fig. 12, compared to the VInformer−𝑖 structure without
using the 𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑() branch of the source sequence, the VMDSE-
Tformer model showed respective maximum and average improve-
ments of 46.26% and 24.31% in terms of MAPE. In terms of RMSE,
12
Fig. 12. Improving of VMDSE-Tformer vs. VInformer−𝑖, 𝑖 ∈ {3, 5, 7}.

Fig. 13. Improving of VMDSE-Tformer vs. V_SInformer−𝑖, 𝑖 ∈ {3, 5, 7}.

these were respectively 14.74% and 4.20%, and in terms of RSE, they
were 13.62% and 4.02%. As the number of modal components obtained
by VMD increased, there was no significant improvement in RMSE and
RSE.

Fig. 13 shows a bar chart of the performance improvement of the
V_SInformer−𝑖, 𝑖 ∈ {3, 5, 7} prediction model with the source sequence
𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑() branch but without subsequence reconstruction, according
to various evaluation metrics. Compared to V_SInformer−𝑖, 𝑖 ∈ {3, 5, 7},
the proposed prediction model had average improvements of 15.30%,
5.97%, and 3.89% in MAPE, RMSE, and RSE, respectively.

Based on the above comparisons, it can be concluded that VMDSE-
Tformer has better prediction performance than VInformer−𝑖 and
V_SInformer−𝑖, which validates the necessity and effectiveness of us-
ing VMD, subsequence reconstruction with sample entropy, and the
𝐴𝑣𝑔𝑃𝑜𝑜𝑙1𝑑() branch of the source sequence.

5.3.2. Validation experiment and results
To evaluate the effectiveness of the VMDSE-Tformer prediction

model, three resource data sequences were used: the task scheduling
intensity sequence, CPU resource request sequence, and memory re-
source request sequence from the Google Cluster Trace dataset (with
a statistical time window of 2 min), with different lengths of input
sequence, token input sequences, and prediction lengths as valida-
tion targets. The performance of VMDSE-Tformer was compared with
state-of-the-art time-series prediction models such as Informer [37],
Transformer [51], Autoformer [52], LSTM [53], LSTNet [15], and
TCN [54], as summarized in Table 5.

During the experiments, the VMDSE-Tformer model was configured
as shown in Table 3, where multidimensional data sequences were used
as inputs, and a one-dimensional target sequence was output for pre-
diction, while the comparison prediction models took one-dimensional
target sequences as both inputs and outputs.

As demonstrated by the experimental results in Table 5, under
different input and prediction sequence lengths, in terms of MAPE,
RMSE, and RSE, VMDSE-Tformer achieved the lowest values in 25
out of 27 data points, while Informer achieved the lowest values in

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Table 4
Results with different prediction lengths for workloads.

Models VInformer−𝑖 V_SInformer−𝑖 VMDSE-

Metric VMD-3 VMD-5 VMD-7 VMD-3 VMD-5 VMD-7 Tformer

(120,60,60)
MAPE (%) 4.4243 5.0934 4.1871 3.9051 4.2620 4.6001 3.8475
RMSE 0.5635 0.6527 0.6317 0.6929 0.6200 0.5907 0.5565
RSE 1.0161 1.1652 1.1253 1.0370 1.1069 1.0546 1.0065

(90,60,30)
MAPE (%) 4.3847 4.1407 4.0817 3.9704 3.7427 4.3697 3.0091
RMSE 0.5612 0.5685 0.5818 0.5843 0.5817 0.5875 0.5596
RSE 1.0039 1.0170 1.0408 1.0453 1.0406 1.0510 0.9965

(60,45,20)
MAPE (%) 8.4349 6.5674 5.0914 5.3807 5.0107 5.0303 4.5332
RMSE 0.5630 0.5616 0.5777 0.5710 0.5732 0.5637 0.5593
RSE 1.0072 1.0047 1.0335 1.0195 1.0113 1.0163 1.0011

Count 0 0 0 0 0 0 9
Table 5
Forecasting results with different methods on tasks-loads.

Metric VMDSE-Tformer Transformer Informer Autoformer LSTM LSTNet TCN

(120,60,60)
MAPE (%) 3.848 4.856 5.331 5.570 5.938 7.854 6.451
RMSE 0.557 0.742 0.564 0.596 0.784 0.925 0.867
RSE 1.007 1.325 1.006 1.064 1.363 1.463 1.392

(120,60,30)
MAPE (%) 3.005 4.031 4.850 4.847 6.683 7.956 7.746
RMSE 0.557 0.743 0.598 0.586 0.836 0.918 0.875
RSE 0.996 1.330 1.070 1.049 1.472 1.486 1.483

(120,60,15)
MAPE (%) 3.003 3.616 2.931 6.165 7.462 7.673 7.564
RMSE 0.542 0.588 0.553 0.587 0.636 0.762 0.740
RSE 0.983 1.054 0.991 1.053 1.112 1.227 1.198

(90,60,45)
MAPE (%) 3.761 4.546 4.340 5.289 6.127 7.485 6.834
RMSE 0.552 0.592 0.562 0.594 0.619 0.721 0.708
RSE 0.995 1.058 1.005 1.063 1.187 1.389 1.309

(90,60,30)
MAPE (%) 3.009 4.566 3.715 7.142 7.597 8.876 8.775
RMSE 0.559 0.574 0.564 0.585 0.743 0.788 0.771
RSE 0.997 1.026 1.008 1.046 1.173 1.293 1.225

(90,60,15)
MAPE (%) 3.199 4.517 3.426 4.423 5.295 8.129 7.780
RMSE 0.533 0.631 0.555 0.584 0.764 0.772 0.769
RSE 0.989 1.132 0.995 1.048 1.297 1.366 1.313

(60,45,30)
MAPE (%) 4.012 4.901 6.767 10.477 9.752 10.896 10.559
RMSE 0.549 0.567 0.577 0.588 0.692 0.882 0.807
RSE 0.971 1.014 1.032 1.052 1.117 1.473 1.329

(60,45,20)
MAPE (%) 4.533 5.947 8.899 11.496 11.872 12.771 12.081
RMSE 0.559 0.593 0.560 0.587 0.832 0.961 0.909
RSE 1.001 1.060 1.003 1.051 1.271 1.399 1.348

(60,45,10)
MAPE (%) 4.418 6.612 6.042 8.511 9.284 10.663 9.985
RMSE 0.545 0.562 0.551 0.582 0.783 0.942 0.878
RSE 1.001 1.008 0.988 1.044 1.224 1.391 1.322

Count 25 0 2 0 0 0 0
the other two. Due to the high randomness of the task sequence,
weak periodicity, time point characteristics, and coherence features, the
performance of all models was poor when predicting short-term task
intensity. For example, when predicting with parameters (60,45,20),
the MAPE of LSTNet was the worst, at 12.771, while VMDSE-Tformer
had a MAPE of 4.533%.

To evaluate the overall performance of each model under different
parameters when predicting task sequence (tasks-loads) intensity, the
heat maps of each evaluation metric are shown in Figs. 14–16, where
a darker color indicates a smaller value, i.e., higher accuracy.

Figs. 14–16 show the heatmap results of MAPE, RMSE, and RSE
under various prediction length targets for task sequence intensity,
CPU, and RAM resource demands for each model. The color depth of
a given region of VMD-SE-Informer is generally the deepest among all
models, indicating the best overall performance, followed by Informer
and Autoformer. Boxplots in Figs. 17–19 display the percentage im-
provement of prediction performance on various statistical indicators
relative to other models across different prediction datasets.

As shown in Fig. 17, VMDSE-Tformer maintains an absolute ad-
vantage over LSTNet and TCN for MAPE, RMSE, and RSE. Its MAPE
13

result has been improved by an average of 59.65%, with the highest
reaching 66.10%, compared to LSTNet. In terms of RMSE and RSE,
the improvement of VMDSE-Tformer compared to Informer and Aut-
oformer is not significant, with respective average improvement rates
of (2.54%, 1.60%) and (6.35%, 5.59%). Therefore, VMDSE-Tformer
performs best overall at predicting task intensity. Its prediction ability
is shown in Fig. 17 as the circular line indicating the average percentage
improvement over different prediction targets.

When predicting different targets for CPU and RAM resource de-
mands, the boxplots and corresponding line charts depicting the dis-
tribution and average improvement of prediction accuracy for various
prediction models are presented in Figs. 18 and 19, respectively, from
which it is evident that VMDSE-Tformer performs better than the other
models in terms of improvement in prediction accuracy for both CPU
and RAM resource demands.

Figs. 18 and 19 present the distributions of improvement percent-
ages in the predictive ability of VMD-SE-Informer compared to other
prediction models for CPU and RAM resource demand data sequences,
respectively. Our model shows a significantly higher percentage im-
provement over LSTNet and TCN for all comparisons and timestamps.
Furthermore, for most comparisons and timestamps, it achieves a good

prediction accuracy improvement over Transformer and Autoformer.

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 14. Heatmap of statistical indicators for task sequence intensity under different prediction length targets for each model.
Fig. 15. Heatmap of statistical indicators for CPU resource demand under different prediction length targets for each model.
Fig. 16. Heatmap of statistical indicators for RAM resource demand under different prediction length targets for each model.
Fig. 17. Boxplot of performance improvement on various statistical indicators for task sequence intensity under different prediction length targets for each model.
Overall, VMDSE-Tformer shows a prediction accuracy improvement of
2.5% to 7.67% over Informer.

Fig. 20 presents the 3D scatter plot of predicted and ground-truth
values of VMDSE-Tformer when predicting task sequence intensity
parameter indicators (SQ, SL, PL):(120, 60, 30).
14
From the color distribution of the scatter plot in the 3D results,
it can be observed that the differences between predicted and actual
values are mainly distributed around zero, with some outliers diffused
throughout the plot. Outliers mainly occur due to the model’s inability
to predict exceptional peak values resulting from sudden and massive

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
Fig. 18. Boxplot of performance improvement on various statistical indicators for CPU resource demand under different prediction length targets for each model.
Fig. 19. Boxplot of performance improvement on various statistical indicators for RAM resource demand under different prediction length targets for each model.
Fig. 20. The 3D scatter for task sequence intensity predictions by VMDSE-Tformer with parameters (120,60,30). SQ is the input sequence length of the encoder. SL is the token
length of the decoder. PL is the prediction sequence length.
task scheduling. However, the predicted results generally satisfy the
need to predict cloud resource scheduling requests.

Comparing the results of predicted task sequence intensity, CPU,
and RAM resource demands with other models, VMDSE-Tformer ex-
hibits the best performance. The distribution of the percentage im-
provement in overall prediction ability shows that its improvement ef-
fect is significantly better and more stable than that of LSTNet and TCN,
followed by LSTM and Transformer. Even for Informer and Autoformer,
the average percentage improvement is only around 4%.

Given the comprehensive analysis of experimental results, the pro-
posed VMDSE-Tformer is an efficient and accurate prediction model
for cloud resource demand. Compared with models such as LSTNet,
TCN, LSTM, Transformer, Informer, and Autoformer, it shows substan-
tial advantages in predicting task sequence intensity, as well as CPU
and RAM resource demands. Its percentage improvement in predic-
tive ability is higher than that of other models at various lengths of
time, with particularly more noticeable and consistent improvement
compared to LSTNet and TCN, while the model cannot fully predict
abnormal peaks caused by sudden large-scale task scheduling. In this
case, we can transfer the prediction task to classification one [55,56].
Overall, it meets the prediction needs of cloud data centers for cloud
resource scheduling requests, and hence can be an effective prediction
model, providing decision-making support in practical cloud resource
scheduling.
15
6. Conclusion and future work

The prediction model for cloud resource demand plays a vital role
in the allocation and scheduling of resources in cloud data centers. By
relying on its ability to forecast cloud resource demand, it can help
to better understand and analyze the changes and trends in resource
usage, leading to optimal resource planning that ensures sufficient
availability of resources and avoids shortages or waste. As a result, it
can contribute to resource utilization improvement, economic benefits,
and ultimately, customer satisfaction, by enabling quicker and more
effective responses to customer demands.

We proposed a prediction model for cloud resource demand,
VMDSE-Tformer, based on sample entropy optimization and VMD with
a selective enhanced attention framework. The model will improve
the processing of univariate cloud resource load time series, covering
multivariate latent factors, to enhance the accuracy and reliability of
load prediction. It decomposes time-series data through VMD, and
reconstructs the subsequence set using sample entropy calculations, so
as to extract latent features from the data sequence. A Transformer-
like framework based on multi-head self-attention is subsequently
employed for deep learning on each component sequence to obtain
encoded representations of multiple associated feature information.
In experiments, VMDSE-Tformer outperformed several state-of-the-art

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
models at predicting task sequence intensity, CPU, and RAM resource
demands, providing stable and significant improvements in predictive
ability. The average improvements of the proposed model on the MAPE
metric are as follows: 59.65% for Workload, 57.91% for Cpuload, and
66.45% for RAMload, as shown in Figs. 17 to 19. It demonstrates
absolute advantages in various statistical metrics, especially in terms
of MAPE, where it achieves an average improvement of around 60%
compared to LSTNet. In predicting CPU and RAM resource demand
data, VMDSE-Tformer had a more accurate predictive ability than
other models, with a stable improvement effect. In most cases, the
model achieved high accuracy and robustness, effectively meeting the
prediction needs of cloud data centers for resource scheduling requests.
Overall, VMDSE-Tformer can contribute to more efficient and effective
resource management. In the future, we plan to improve the predictive
performance of the model and explore its applicability in more complex
and dynamic cloud environments.

CRediT authorship contribution statement

Jiaxian Zhu: Writing – original draft, Methodology. Weihua Bai:
Software, Methodology. Jialing Zhao: Data curation. Liyun Zuo: For-
mal analysis. Teng Zhou: Funding acquisition, Conceptualization. Ke-
qin Li: Supervision.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by the 2023 Guangdong Scientific Research
Platform and Projects for the Higher-educational Institution and Educa-
tion Science Planning Scheme, Guangdong Basic and Applied Basic Re-
search Foundation, China (No. 2023A1515012874, 2022A1515011590,
2021A1515012302, 2022A1515011978), the Special Fund for Sci-
ence and Technology of Guangdong Province, China under Grant
(No. 2021S0053), the National Natural Science Foundation of China
(No. 82020108016, 61902232), Key Scientific Research Project of Uni-
versities in Guangdong Province, China (No. 2020ZDZX3028,
2022ZDZX1007), and Guangdong Provincial Science and Technology
Plan Project, China (No. STKJ202209003).

References

[1] M. Shojafar, N. Cordeschi, E. Baccarelli, Energy-efficient adaptive resource
management for real-time vehicular cloud services, IEEE Trans. Cloud Comput.
7 (1) (2016) 196–209.

[2] D. Fernández-Cerero, A. Fernández-Montes, A. Jakóbik, J. Kołodziej, M. Toro,
Score: Simulator for cloud optimization of resources and energy consumption,
Simul. Model. Pract. Theory 82 (2018) 160–173.

[3] D.-M. Bui, Y. Yoon, E.-N. Huh, S. Jun, S. Lee, Energy efficiency for cloud
computing system based on predictive optimization, J. Parallel Distrib. Comput.
102 (2017) 103–114.

[4] J. Kumar, D. Saxena, A. Singh, A. Mohan, Biphase adaptive learning-based
neural network model for cloud datacenter workload forecasting, Soft Comput.
24 (2020) 14593–14610.

[5] D. Saxena, A. Singh, A proactive autoscaling and energy-efficient vm allocation
framework using online multi-resource neural network for cloud data center,
Neurocomputing 426 (2021) 248–264.

[6] J. Bi, S. Li, H. Yuan, M. Zhou, Integrated deep learning method for workload
and resource prediction in cloud systems, Neurocomputing 424 (2021) 35–48.

[7] W. Bai, J. Zhu, S. Huang, H. Zhang, A queue waiting cost-aware control model
for large scale heterogeneous cloud datacenter, IEEE Trans. Cloud Comput. 10
(2) (2022) 849–862.

[8] J. Gao, H. Wang, H. Shen, Machine learning based workload prediction
in cloud computing, in: 2020 29th International Conference on Computer
Communications and Networks (ICCCN), IEEE, 2020, pp. 1–9.
16
[9] M. Al-Asaly, M. Bencherif, A. Alsanad, M. Hassan, A deep learning-based
resource usage prediction model for resource provisioning in an autonomic cloud
computing environment, Neural Comput. Appl. (2021) 1–18.

[10] D. AbdElminaam, A. Toony, M. Taha, Resource allocation in the cloud environ-
ment based on quantum genetic algorithm using kalman filter with anfis, IJCSNS
20 (10) (2020) 10.

[11] T. Gyeera, A. Simons, M. Stannett, Kalman filter based prediction and forecasting
of cloud server kpis, IEEE Trans. Serv. Comput. (2022).

[12] H. Mehdi, Z. Pooranian, P. Vinueza Naranjo, Cloud traffic prediction based
on fuzzy arima model with low dependence on historical data, Trans. Emerg.
Telecommun. Technol. 33 (3) (2022) e3731.

[13] B. Huang, Y. Song, Z. Cui, H. Dou, D. Jiang, T. Zhou, J. Qin, Gravitational search
algorithm-extreme learning machine for covid-19 active cases forecasting, IET
Softw. 17 (4) (2023) 554–565.

[14] W. Xu, J. Liu, J. Yan, J. Yang, H. Liu, T. Zhou, Dynamic spatiotemporal graph
wavelet network for traffic flow prediction, IEEE Internet Things J. (2023).

[15] G. Lai, W.-C. Chang, Y. Yang, H. Liu, Modeling long-and short-term temporal
patterns with deep neural networks, in: The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018, pp.
95–104.

[16] K. Anupama, B. Shivakumar, R. Nagaraja, Resource utilization prediction in cloud
computing using hybrid model, Int. J. Adv. Comput. Sci. Appl. 12 (4) (2021).

[17] Y. Han, Y. Jing, K. Li, G. Dimirovski, Network traffic prediction using variational
mode decomposition and multi-reservoirs echo state network, Ieee Access 7
(2019) 138364–138377.

[18] P. Yazdanian, S. Sharifian, E2lg: a multiscale ensemble of lstm/gan deep learning
architecture for multistep-ahead cloud workload prediction, J. Supercomput. 77
(2021) 11052–11082.

[19] J. Dogani, F. Khunjush, M. Seydali, Host load prediction in cloud computing
with discrete wavelet transformation (dwt) and bidirectional gated recurrent unit
(bigru) network, Comput. Commun. 198 (2023) 157–174.

[20] P. Osypanka, P. Nawrocki, Qos-aware cloud resource prediction for computing
services, IEEE Trans. Serv. Comput. 16 (2) (2022) 1346–1357.

[21] E. Patel, D. Kushwaha, An integrated deep learning prediction approach for
efficient modelling of host load patterns in cloud computing, J. Grid Comput.
21 (1) (2023) 5.

[22] S. Ouhame, Y. Hadi, A. Ullah, An efficient forecasting approach for resource
utilization in cloud data center using cnn-lstm model, Neural Comput. Appl. 33
(2021) 10043–10055.

[23] A. Ma, Y. Gao, L. Huang, B. Zhang, Improved differential search algorithm based
dynamic resource allocation approach for cloud application, Neural Comput.
Appl. 31 (2019) 3431–3442.

[24] N. Tran, T. Nguyen, B. Nguyen, G. Nguyen, A multivariate fuzzy time series
resource forecast model for clouds using lstm and data correlation analysis,
Procedia Comput. Sci. 126 (2018) 636–645.

[25] W. Iqbal, J. Berral, D. Carrera, et al., Adaptive sliding windows for improved
estimation of data center resource utilization, Future Gener. Comput. Syst. 104
(2020) 212–224.

[26] M. Hilman, M. Rodriguez, R. Buyya, Task runtime prediction in scientific
workflows using an online incremental learning approach, in: 2018 IEEE/ACM
11th International Conference on Utility and Cloud Computing (UCC), IEEE,
2018, pp. 93–102.

[27] P. Nawrocki, M. Grzywacz, B. Sniezynski, Adaptive resource planning for cloud-
based services using machine learning, J. Parallel Distrib. Comput. 152 (2021)
88–97.

[28] P. Nawrocki, P. Osypanka, B. Posluszny, Data-driven adaptive prediction of cloud
resource usage, J. Grid Comput. 21 (1) (2023) 6.

[29] J. Li, B. Yang, H. Li, Y. Wang, C. Qi, Y. Liu, Dtdr–alstm: Extracting dynamic
time-delays to reconstruct multivariate data for improving attention-based lstm
industrial time series prediction models, Knowl.-Based Syst. 211 (2021) 106508.

[30] T.-H. Cheung, D.-Y. Yeung, Modals: Modality-agnostic automated data augmenta-
tion in the latent space, in: International Conference on Learning Representations
(ICLR), 2020.

[31] Y. Kang, R. Hyndman, F. Li, Gratis: Generating time series with diverse and
controllable characteristics, Stat. Anal. Data Min.: ASA Data Sci. J. 13 (4) (2020)
354–376.

[32] K. Benidis, S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix, C. Turkmen, J.
Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella, et al., Deep learning for
time series forecasting: Tutorial and literature survey, ACM Comput. Surv. 55
(6) (2022) 1–36.

[33] S. Arbat, V. Jayakumar, J. Lee, W. Wang, I. Kim, Wasserstein adversarial trans-
former for cloud workload prediction, in: Proceedings of the AAAI Conference
on Artificial Intelligence, 36, 2022, pp. 12433–12439.

[34] J. Yoon, D. Jarrett, M. Van der Schaar, Time-series generative adversarial
networks, Adv. Neural Inf. Process. Syst. 32 (2019).

[35] E. Fons, P. Dawson, X.-j. Zeng, J. Keane, A. Iosifidis, Adaptive weighting scheme
for automatic time-series data augmentation, 2021, arXiv preprint arXiv:2102.
08310.

http://refhub.elsevier.com/S0950-7051(23)00792-X/sb1
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb1
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb1
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb1
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb1
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb2
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb2
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb2
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb2
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb2
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb3
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb3
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb3
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb3
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb3
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb4
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb4
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb4
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb4
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb4
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb5
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb5
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb5
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb5
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb5
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb6
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb6
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb6
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb7
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb7
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb7
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb7
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb7
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb8
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb8
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb8
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb8
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb8
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb9
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb9
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb9
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb9
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb9
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb10
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb10
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb10
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb10
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb10
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb11
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb11
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb11
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb12
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb12
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb12
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb12
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb12
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb13
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb13
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb13
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb13
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb13
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb14
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb14
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb14
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb15
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb16
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb16
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb16
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb17
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb17
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb17
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb17
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb17
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb18
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb18
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb18
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb18
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb18
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb19
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb19
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb19
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb19
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb19
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb20
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb20
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb20
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb21
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb21
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb21
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb21
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb21
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb22
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb22
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb22
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb22
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb22
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb23
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb23
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb23
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb23
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb23
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb24
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb24
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb24
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb24
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb24
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb25
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb25
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb25
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb25
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb25
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb26
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb27
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb27
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb27
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb27
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb27
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb28
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb28
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb28
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb29
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb29
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb29
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb29
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb29
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb30
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb30
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb30
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb30
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb30
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb31
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb31
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb31
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb31
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb31
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb32
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb33
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb33
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb33
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb33
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb33
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb34
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb34
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb34
http://arxiv.org/abs/2102.08310
http://arxiv.org/abs/2102.08310
http://arxiv.org/abs/2102.08310

Knowledge-Based Systems 280 (2023) 111042J. Zhu et al.
[36] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, H. Xu, Time series data
augmentation for deep learning: A survey, in: Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence (IJCAI), International
Joint Conferences on Artificial Intelligence Organization, 2021.

[37] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond
efficient transformer for long sequence time-series forecasting, in: Proceedings of
the AAAI Conference on Artificial Intelligence, 35, 2021, pp. 11106–11115.

[38] S. Weichwald, M. Jakobsen, P. Mogensen, L. Petersen, N. Thams, G. Varando,
Causal structure learning from time series: Large regression coefficients may
predict causal links better in practice than small p-values, PMLR, 2020, pp.
27–36.

[39] M. Gong, K. Zhang, B. Schölkopf, C. Glymour, D. Tao, Causal discovery from
temporally aggregated time series, in: Uncertainty in Artificial Intelligence: Pro-
ceedings of the. Conference. Conference on Uncertainty in Artificial Intelligence,
NIH Public Acces, 2017.

[40] W. Yao, Y. Sun, A. Ho, C. Sun, K. Zhang, Learning temporally causal latent
processes from general temporal data, in: International Conference on Learning
Representations (ICLR), 2021.

[41] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal
Process. 62 (3) (2013) 531–544.

[42] N. Ur Rehman, H. Aftab, Multivariate variational mode decomposition, IEEE
Trans. Signal Process. 67 (23) (2019) 6039–6052.

[43] J. Richman, J. Moorman, Physiological time-series analysis using approximate
entropy and sample entropy, Am. J. Physiol.-Heart Circul. Physiol. 278 (6) (2000)
H2039–H2049.

[44] N. Liu, F. Li, D. Wang, J. Gao, Z. Xu, Ground-roll separation and attenuation
using curvelet-based multichannel variational mode decomposition, IEEE Trans.
Geosci. Remote Sens. 60 (2021) 1–14.

[45] J. Yentes, N. Hunt, K. Schmid, J. Kaipust, D. McGrath, N. Stergiou, The
appropriate use of approximate entropy and sample entropy with short data
sets, Ann. Biomed. Eng. 41 (2013) 349–365.
17
[46] J. Jiang, S. Tian, Y. Tian, Y. Zhou, C. Hu, Transient abnormal signal acquisition
system based on approximate entropy and sample entropy, Rev. Sci. Instrum. 93
(4) (2022).

[47] D. Yin, B. Zhang, J. Yan, Y. Luo, T. Zhou, J. Qin, Cownet: A correlation weighted
network for geological hazard detection, Knowl.-Based Syst. (2023) 1–10.

[48] B. Huang, H. Dou, Y. Luo, J. Li, J. Wang, T. Zhou, Adaptive spatiotemporal
transformer graph network for traffic flow forecasting by iot loop detectors, IEEE
Internet Things J. (2022).

[49] Y. Luo, Q. Huang, J. Ling, K. Lin, T. Zhou, Local and global knowledge distil-
lation with direction-enhanced contrastive learning for single-image deraining,
Knowl.-Based Syst. 268 (2023) 110480.

[50] C. Reiss, J. Wilkes, J. Hellerstein, Google Cluster-Usage Traces: Format+ Schema,
White Paper 1, Google Inc, 2011, pp. 1–14.

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[52] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting, Adv. Neural Inf. Process. Syst.
34 (2021) 22419–22430.

[53] K. Kawakami, Supervised Sequence Labelling with Recurrent Neural Net-
works (Ph.D. thesis), Technical University of Munich, 2008.

[54] S. Bai, J. Kolter, V. Koltun, An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling, 2018, arXiv preprint arXiv:
1803.01271.

[55] T. Zhou, H. Dou, J. Tan, Y. Song, F. Wang, J. Wang, Small dataset solves big
problem: an outlier-insensitive binary classifier for inhibitory potency prediction,
Knowl.-Based Syst. (2022).

[56] T. Quan, Y. Yuan, Y. Luo, Y. Song, T. Zhou, J. Wang, From regression to
classification: Fuzzy multi-kernel subspace learning for robust prediction and
drug screening, IEEE Trans. Ind. Inform. (2023).

http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb36
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb37
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb37
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb37
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb37
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb37
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb38
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb39
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb40
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb40
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb40
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb40
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb40
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb41
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb41
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb41
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb42
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb42
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb42
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb43
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb43
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb43
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb43
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb43
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb44
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb44
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb44
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb44
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb44
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb45
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb45
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb45
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb45
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb45
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb46
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb46
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb46
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb46
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb46
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb47
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb47
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb47
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb48
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb48
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb48
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb48
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb48
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb49
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb49
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb49
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb49
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb49
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb50
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb50
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb50
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb51
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb51
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb51
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb52
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb52
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb52
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb52
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb52
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb53
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb53
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb53
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb55
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb55
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb55
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb55
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb55
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb56
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb56
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb56
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb56
http://refhub.elsevier.com/S0950-7051(23)00792-X/sb56

	Variational mode decomposition and sample entropy optimization based transformer framework for cloud resource load prediction
	Introduction and Motivations
	Related work
	VMDSE-Tformer: A Cloud Resource Load Prediction Model
	VMDSE-Tformer framework
	VMD-Decomposer
	Constructing a Variational Model
	Modal Component Decomposition Algorithm

	SE-optimizer
	Estimating Sample Entropy of Time Series Data
	Subsequence Reconstruction Using Sample Entropy-based Strategy

	VMD-SE-Informer
	VMD-SE-Informer Encoder
	The Internal Structure
	Decoder and Training Optimizer

	Data Reconstruction and Formatting
	Dataset and Prediction Objective
	Parameter Selection and Optimization for VMD
	Reconstruction of Subsequences
	Data Formatting

	Experiments and Results Analysis
	Experimental Objectives and Evaluation Metrics
	The Configuration of Experimental Parameter
	Experimental Results and Analysis
	Ablation Experiment Analysis
	Validation Experiment and Results

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

