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a b s t r a c t

Tree-Seed Algorithm (TSA) has good performance in solving various optimization prob-
lems. However, it is inevitable to suffer from slow exploitation when solving complex
problems. This paper makes an intensive analysis of TSA. In order to keep the balance
between exploration and exploitation, we propose an adaptive automatic adjustment
mechanism. The number of seeds can be defined in the initialization process of the
optimization algorithm. In order to further improve the convergence rate of TSA, we
also modify the change model of seed numbers in the initialization process with
randomly changing from more to less. With the improvement of two mechanisms,
the main weakness of TSA has been overcome effectively. Based on the above two
improvements, we propose a new algorithm-Sine Tree-Seed Algorithm (STSA). STSA
achieves good results in solving high-dimensional complex optimization problems. The
results obtained from 24 benchmark functions confirm the excellent performance of the
proposed method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Optimization problems refer to the determination of the value of some optional variables under certain conditions so
as to optimize the selected objective functions [1]. It is the inherent characteristic of achieving the best (minimum or
maximum) in a given situation [2]. Optimization has been widely applied to engineering [3–5], industrial design [6,7],
design analysis [8], etc.

Meanwhile, the heuristic algorithms have also been used extensively [9]. Heuristic algorithm is a kind of optimization
algorithm. Most of heuristic algorithms are inspired by evolutionary phenomena, collective behavior of creatures, physical
rules and human-related concepts [10,11]. Some of the recent and popular algorithms in each of these subclasses are as
follows:

• Evolutionary techniques: Genetic Algorithms (GA) [12–15], Differential Evolution (DE) [16–18], Biogeography-Based
Optimization algorithm (BBO) [19], Evolution Strategy (ES) [20], etc.
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• Swarm intelligence techniques: Ant Colony Optimization (ACO) [21], Particle Swarm Optimization (PSO) [22–24],
Artificial Bee Colony algorithm (ABC) [25,26], Firefly Algorithm (FA) [27], etc.

• Physics-based techniques: Gravitational Search Algorithm (GSA) [28], Colliding Bodies Optimization (CBO) [29], Black
Hole (BH) [30], etc.

• Human-related techniques: League Championship Algorithm (LCA) [31], Mine Blast Algorithm (MBA) [32], Teaching–
Learning-Based Optimization (TLBO) [33], etc.

Tree-Seed Algorithm (TSA) was proposed by Kiran in 2015 [34] which was inspired by the evolutionary method of the
relationship between trees and seeds [34]. It performs quite well in solving continuous optimization problems [20,34–36],
and it is widely studied and applied by scholars.

Although studies show that TSA has achieved better performance in optimization problems [20,35], it still has its
inherent shortcomings:

1. The selection of random numbers is simple but unreasonable. The change of random values will have a great impact
on the optimization results.

2. The global search ability of TSA is deficient. In the process of running the program, it is uncontrollable for the
selection of the next location, and the degree of randomness is strong, which is not conducive to the accuracy of
the experimental results.

The global searching ability of TSA is poor. In TSA, exploration requires to search for optimal values extensively in an
algorithm, while exploitation is limited to search in local available space. Thus, they have a conflict in that the realization
of one means the sacrifice of the other. As a result, it is a key and challenging problem for all optimization algorithms to
achieve an appropriate balance between exploration and exploitation. Sine Cosine Algorithm (SCA) has a good ability of
global search. Inspired by SCA [37], this paper proposes two improvements for TSA:

1. Adaptive seeds generation mechanism.
2. A regulatory mechanism k linearly varying with the times of iteration.

In this paper, we analyze the effect of seed number generation mechanism on TSA optimization process. In order to
improve the searching ability of TSA, we propose an adaptive seed generation mechanism, in which the number of seeds
varies from more to less with the number of iterations. The results show that the production mechanism of seeds has
a certain positive effect on searching ability. At the same time, inspired by SCA, we also propose a balance parameter k
which linearly changing with the number of iterations. k plays an important role in balancing exploration and exploitation.
k improves the exploration of TSA in the first part of optimization process, and improves the exploitation in the second
part.

The rest of this paper can be divided into the following sections: two basic algorithms: TSA and SCA are introduced in
Section 2. The improvement of TSA is detailed in Section 3. The experimental results of Sine Tree-Seed Algorithm(STSA)
are presented in Section 4. Applications of STSA in engineering design problem are shown in Section 5. The discussions
of the algorithm are reported in Section 6. Finally, the conclusion is given in Section 7.

2. Related work

STSA improves TSA [34] based on the inspiration of SCA [37]. There are details of the related algorithm in the followings.
TSA is introduced in the first subsection, and the SCA is depicted in the second subsection.

2.1. TSA: Tree-Seed Algorithm

TSA is proposed by Mustafa Servet Kiran [34] from the University of Selcuk in 2015. It is a population-based heuristic
searching algorithm recently proposed to solve continuous optimization problems. In TSA, trees and seeds represent
the possible solutions for the optimization problems [34]. The algorithm uses a new intelligent optimizer based on the
relationship between trees and seeds for solving continuous optimization problems. TSA is extensively utilized in the field
of heuristic and population-based search. This proposed method is considered to have improved the original defects of the
optimization problems, that is, the inverse correlation between exploration and exploitation in the searching process. Two
position updating equations are used in TSA, and ST controls the selection of the position updating equation to produce
seeds for the tree. ns is used to determine the number of seeds produced by the trees. TSA uses some criteria to find the
best solution amongst all possible ones for an optimization problem as follows:

f (−→x ) ≤ f (−→y ), ∀−→y ∈ F (1)

f (−→x ) ≥ f (−→y ), ∀−→y ∈ F (2)

where, provided S is a search space, F is a set of acceptable solutions of S, and f is an objective function to find
minimization or maximization through Eqs. (1) and (2).
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Fig. 1. The flow chart of TSA.

In TSA, the update rules are Eqs. (3) and (4). Eq. (3) takes into consideration the tree location where the seeds will be
produced, as well as the best location for the tree population. This equation also improves the local searching capability.
Eq. (4) uses two different tree locations for producing a new seed for the tree.

Si,j = Ti,j + αi,j × (Bj − Tr,j) (3)

Si,j = Ti,j + αi,j × (Ti,j − Tr,j) (4)

where, Si,j is jth dimension of ith seed that will be produced in ith tree, Ti,j is the jth dimension of ith tree, Bj is the
jth dimension of best tree location obtained so far, Tr,j is the jth dimension of the rth tree randomly selected from the
population, α is the scaling factor randomly produced in range of [−1, 1], i and r are different indices.

In the beginning of the search progress with TSA, the initial tree locations that are possible solutions of the optimization
problem are produced by Eq. (5):

Ti,j = Lj,min + ri,j × (Hj,max − Lj,min) (5)

where, Lj,min is the lower bound of the search space, Hj,max is the higher bound of the search space, and ri,j is a random
number produced for each dimension and location, in range of [0, 1].

In order to realize minimization, the best solution is selected from the population via Eq. (6).

B = min(f (
−→
Ti )) (6)

where, i is the serial number of trees in the population. It takes integer values from 1.
For all experiments, the maximum number of function evaluations MaxFEs is selected as the termination condition and

it is set by using the dimensionality of the function given in Eq. (7) as follows.

MaxFEs = D × 10000 (7)

The flow chart of TSA is shown in Fig. 1.
The working diagram of TSA can be summarized as Fig. 2:
In Fig. 2(a), trees are scattered to the search space and the fitness of the trees are calculated by using objective function

specific for the optimization problem [34].
In Fig. 2(b), the number of seeds for each tree is changeable. In the diagram, five seeds are produced for each tree and

the best seeds are compared with the parent tree [34].
In Fig. 2(c), if fitness of the best seed is better than the fitness of its parent tree, the parent tree is removed, and its

best seed replaces to stand [34].
The maximum number of evaluations of a function is the termination condition of TSA.
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Fig. 2. Working diagram of TSA.

2.2. SCA: Sine Cosine algorithm

SCA is proposed by Seyedali Mirjalili (2015) [37], which is a novel population-based optimization algorithm for solving
optimization problems. The optimization process of SCA starts with a set of random solutions repeatedly evaluated by an
objective function and improved by a set of rules that make up for the kernel of an optimization technique.

In SCA [37], the position updating equations are as follows:

X t+1
i = X t

i + r1 × sin(r2)× | r3 × P t
i + X t

i |, r4 < 0.5 (8)

X t+1
i = X t

i + r1 × cos(r2)× | r3 × P t
i + X t

i |, r4 ≥ 0.5 (9)

where, X t
i is the position of the current solution in ith dimension at tth iteration, r1 is a random number, r2/r3 are random

numbers, r4 is a random number in [0, 1], P t
i is the position of the destination point in ith dimension.

In order to balance exploration and exploitation, the range of sine and cosine in Eqs. (8) and (9) is changed adaptively
using Eq. (10):

ri = a − t ×
a
T

(10)

where, t is the current iteration, T is the maximum number of iterations, and a is a constant. In SCA, the value of a is
generally 2 [37].

The flow chart of SCA is shown in Fig. 3.

3. Methods

The optimization of algorithms has always been a hot topic in academic research. Optimization refers to the process
of finding out the optimal solution in all solutions of an optimization problem, which usually involves maximum and
minimum optimization. In the process of optimization, the existence of random factors has a certain impact on the results
of optimization. There are many methods to determine random factors, but TSA only uses a relatively simple method to
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Fig. 3. The flow chart of SCA.

obtain random numbers. This needs to be improved, so we improve it to form a new algorithm, which is a more accurate
optimization algorithm.

The first improvement: adaptive seeds generation mechanism is introduced in Section 3.1. Section 3.2 reports the
second improvement: a regulate mechanism k linearly varying with the times of iteration. This paper combines two
improvements and obtains a new algorithm. The new algorithm based on the above two improvements is detailed in
Section 3.3.

3.1. Adaptive seeds generation mechanism

In TSA [34], seeds play an important role in spreading and searching for optimal values, but it is unreasonable since
the way of producing seeds is extremely simple and random. The production of seeds will has a certain impact on the
optimization results, which will deviate from the optimal solution. Therefore, we have made the following improvements:
modify the ns value so that it can be processed according to the change of FEs value. It mainly updates the number of
seeds randomly from more to less, so it can find the best solution gradually. We set a ratio of ratioFEs by Eq. (11) and let
ns vary with the change of ratioFEs by Eqs. (12) and (13).

ratioFEs =
FEs

MaxFEs
(11)

xTheat = 0.5 × ratioFEs × π (12)

ns = L+ | (H − L) × cos(xTheat) | +1 (13)

where, ns is the number of seeds, FEs is the number of function evaluations, MaxFEs is D× 10000, which is the termination
condition of the all experiments, ratioFEs is the radio of FEs and MaxFEs, and the range of ratioFEs is [0, 1]. The range of
xTheat is [0, 0.5π ], L is the low bound of the number of seeds generated by a tree, H is the upper bound of the number of
seeds generated by a tree. By changing the random number selection of ns, the global search ability is greatly improved.

3.2. A regulate mechanism k linearly varying with the time of iterations

k is a new parameter based on the original TSA, which combines the inspiration of SCA. It linearly changes with the
number of iterations. In the first part of the optimization process, exploration can be improved. In the second part of the
optimization process, exploitation can be improved. This mechanism has a certain effect on the current solution to jump
out of the local environment and convert it into another. The calculation method of k is as Eq. (14).

k = 2 × (1 − ratioFEs) (14)

where, ratioFEs is the radio of FEs and MaxFEs, the range of ratioFEs is [0, 1], the range of k is [0, 2].

3.3. New algorithm: Sine Tree-Seed Algorithm (STSA)

Obtaining a location of a seed that will be produced from a tree is important for the optimization problem because
this process constitutes is the core of search. After the above two improvements, we propose three search equations Eqs.
(15)–(17) for this process.

Si,j = tmpRand × Tkomsu,j + (1 − tmpRand) × Bj, rand < 0.5ST (15)

Si,j = Ti,j + k(Bj − ri,j × Ti,j) × (sin(π × acos(ri,j))), 0.5ST ≤ rand < ST (16)

Si,j = ri,j × Ti,j + k(Tkomsu,j − ri,j × Ti,j) × (sin(π × acos(ri,j))), rand ≥ ST (17)
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Fig. 4. The flow chart of STSA.

where, Si,j is jth dimension of ith seed that will be produced ith tree, Ti,j is the jth dimension of ith tree, Bj is the jth dimension
of best tree location obtained so far, Tkomsu,j is the jth dimension of random tree, ri,j and tmpRand is a random number
produced for each dimension and location, in range of [0, 1], k is a new parameter based on the original TSA. ST is a control
parameter to control search trend. The higher value of ST provides a powerful local search and speed convergence, the
lower value of ST causes slow convergence but powerful global search.

After the above three methods, we finally propose STSA. The pseudo code of the STSA is in Algorithm 1. The flow chart
of STSA is shown in Fig. 4.

4. Results

The quality of the proposed algorithm’s capability is tested by a set of standard test functions. 30 random experiments
are performed on benchmark functions.

4.1. Experimental settings

For these experiments, the variants are coded in Matlab R2016a environment under Chinese version of Windows 8.1
operating system, all simulations are run on computer with Intel(R) Core(TM) i3-5010U CPU @ 2.10 GHz and its memory
is 8 G.

4.2. Test the influence from ns and control coefficient k

The two improvements mentioned above have been significantly improved in optimization. 24 benchmark functions
(see Tables 10–12) are used to test the effect of STSA and TSA. We set ST = 0.4, and test each benchmark function 30
times before taking its average value, with 1000 iterations for each time. Here is a comparison of the results of STSA and
TSA on 10 dimensions in Table 1.

From Table 1, we can draw the following conclusion: compared with TSA in lower dimensions such as 10 dimensions,
STSA has been greatly improved in some benchmark functions. This shows that our improvement of the algorithm is
effective.
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Algorithm 1 The pseudo code of the STSA.

Step 1. Initialize of the algorithm
1.1 Set the number of population size (ns) using Eq. (13);
1.2 Set the expansion coefficient k using Eq. (14);
1.3 Set the ST parameter for the method;
1.4 Set the dimensionality of the problem;
1.5 Decide the termination condition;
1.6 Generate N random tree locations on the D-dimensional search space using Eq. (5);
1.7 Evaluate the tree location using objective function specified for the problem;
1.8 Select the best solution using Eq. (6).

Step 2. Search with seeds
FOR all trees

2.1 Decide the number of seeds produced for this tree;
2.2 FOR all seeds

2.2.1 FOR all dimensions
IF(rand < 0.5× ST )

Update seeds using Eq. (15)
ELSE IF(0.5× ST ≤ rand < ST )

Update seeds using Eq. (16)
ELSE
Update seeds using Eq. (17)
END IF

END IF
END FOR

END FOR
2.3 Select the best seed and compare it with the tree;
2.4 Seed substitutes for this tree, if the seed objective value is better than tree’s.

END FOR
Step 3. Select of Best Solution
3.1 Select the best solution of population using Eq. (7);
3.2 New best solution substitutes for the previous best solution, if new best solution is better than the previous best

solution;
Step 4. Test Termination condition
Go to Step 2, if termination condition is not met.

Step 5. Report
Report the best solution.

Table 1
Comparing the performance of TSA and STSA with D = 10.
Function TSA STSA

Best Mean Worst St.dev Best Mean Worst St.dev

F1 1.55744E−59 6.14003E−58 3.55019E−57 9.09095E−58 0 0 0 0
F2 5.00507E−37 2.0848E−36 7.5401E−36 1.99062E−36 6.2571E−196 3.8669E−193 2.7369E−192 0
F3 3.66378E−10 1.38991E−08 1.54248E−07 2.93509E−08 9.0833E−263 6.4491E−252 1.8427E−250 0
F4 1.85202E−12 1.50146E−11 7.53349E−11 1.54457E−11 8.2694E−160 2.7604E−157 4.2408E−156 7.9269E−157
F5 1.64035919 3.697345435 5.733900666 0.967684642 5.916132819 6.740343539 7.166741671 0.255655294
F6 0 0 0 0 0.007514272 0.019223256 0.033449979 0.006515981
F7 0.000500271 0.001514898 0.003396011 0.000721624 1.0065E−05 7.69259E−05 0.000169027 4.74073E−05
F8 −4189.828873 −3983.383222 −3240.381841 260.8319443 −3346.980616 −2949.583932 −2652.297991 172.4702049
F9 0.094655686 5.51063386 12.92082052 2.876688408 0 0 0 0
F10 8.88178E−16 4.32247E−15 4.44089E−15 6.48634E−16 8.88178E−16 8.88178E−16 8.88178E−16 0
F11 0.002337944 0.116339102 0.291006286 0.074541113 0 0 0 0
F12 4.71163E−32 4.71163E−32 4.71163E−32 0 0.000868631 0.002158034 0.005568348 0.000992842
F13 1.34978E−32 1.34978E−32 1.34978E−32 0 0.005471141 0.017193327 0.036532769 0.008346033
F15 0.000346719 0.000531646 0.000715482 9.1999E−05 0.000307934 0.000413852 0.001224059 0.000243004
F16 −1.031628453 −1.031628453 −1.031628453 0 −1.031628453 −1.031628453 −1.031628453 0
F18 3 3 3 0 3 3 3 0
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Table 2
Test 10 dimensions of STSA, TSA, and SCA algorithms on benchmark functions.
Function STSA TSA SCA

Mean St.dev Mean St.dev Mean St.dev

F1 0 0 6.14003E−58 9.09095E−58 7.70011E−12 1.85358E−11
F2 3.8669E−193 0 2.0848E−36 1.99062E−36 6.35004E−10 8.20193E−10
F3 6.4491E−252 0 1.38991E−08 2.93509E−08 0.002785518 0.005503978
F4 2.7604E−157 7.9269E−157 1.50146E−11 1.54457E−11 0.001856347 0.004024226
F5 6.740343539 0.255655294 3.697345435 0.967684642 7.469140732 0.454731885
F6 0.019223256 0.006515981 0 0 0.479891223 0.16558056
F7 7.69259E−05 4.74073E−05 0.001514898 0.000721624 0.002072487 0.001565976
F8 −2949.583932 172.4702049 −3983.383222 260.8319443 −2124.717376 160.8814671
F9 0 0 5.51063386 2.876688408 0.58828547 1.883503053
F10 8.88178E−16 0 4.32247E−15 6.48634E−16 3.4911E−06 1.61795E−05
F11 0 0 0.116339102 0.074541113 0.097309014 0.147813439
F12 0.002158034 0.000992842 4.71E−32 0 0.104672303 0.041780972
F13 0.017193327 0.008346033 1.35E−32 0 0.31066643 0.088650469
F15 0.000413852 0.000243004 0.000531646 9.1999E−05 0.001172708 0.000344145
F16 −1.031628453 0 −1.031628453 0 −1.031628453 0
F18 3 0 3 0 3 0

Table 3
Test 50 dimensions of STSA, TSA, and SCA algorithms on benchmark functions.
Function STSA TSA SCA

Mean St.dev Mean St.dev Mean St.dev

F1 2.09873E−11 3.7835E−11 37.49125793 12.78842918 852.5265976 1182.869122
F2 3.03462E−10 3.17053E−10 0.99747663 0.307036604 0.561064287 0.713184908
F3 80961.20259 18903.57364 92970.32715 8703.917066 47938.296 13823.48928
F4 76.59891165 19.65233503 84.40999669 5.214241995 70.87506431 6.245928564
F5 47.8840535 0.136216766 925500.7482 397054.1905 8723235.182 12457686.86
F6 5.543152566 0.401943163 40.7600341 10.68622681 1100.511257 1220.611516
F7 0.025879662 0.010220925 1.042994019 0.287275626 5.150171173 4.604588886
F8 −6403.4687741 400.4018495 −7895.3291 977.0255383 −4949.936664 414.19178
F9 2.838603442 0 12.40980909 48.26672581 107.1002834 56.44248435
F10 4.081467613 8.282419073 3.809060875 0.251617135 14.82285523 7.851793748
F11 4.31505E−09 2.31402E−08 1.360207388 0.109355175 9.992810847 11.28879743
F12 0.353011421 0.057884073 4251671.434 2764211.925 11230940 18975323.2
F13 3.471250384 0.254658731 7841429.597 6012118.736 33802396.17 64739994.94
F15 0.00053232 0.000265155 0.000488177 9.90672E−05 0.000947735 0.00032182
F16 −1.031628453 0 −1.031628453 0 −1.031628453 0
F18 3 0 3 0 3 0

4.3. Comparing test of different dimensions of test function

We find that the new algorithm has different optimization effects in different dimensions. In the higher dimensions,
the optimization effect of the algorithm is still obvious. We use 24 benchmark functions to test the effect of STSA, TSA,
and SCA. We test STSA, TSA and SCA in 10, 50, 100, 200, and 300 dimensions, and we test each dimension 30 times to
take its average value. The results are separately shown in Tables 2–6.

From Tables 2–6, we can draw the conclusions: STSA is better than TSA, especially in low-dimensional optimization, and
in high dimensions, although STSA is not as effective as SCA, it is still better than TSA. Meanwhile, STSA is more effective
in single-mode function optimization. This shows that STSA is still effective than TSA in solving continuous optimization
problems.

4.4. Compare the new algorithm with other algorithms

Not only does STSA have made great progress compared with the original algorithm, but also has obvious progress
compared with other algorithms like PSO [22], ABC [25]. PSO, and ABC are all heuristic algorithms with good performance.
They are widely used. Because of the randomness of meta-heuristics, the results of a single run may not be reliable, so
all algorithms are run for 30 times, and we test benchmark functions in 10 dimensions. The results are shown in Table 7.

From Table 7, we can draw the conclusion: the optimization effect of STSA on the benchmark functions are better than
that of other algorithms. This shows that we have achieved remarkable results in improving TSA.

The convergence curve of STSA, TSA, SCA, PSO, and ABC on 10, 50, 100, 200, 300 dimensions are separately reported
in Figs. 5–9.

From above figures, the global optimization ability of STSA has been significantly improved. This shows that our
improvements are valuable.
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Table 4
Test 100 dimensions of STSA, TSA, and SCA algorithms on benchmark functions.
Function STSA TSA SCA

Mean St.dev Mean St.dev Mean St.dev

F1 5467.962537 3438.477572 51565.08976 4810.357842 9250.26223 6073.209931
F2 3.633826105 2.532717612 204.3450684 37.63593441 7.468276657 6.244409597
F3 509247.4596 56665.83854 398230.1358 36269.64227 249784.7447 59236.27654
F4 96.2380303 0.866394223 95.95709659 1.42110836 89.46187628 2.899588535
F5 50469533.68 28436101.11 263741942.3 56196682.18 119258008.1 47430327.46
F6 4911.412299 3454.70114 51815.36649 6176.019791 10926.35155 6206.509727
F7 58.0563075 36.61767141 320.3909558 55.51799156 129.4509679 59.11736272
F8 −8939.25696 533.4857467 −10368.32823 1204.014387 −6718.38097 530.5657556
F9 213.4134681 97.13097828 1169.298674 81.94375627 249.3109602 129.9299456
F10 17.07525135 5.655108573 18.22031237 0.428081552 17.85265813 5.195248554
F11 61.29852316 38.29718176 468.4535642 47.25803699 101.3852225 61.73895429
F12 158476922.2 105589585.6 675330418.1 159508288.6 309013376.1 110442212.1
F13 288519075.1 161102281.7 1199863744 288763141.5 460173397.1 221885759.3
F15 0.00045001 0.000186862 0.000488557 9.96379E−05 0.0011668 0.00034868
F16 −1.031628453 0 −1.031628453 0 −1.031628453 0
F18 3 0 3 0 3 0

Table 5
Test 200 dimensions of STSA, TSA, and SCA algorithms on benchmark functions.
Function STSA TSA SCA

Mean St.dev Mean St.dev Mean St.dev

F1 106539.8055 32078.7322 280383.5464 24264.04951 52249.82609 23828.13566
F2 97.65208347 30.24910941 2.74822E+52 1.46845E+53 26.34557401 15.22939772
F3 2131794.722 180021.6476 1540711.149 112226.3211 1058993.12 232308.7127
F4 97.99938188 0.515363119 97.88989453 0.682597149 96.66564669 1.08900964
F5 1105918860 497927415.4 1397123788 230413291.6 553538179.7 176614042
F6 95010.25467 34491.05209 276936.34 24295.68444 54203.27135 20295.24166
F7 2191.033497 640.849558 4135.572784 579.8152006 1433.083517 406.5409284
F8 −12548.39507 629.5425287 −14343.07021 1865.408198 −9783.007234 714.0327655
F9 766.1132969 179.3715474 2799.471358 95.86368742 586.0654747 188.5510106
F10 19.68726044 2.200303927 20.80892902 0.058857862 18.75391317 3.667143195
F11 820.8076127 297.9606722 2552.040832 265.1953845 423.0126078 160.9687748
F12 6203837502 685035823 4926406306 1084225942 1587977619 452102461.2
F13 8616989550 3347208545 7807117976 1521013375 2345670145 561994126.6
F15 0.000485675 0.00025835 0.000482951 8.11607E−05 0.000961799 0.000316503
F16 −1.031628453 0 −1.031628453 0 −1.031628453 0
F18 3 0 3 0 3 0

Table 6
Test 300 dimensions of STSA, TSA, and SCA algorithms on benchmark functions.
Function STSA TSA SCA

Mean St.dev Mean St.dev Mean St.dev

F1 225214.432 56109.35087 533513.9013 39739.46323 86941.87349 31912.37329
F2 217.0273672 65.70356239 9.67345E+97 3.04111E+98 56.35112038 40.40624911
F3 4722365.33 392470.5158 3545991.6 261546.5356 2292870.862 466658.8776
F4 98.5043439 0.607144679 98.76008006 0.485173586 98.09193925 0.48878671
F5 4094151970 169338723.5 3666050169 518124942.2 968884856.3 222217502.8
F6 237179.8654 44463.58628 536911.4214 39806.64417 94313.09494 32993.36732
F7 15406.02675 5088.243232 12895.13472 2458.527172 4105.620027 1089.146064
F8 −15595.01229 917.4856184 −17716.13705 3089.604424 −11922.97675 822.4241079
F9 1393.27575 288.5370256 4445.925961 195.2156154 748.931034 320.5253141
F10 20.68731967 0.459986188 20.93341125 0.013978674 19.23194496 3.520950386
F11 2162.238113 566.8342169 4930.178318 372.2067111 904.1766518 388.554181
F12 10100024289 638625398.1 10015910977 637445278.3 2949377837 479856939
F13 18513189539 899565205.6 17619707398 1641081435 4723637462 1329157586
F15 0.000485569 0.000217932 0.000465554 9.5613E−05 0.001102449 0.000375453
F16 −1.031628453 0 −1.031628453 0 −1.031628453 0
F18 3 0 3 0 3 0
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Table 7
Comparisons between STSA and other algorithms on 10 dimensions.
Functions Index STSA TSA SCA PSO ABC

F1 Mean 0 6.14003E−58 7.70011E−12 1.34177E−71 3.13494E−05
St.dev 0 9.09095E−58 1.85358E−11 5.3328E−71 3.19179E−05

F2 Mean 3.8669E−193 2.0848E−36 6.35004E−10 1.57447E−12 6.84443E−06
St.dev 0 1.99062E−36 8.20193E−10 7.8476E−12 4.99614E−06

F3 Mean 6.4491E−252 1.38991E−08 0.002785518 8.33078E−16 176.5269364
St.dev 0 2.93509E−08 0.005503978 2.83888E−15 82.67860293

F4 Mean 2.7604E−157 1.50146E−11 0.001856347 1.1284E−12 3.539160325
St.dev 7.9269E−157 1.54457E−11 0.004024226 2.5212E−12 0.935265519

F5 Mean 6.740343539 3.697345435 7.469140732 6.46636785 21.77400175
St.dev 0.255655294 0.967684642 0.454731885 16.7846427 23.04898671

F6 Mean 0.019223256 0 0.479891223 1.00457E−31 3.60768E−05
St.dev 0.006515981 0 0.16558056 3.82709E−31 4.09459E−05

F7 Mean 7.69259E−05 0.001514898 0.002072487 0.003044067 0.012534387
St.dev 4.74073E−05 0.000721624 0.001565976 0.001567805 0.005778564

F8 Mean −2949.583932 −3983.383222 −2124.717376 −2605.830585 −5.35659E+61
St.dev 172.4702049 260.8319443 160.8814671 359.6441894 2.9112E+62

F9 Mean 0 5.51063386 0.58828547 13.13344544 30.44898533
St.dev 0 2.876688408 1.883503053 5.897249862 4.461725323

F10 Mean 8.88178E−16 4.32247E−15 3.4911E−06 6.33567E−15 0.025958926
St.dev 0 6.48634E−16 1.61795E−05 1.8027E−15 0.015607878

F11 Mean 0 0.116339102 0.097309014 0.092887273 0.416745077
St.dev 0 0.074541113 0.147813439 0.049843162 0.08225128

F12 Mean 0.002158034 4.71E−32 0.104672303 5.19164E−32 0.000728654
St.dev 0.000992842 0 0.041780972 1.5417E−32 0.001932377

F13 Mean 0.017193327 1.35E−32 0.31066643 0.000732491 0.00417452
St.dev 0.008346033 0 0.088650469 0.002787584 0.005670945

F15 Mean 0.000413852 0.000531646 0.001172708 0.001254674 0.001075483
St.dev 0.000243004 0.000531646 0.001172708 0.001254674 0.001075483

F16 Mean −1.031628453 −1.031628453 −1.031628453 −1.031628453 −1.031628453
St.dev 0 0 0 0 0

F18 Mean 3 3 3 3 3
St.dev 0 0 0 0 0

5. Application of STSA in engineering design problems

This section further verifies the performance and efficiency of the STSA by solving two constrained real engineering
design problems: pressure vessel design, and tension/compression spring design. These problems are widely discussed in
the literature, and they have been solved well to clarify the effectiveness of the algorithms. We apply the penalty function
method to deal with the constraints. In STSA, the population size is 30 and the maximum number of iterations is 1000.

5.1. Pressure Vessel Design (PVD) problem

5.1.1. Introduction to the PVD problem
The aim of the PVD problem is to minimize the whole cost of the cylindrical pressure vessel [38]. This problem has four

variables: the thickness of the shell (Ts), thickness of the head (Th), inner radius (R), and length of the cylindrical section
without considering the head (L), as shown in Fig. 10. It is expected to be that Ts and Th are in multiplies of 0.0625 inches.
R and L are continuous values for PVD problem.

The mathematical formulations of pressure vessel design problem are defined as follows:

Consider X = [x1, x2, x3, x4] = [Ts, Th, R, L]
Minimize f (X) = 0.6224x1x3x4 + 1.7781x2x23 + 3.1661x21x4 + 19.84x21x3
Subjectto g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x2 + 0.00954 ≤ 0

g3(X) = −πx23x4 −
4
3
πx33 + 1296000 ≤ 0

g4(X) = x4 − 240.0 ≤ 0
g5(X) = −x1 + 1.1 ≤ 0
g6(X) = −x2 + 0.6 ≤ 0

Where 1.1 ≤ x1 ≤ 99, 0.6 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 240
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Fig. 5. The convergence curve of STSA and other algorithms on 10 dimensions.

The objective of the PVD problem is to find X values that minimizes the cost of f (X) under g1, g2, g3, g4, g5, and
g6 constraints. The other constraints are in design code of PVD problem and detailed explanations can be seen in the
algorithm: New optimization techniques in engineering [39].

5.1.2. Application of STSA in PVD problem
To cope with the constraints of the PVD problem, a penalty function is used. If a constraint is violated, a penalty value

is added to the objective function [40].
Let be x2 = 0.2, g6 constraint function is calculated as 0.4, and the constraint is therefore violated. New f (X) is obtained

by using Eq. (18).

n × F (X) = f (X) +

6∑
1

vi (18)

where, vi is the violation of ith constraint and is calculated as follows:

vi(X) =

{
k × gi(X)2 if (gi(X) > 0)
0 otherwise

(19)

where, k is a high positive constant number.
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Fig. 6. The convergence curve of STSA and other algorithms on 50 dimensions.

By considering STSA, PVD problem and explanations given above, the pseudo code of the application of STSA to PVD

problem is presented in Algorithm 2.

Algorithm 2 The pseudo code of the application of STSA to PVD problem.
Step 1. Initialize of the algorithm
Step 2. UNTIL a termination condition is met
2.1 FOR each tree

2.1.1 Produce seeds from the tree by using Eqs. (15), (16) and (17)
2.1.2 Calculate fitness of the seeds by using Eq. (18)
2.1.3 IF fitness of the best seeds is better than the fitness of the tree
2.1.4 THEN
2.1.5 Begin

2.1.5.1 Remove the tree from the stand
2.1.5.2 Add the seed to the stand
END IF

END FOR
2.2 Decide the best tree location

END UNTIL
Step 3. Report the best solution
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Fig. 7. The convergence curve of STSA and other algorithms on 100 dimensions.

Table 8
The experimental results of STSA and other algorithms for PVD problem.
Algorithm Optimal values for variables Mean cost Std.dev

Ts Th R L

STSA 1.173757082 0.602273164 60.67453944 31.7949056 7191.8 64.5232
TSA 1.1039 0.6284 56.3499 55.2178 7146.0100 51.6371
SCA 1.1479 0.6250 57.0737 55.2968 7534.1766 188.0822
PSO 1.1257 0.6257 58.0142 45.5515 7236.9200 21.9913
ABC 1.1250 0.6250 58.0728 45.1283 7221.7900 15.3953

5.1.3. Application results of STSA and other algorithms

STSA is applied to solve the pressure vessel design problem. We compare it with 4 optimization algorithms which

are reported in previews works as shown in Table 8. In order to analyze the performance of STSA on PVD problem, the

method is run 30 times with random initialization for each test case and optimal values for variables(Ts, Th, R, and L),

mean cost, and standard deviation are reported.

From Table 8, compared with SCA, PSO, and ABC, the STSA provided a better result for the PVD problem. Compared

with tsa, the results of STSA are slightly worse, but the difference is not significant.



14 J. Jiang, M. Xu, X. Meng et al. / Physica A 537 (2020) 122802

Fig. 8. The convergence curve of STSA and other algorithms on 200 dimensions.

5.2. Tension/Compression Spring Design (T/CSD) problem

The T/CSD problem is shown in Fig. 11, which deals with the minimization of the weight of the tension/compression
spring. The aim of this problem is to minimize the weight of the tension/compression spring by determining the optimal
value of three variables: the mean coil diameter (D), the number of active coils (N), and wire diameter (d). The problem
is formulated as:

Consider X = [x1, x2, x3] = (d,D, P)
Minimize f (X) = (x3 + 2)x2x21

Subjectto g1(X) = 1 −
x32x3

71785x41
≤ 0

g2(X) =
4x22 − x1x2

12566(x2x31 − x41)
+

1
5108x21

− 1 ≤ 0

g3(X) = 1 −
140.45x1

x22x3
≤ 0

g4(X) =
x1 + x2
1.5

− 1 ≤ 0

Where 0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.00
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Fig. 9. The convergence curve of STSA and other algorithms on 300 dimensions.

Fig. 10. Schematic view of PVD problem.

The optimization results obtained by the proposed STSA for this problem are evaluated by comparing it with TSA,

SCA, PSO, and ABC, as shown in Table 9. In order to analysis the performance of STSA on T/CSD problem, the method

is run 30 times with random initialization for each test case. Optimal values for variables(d, D, and N), mean cost, and

standard deviation are reported. From Table 9, compared with other algorithms, the STSA obtain better results for the

T/CSD problem.
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Fig. 11. Schematic view of T/CSD problem.

Table 9
The experimental results of STSA and other algorithms for pressure vessel design problem.
Algorithm Optimal values for variables Mean cost Std.dev

d D N

STSA 0.050064347 0.480649917 4.068127065 0.00734579 5.44585E−05
TSA 0.090476838 0.913401821 8.1 0.020819027 4.33E−03
SCA 0.0604564 0.602142333 7.05075 0.0170221 3.01E−03
PSO 0.056971033 0.507188333 6.8394 0.0134377 1.10E−03
ABC 0.052481 0.375246 11.49661667 0.013254933 1.73E−04

Table 10
Unimodal benchmark functions.

Function Dim Range fmin

f1(x) =
∑n

i=1 x
2
i 10 [−100,100] 0

f2(x) =
∑n

i=1|xi|+
∏n

i=1|xi| 10 [−100,100] 0

f3(x) =
∑n

i=1(
∑i

j−1 xj)
2 10 [−100,100] 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 10 [−100,100] 0

f5(x) =
∑n−1

i=1 [100(xi+1 − x2i ) + (xi − 1)2] 10 [−100,100] 0

f6(x) =
∑n

i=1(|xi + 0.5|)2 10 [−100,100] 0

f7(x) =
∑n

i=1 ix
4
i + random[0, 1) 10 [−100,100] 0

Table 11
Multimodal benchmark functions.

Function Dim Range f _min

f8 =
∑n

i=1 −xi sin(
√

|xi|) 20 [−500,500] −418.98295

f9 =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] 20 [−5.12,5.12] 0

f10 = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i ) − exp( 1n

∑n
i=1 cos(2πxi)) + 20 + e 20 [−32,32] 0

f11 =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 20 [−600,600] 0

f12 =
π

n
{10 sin(πy1) +

∑n−1

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}

+

∑n

i=1
u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4

u(xi, a, k,m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(xi − a)m, xi > a

0, −a < xi < a

k(−xi − a)m, xi < −a

20 [−50,50] 0

f13 = 0.1{sin2(3πx1) +

∑n

i=1
(xi − 1)2[sin2(3πxi + 1)]

+ (xn − 1)2[1 + sin2(2πxn)]} +

∑n

i=1
u(xi, 5, 100, 4)

20 [−50,50] 0

6. Discussion

Through all the above experiments and results, the following analysis can be obtained.

6.1. Analysis of seed production mechanism

It is unreasonable when the number of seeds is random. Studies have shown that the results are optimal when there
are an extreme number of seeds. However, the number of seeds is so large that it falls into the local optimum and ignore



J. Jiang, M. Xu, X. Meng et al. / Physica A 537 (2020) 122802 17

Table 12
Composite benchmark functions.
Function Dim Range fmin

f 14(CF1) :

f1, f2, f3, . . . , f10 = SphereFunction

[σ1, σ2, σ3...σ10] = [1, 1, 1, . . . , 1]

[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]

10 [−5,5] 0

f 15(CF2) :

f1, f2, f3, . . . , f10 = Griewank′sFunction

[σ1, σ2, σ3...σ10] = [1, 1, 1, . . . , 1]

[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]

10 [−5,5] 0

f 16(CF3) :

f1, f2, f3, . . . , f10 = Griewank′sFunction

[σ1, σ2, σ3...σ10] = [1, 1, 1, . . . , 1]

[λ1, λ2, λ3, . . . , λ10] = [1, 1, 1, . . . , 1]

10 [−5,5] 0

f 17(CF4) :

f1, f2 = Ackley′sFunction

f3, f4 = Rastrigin′sFunction

f5, f6 = WeierstrassFunction

f7, f8 = Griewank′sFunction

f9, f10 = SphereFunction

[σ1, σ2, σ3...σ10] = [1, 1, 1, . . . , 1]

[λ1, λ2, λ3, . . . , λ10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100, 5/100, 5/100, 5/100]

10 [−5,5] 0

f 18(CF5) :

f1, f2 = Rastrigin′sFunction

f3, f4 = WeierstrassFunction

f5, f6 = Griewank′sFunction

f7, f8 = SphereFunction

f9, f10 = Ackley′sFunction

[σ1, σ2, σ3...σ10] = [1, 1, 1, . . . , 1]

[λ1, λ2, λ3, . . . , λ10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

10 [−5,5] 0

f 19(CF6) :

f1, f2 = Rastrigin′sFunction

f3, f4 = WeierstrassFunction

f5, f6 = Griewank′sFunction

f7, f8 = Ackley′sFunction

f9, f10 = SphereFunction

[σ1, σ2, σ3...σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ2, λ3, . . . , λ10] = [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5,

0.5 ∗ 5/100, 0.6 ∗ 5/100, 0.7 ∗ 5/32, 0.8 ∗ 5/32, 0.9 ∗ 5/100, 1 ∗ 5/100]

10 [−5,5] 0

the global optimum. The number of seeds is too small to find the optimal solution. The seed renewal mechanism proposed
in this paper effectively solves this problem. The number of seeds generates by the renewal changes from more to less
varying with the increase of iteration times, and finally reaches a good state.

6.2. Analysis of balance mechanism

Exploration and exploitation are mentioned in TSA, but there is no corresponding mechanism to balance exploration
and exploitation, they have a conflict in that the realization of one means the sacrifice of the other. Whether the
exploration is too strong or the development ability is too strong, it is not conducive to finding the optimal solution.
Inspired by the equilibrium parameters in SCA, we propose the balance parameter k to balance exploration and
exploitation. When the exploration ability is strong, the development ability should be improved appropriately. On the
contrary, when the exploration ability is strong, the exploration ability should be improved so as to make the process of
finding the optimal solution more smoothly.
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6.3. Analysis of the shortcomings of STSA

STSA uses 24 benchmark functions to test, including single-mode benchmark functions and multi-mode benchmark
functions. According to the experimental results, we can find the shortcomings of STSA: the results of optimization
of multi-mode functions are not satisfactory. In the same dimension, the optimization effect is not as good as that of
single-mode function.

In addition, STSA is better than TSA in solving high-dimensional complex optimization problems, but not as good as
SCA. This shows that we still need further exploration and improvement in high-dimensional complex optimization.

7. Conclusion and future works

TSA is a continuous optimization algorithm with good performance [20,34–36]. However, TSA has two problems. For
example, in TSA, seed production mechanism has a certain effect on the experimental results. The number of seeds
produced randomly makes the results very uncertain. As assumed in this paper, seed production mechanism should be
redefined and redesigned. In addition, exploration and exploitation play a very important role in global search, and they
conflict with each other. But TSA lacks a balancing mechanism for exploration and exploitation.

Inspired by SCA, two improvements are proposed, so that the optimal solution can be obtained more effectively. As
shown in Table 1, after the above two improvements, the optimization effect of STSA has been significantly improved.
Hence, there are some findings in this paper.

• Adaptive seeds generation mechanism will help to find the global optimal solution in TSA.
• The addition of regulate mechanism k linearly varying with iteration times has a positive effect on finding the global

optimal solution.

This paper proposes two methods to improve the optimization capability of TSA. However, the algorithm still has some
inadequacy, such as when dealing with complex continuous optimization problems, the effect is not obvious and needs
to be improved. In fact, from this perspective, more improvements can be presented because more heuristic methods can
be found by seed evaluation. It is necessary for us to carry out further research.
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