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Benefiting from convenient cycling and flexible parking locations, the Dockless Public Bicycle-sharing (DL-

PBS) network becomes increasingly popular in many countries. However, redundant and low-utility stations

waste public urban space and maintenance costs of DL-PBS vendors. In this article, we propose a Bicycle Sta-

tion Dynamic Planning (BSDP) system to dynamically provide the optimal bicycle station layout for the DL-

PBS network. The BSDP system contains four modules: bicycle drop-off location clustering, bicycle-station

graph modeling, bicycle-station location prediction, and bicycle-station layout recommendation. In the bicy-

cle drop-off location clustering module, candidate bicycle stations are clustered from each spatio-temporal

subset of the large-scale cycling trajectory records. In the bicycle-station graph modeling module, a weighted

digraph model is built based on the clustering results and inferior stations with low station revenue and util-

ity are filtered. Then, graph models across time periods are combined to create a graph sequence model. In

the bicycle-station location prediction module, the GGNN model is used to train the graph sequence data

and dynamically predict bicycle stations in the next period. In the bicycle-station layout recommendation

module, the predicted bicycle stations are fine-tuned according to the government urban management plan,

which ensures that the recommended station layout is conducive to city management, vendor revenue, and

user convenience. Experiments on actual DL-PBS networks verify the effectiveness, accuracy, and feasibility

of the proposed BSDP system.
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Neural networks;
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1 INTRODUCTION

With the advantages of zero carbon emissions and convenient cycling, public bicycles have signifi-

cant benefits in urban short trips and are widely used as public transportation to solve the first/last

mile problem [5, 9, 29]. In many cities in the world, there are numerous Station/Dock-based Public

Bicycle-sharing (SD-PBS) systems that provide citizens with public bicycles [10, 22]. In the SD-PBS

system, each bicycle station has multiple fixed docks, which greatly limits the movement of the

station and the increase of bicycles, and further prevents users from renting and returning bicy-

cles [24]. In current years, Dockless PBS (DL-PBS) systems become increasingly prevalent in many

countries [1, 26, 32]. DL-PBS providers deploy public bicycles at flexible parking points (drop-off

locations) instead of fixed stations, and users can return bicycles at anywhere near their destina-

tion. Benefitting from the dockless parking and low station moving cost, we can deploy stations

and dispatch bicycles dynamically according to the actual demands in different periods.

Various practical problems arise during the deployment of DL-PBS networks, such as unreason-

able bicycle station layout, inefficient and imprecise bicycle deployment, and difficulty in bicycle

maintenance [24]. On the one hand, due to low deployment costs and vicious competition from

peers, a large number of redundant bicycles are deployed in locations that are not frequently used.

Meanwhile, due to the fierce competition between different providers and the low deployment

cost, a large number of redundant bicycle stations are arbitrarily deployed [4]. Massive cluttered

bicycle stations from different providers raise the problems of urban road management and traf-

fic safety while causing a waste of bicycling resources at low-usage stations. On the other hand,

because users may return their bicycles to any place, bicycle drop-off locations will spread across

all corners of the city. Users face difficulties in finding nearby drop-off locations to rent or return

bicycles. Therefore, bicycle station layout is an important factor affecting the Quality of service

(QoS) of PBS, and also affects the bicycle deployment, maintenance, and dispatching.

Numerous efforts have been devoted to the research of PBS networks, such as station layout

modeling, bicycle dispatching, and bicycle demand prediction [4, 19]. In station layout modeling,

most existing works focused on the traditional SD-PBS networks, mainly relying on empirical

experience and surveys in terms of population distribution and environmental factors [10, 16].

The traditional approaches face limitation in the novel DL-PBS networks in two aspects: (1) the

large-scale actual bicycle loan datasets are not fully utilized in station modeling, while the real-

time bicycle demand is not considered as well, and (2) SD-PBS networks hold the characteristics

that the fixed stations locations and fixed docks in each station, which increase the cost of station

migration and have difficulty in matching the flexible bicycle demands. Existing bicycle stations

of the SD-PBS and DL-PBS networks are usually deployed based on the flow rate and density of

visitors, lacking in a scientific and reasonable basis. Moreover, most of existing methods design the

static bicycle station layout at the initial phase. Owing to the high construction cost, once these

stations are built, the location of these stations will not change.

In this article, we focus on the bicycle station layout of the DL-PBS network and propose a

Bicycle Station Dynamic Planning (BSDP) system. The workflow of the BSDP system is illustrated

in Figure 1. The system can dynamically predict the location of bicycle stations and the number of

bicycles needed at each station, providing accurate planning for bicycle station deployment and

bicycle dispatching. Our contributions in this article can be summarized as follows:
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Fig. 1. Workflow of the proposed Bicycle Station Dynamic Planning (BSDP) system. (1) Collect and inte-

grate large-scale bicycle GPS datasets, cycling trajectory datasets, and map data from the actual DL-PBS

network. (2) Use a bicycle drop-off location clustering method to detect candidate bicycle stations. (3) Cre-

ate a weighted digraph model based on the candidate bicycle stations after filtering inferior stations, and

build a graph sequence model by linking graph models across time periods. (4) Use the GGNN model to

train the graph sequence data and dynamically predict the bicycle stations in the next period. (5) Fine-tune

the predicted bicycle stations according to the government’s urban management plan to ensure their legit-

imacy and maximize revenue. (6) The bicycle station layout can be used for downstream applications, such

as bicycle dispatching planning, cycling trajectory tracking, and fault bicycle detection.

• We collect large-scale cycling trajectory records from the DL-PBS network and propose a

bicycle drop-off location clustering method, in which dense bicycle drop-off locations are

clustered as candidate bicycle stations.

• Based on the clustering results, we construct a bicycle station graph model for each spatio-

temporal subset and remove the inferior stations with low station revenue and utility. In

addition, graph models across time periods are linked as a graph sequence model.

• We introduce the Gated Graph Neural Network (GGNN) to create a bicycle station pre-

diction method, in which bicycle demand and bicycle stations in the next time period are

dynamically predicted based on the historical graph sequence model.

• We propose a bicycle station layout recommendation method, where the location of pre-

dicted stations and the number of public bicycles needed at each station are fine-tuned

according to the government management plan.
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The remainder of the article is organized as follows: Section 2 reviews the relatedwork. Section 3

introduces the bicycle drop-off location clustering and graph modeling of the DL-PBS network.

Section 4 describes the bicycle station dynamic planning system. Section 5 provides experimental

evaluations. Section 6 concludes this article with future work and directions.

2 RELATEDWORK

Various efforts have been made in researching big data and data mining techniques to build smart

cities [29, 32, 33]. Numerous studies of PBS networks and smart cities attract both fields of indus-

try and academia [3, 13, 19]. Focusing on the analysis and prediction of public bicycle demands,

Zhang et al. used a circular distribution method to obtain the daily peak of the public bicycle trips.

They used a time series model to predict the bicycle demands during rush hours [3]. Etienne et al.

analyzed the use of PBS networks by using model-based count series clustering [9]. Cazabet et al.

studied cycling rules from the perspective of signal processing and data analysis [2], in which a cy-

cling periodic model was built by analyzing the characteristics of time, space, and riders. However,

most existingmodels are built on external factors such as population density and travel probability,

rather than the laws of cycling trajectory records themselves.

There are numerous approaches focused on location prediction [15] in temporal-spatial en-

vironments. In Reference [15], Jia et al. proposed a temporal-spatial Bayesian model to predict

user’s location based on his influential friends’ locations. In Reference [30], Ying et al. intro-

duced a Geographic-Temporal-Semantic (GTS) model and proposed a GTS-based location predic-

tion method. They collected the trajectories of users and calculated the similarity of the movement

and trajectories between users. Focusing on the layout of public bicycle stations, various schemes

were carried out in References [16, 24]. Ma et al. proposed a hierarchical public bicycle dispatching

strategy for dynamic demand [24]. In Reference [7], Deng et al. discussed the layout optimization

of public bicycle stations based on the AHP method. Jiang et al. analyzed the GPS trajectory of

urban bicycles and detected K primary corridors on the road network [16]. The scale of bicycle

stations includes the number of bicycles, the grade of the station, and the scope of bicycle-sharing

services. However, most of the existing studies focus on the traditional SD-PBS network, and they

design the static bicycle station layout at the initial phase. Owing to the high construction cost,

once these stations are built, the location of these stations will not change. Different from the ex-

isting research, we focus on the dynamic layout of the bicycle stations for the DL-PBS network and

update the bicycle stations between different time periods according to the actual bicycle usage

demands.

Graph Neural Network (GNN) is an effective deep learning model used in graph or network

applications [5, 18, 25, 28]. In Reference [17], Khodayar et al. proposed a GNN model and applied

it to wind speed prediction. Levie et al. introduced a spectral-domain convolutional architecture

of DL on graph models [20]. Lin et al. used the GNN method to predict the hour-level demands of

bicycle stations in the SD-PBS network. They used the Long Short-Term Memory (LSTM) neural

network to capture the temporal dependency in bicycle-sharing demand sequences [23]. In Ref-

erence [11], Gast et al. introduced a generalized regression neural network to predict the public

bicycle demands of SD-PBS. Li et al. modified the GNNmodel and proposed a Gated Graph Neural

Network (GGNN) to achieve a flexible and broadly output sequence [21]. In this work, we use the

GGNN model to train the bicycle station graph sequence of the DL-PBS network and predict the

location of bicycle stations and their bicycle-sharing demands.

3 DL-PBS NETWORK CLUSTERING AND GRAPH MODELING

In this section, we will describe the DL-PBS network and highlight its characteristics with practical

issues that arise during the deployment. Then, based on the cycling trajectory records, we establish
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Fig. 2. Principal components of a DL-PBS network, including public bicycles, dockless bicycle stations, a

GPS module, a QR-code-based locking module, and a mobile application.

a weighted digraph model for the DL-PBS network and calculate the update of bicycle stations to

create a graph sequence model.

3.1 Dockless Public Bicycle-sharing (DL-BPS) Network

As a new generation of PBS systems, the DL-PBS network provides personalized and convenient

services during bicycle rental and return [26]. The principal components of a DL-PBS network

include public bicycles, dockless stations, Global Positioning System (GPS), a Quick Response (QR)

code-based locking module, and a mobile application, as shown in Figure 2.

• Public bicycles. Public bicycles have a distinctive look to be quickly identified by users.

Each bicycle is equipped with a GPS to record its position in real time and a QR code–based

locking module.

• Dockless bicycle stations (also called drop-off locations or parking points). The DL-PBS

providers deploy bicycles at any permitted public parking area, such as the curbside, the

entrances of parks, communities, and shopping malls. Each dense bicycle parking point is

termed as a temporary dockless bicycle station, as shown in Figure 2(a).

• QR code. Each bicycle has a unique QR code that can be scanned via a mobile App to unlock

the bicycle and pay the rent, as shown in Figure 2(b).

• Mobile application (APP). Mobile APP is an important component of the DL-PBS network.

It provides functions including bicycle GPS locating, QR code scanning and unlocking, pay-

ment, and cycling trajectory tracking, as shown in Figure 2(c).

3.2 Bicycle Drop-off Location Clustering

We collect large-scale historical bicycle GPS datasets and cycling trajectory records from DL-PBS

networks deployed in different cities and administrative regions. Bicycle GPS records are routinely

collected from all stationary bicycles. Each bicycle GPS record contains the bike ID, longitude, lati-

tude, and the timestamp of collection. Cycling trajectory records are saved from the users’ cycling

behaviors. Each cycling trajectory record contains user ID, bike ID, the timestamp of pick-up (rent)

and drop-off (return), longitude and latitude of rent and return positions, cycling distance, and cost.

Considering that the layout of bicycle stations is usually suitable for a certain city or administra-

tive region, we need to build a bicycle station graph model for each city or administrative region at
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Fig. 3. Examples of cycling trajectory and GPS records. (a) is the cycling trajectory records of bicycles, where

each yellow icon is a bicycle GPS location, and the red directed line is the cycling route. (b) is the GPS records

of stationary bicycles.

Table 1. Examples of Cycling Trajectory Records

Departure Info. Arrival Info.

User Bicycle Time stamp Latitude Longitude Time stamp Latitude Longitude

01 e1xx4 2018/10/25 10:20:22 39.914548 116.440848 2018/10/25 10:48:13 39.900323 116.484110

02 e1xx9 2018/10/25 09:11:19 39.914326 116.482170 2018/10/25 09:43:27 39.899604 116.425325

03 elxx3 2018/10/25 19:15:10 39.899604 116.425325 2018/10/25 19:44:23 39.890705 116.483715

. . . . . . . . . . . . . . . . . . . . .

each time period. Therefore, we divide the cycling trajectory dataset into multiple spatial subsets

based on administrative divisions and further divide each spatial subset into multiple temporal

subsets by time periods. Examples of cycling trajectory and GPS records are given in Figure 3 and

Table 1.

The bicycle drop-off locations collected from bicycle GPS datasets have the characteristics of

varying density distribution (VDD), equilibrium distribution (ED), and multiple domain-density

maximums (MDDM). Specifically, bicycles are densely distributed in some areas (i.e., urban areas),

while sparsely distributed in other areas (i.e., suburban areas), which is in line with the VDD

characteristic. In addition, in the initial deploy state, the bicycles at each drop-off location are

parked neatly at the same interval, so each bicycle at the drop-off location has an ED. Moreover,

it is easy to know that the bicycle position may have multiple domain density maximums during

use and return. The Domain Adaptive Density Clustering Algorithm (DADC) algorithm proposed

in our previous work [6] can obtain more reasonable clustering results on data with VDD, ED, and

MDDM characteristics. Therefore, we introduce the DADC algorithm for bicycle drop-off location

clustering.

Given a set of cycling trajectory records in a temporal subset, we extract all GPS information of

pick-up and drop-off from each record. Assume that there are M records in the dataset X , hence

2M positions are extracted. Considering that the same bicycle may be used many times during

the current period, the position will be extracted repeatedly. In the rest of this article, we perform

bicycle drop-off location clustering and graph modeling for each temporal subset X . We filter the

position information of the same bicycle ID with the same latitude and longitude. We get the

dataset of bicycle positions in the current period X = {x1, . . . ,xN }, and the number of positions N
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Fig. 4. Example of DADC-based bicycle drop-off location clustering. (a) For each data point, we calculate

the local density and the delta distance. (b) We draw a clustering decision graph based on local density and

delta distance to detect cluster centers, outliers, and remaining points.

satisfiesM ≤ N ≤ 2M . For each data point xi in X , we define the local density ρi of xi as:

ρi =
∑

x j ∈N (xi )

χ (di j − dc ), (1)

whereN (xi ) is the neighbors ofxi ,dc is a cutoff distance, and χ (di j − dc ) = 1, ifdi j < dc ; otherwise,
χ (di j − dc ) = 0. Therefore, ρi is equal to the number of points closer than dc to xi . In addition, we

calculate the delta distance δi of xi by computing the shortest distance between xi and any other

data points with a higher density:

δi = min
j :ρ j>ρi

di j . (2)

For the highest density point, δi = maxx j ∈X (di j ).
After calculating the local density ρ and the delta distance δ , we can draw a clustering decision

graph based on ρ and δ , where ρ is the x-axis and δ is the y-axis. Then, we observe the distribution

of these points from the graph. Data points with a high ρ (ρi > θρ ) and a high δ (δi > θδ ) are con-
sidered as cluster centers, while points with a low ρ and a high δ are considered as outliers. In prac-
tical applications, the values of θρ and θδ are manually set based on experience. In this work, the

effective thresholds are set as θρ =
1
3ρmax and θδ =

1
3δmax . After finding the cluster centers, each

remaining point is assigned to the same cluster as its nearest neighbor with a higher density. An

example of the DADC-based bicycle drop-off location clustering process is illustrated in Figure 4.

The detailed steps of DADC-based bicycle drop-off location clustering are presented in Algo-

rithm 3.1. The process of the bicycle drop-off location clustering includes sub-processes of cluster

center detection and remaining point assignment. Assuming that the number of data points in X
is equal to N , the computational complexity of Algorithm 3.1 is O (N ).

3.3 Bicycle Station Graph Model

Based on the bicycle drop-off location clustering results, we obtain a series of candidate bicycle

stations.We build aweighted digraphmodel for these stations, where the stations are considered as

vertices, and the cycling records between them are collected as the corresponding directed edges.

In addition, we detect inferior stations with low station revenue and utility and remove them from

the graph to obtain a high-quality bicycle station graph. An example of the bicycle station graph

modeling process is shown in Figure 5.
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25:8 J. Chen et al.

Fig. 5. Graph modeling of DL-PBS bicycle stations. The clusters of bicycle drop-off locations are treated

as candidate bicycle stations and used as the vertices of the station graph model. In addition, the cycling

records between stations are collected as the corresponding directed edges between vertices.

ALGORITHM 3.1: DADC-based bicycle drop-off location clustering

Input:
X : A temporal subset of cycling trajectory records;
θρ : The local density threshold for the data points in X ;

θδ : The delta distance threshold for the data points in X ;
Output:

C : The clustered bicycle stations.
1: extract all bicycle locations of rent and return from Xraw ;
2: filter duplicate positions and obtain a set of bicycle locations X ;
3: for each data point xi in X do
4: calculate the local density ρi using Equation (1);
5: calculate the delta distance δi using Equation (2);
6: if ρi > θρ and δi > θδ then

7: mark xi as a cluster center C ← xi ;
8: else
9: mark xi as a remaining point Λ← xi ;
10: for each remaining point xi in Λ do
11: assign xi to the nearest cluster c ;
12: return C .

(1) Construct a weighted digraph for bicycle stations. A DL-PBS network can be intuitively mod-

eled as a weighted digraph model, where vertices are bicycle stations and edges are cycling trajec-

tories between them. Let G = (V , E, D,W ) be a weighted digraph model of the DL-PBS network

in a temporal subset, where V is the set of bicycle stations, E is the set of cycling paths between

stations,D is the actual distance between stations, andW is the number of cycling records between

stations. We calculate the value of the actual distance D = {. . . ,di j , . . . }, where each element di j
represents the distance between stations vi and vj , and di j = dji . Considering that each bicycle

station is a cluster of public bicycles, we find the cluster center of each station.

Let ψi and φi be the latitude and longitude of station vi , we can use the Haversine method to

calculate the distance between stations vi (φi ,ψi ) and vj (φ j ,ψj ):

di j = 2 × R × sin
√
H

(
d

R

)

= 2R × sin
√
H ( |ψi −ψj |) + cos(ψi ) cos(ψj )H ( |φi − φ j |),

(3)
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where R is the radius of the earth, usually set to 6,371.0 km, and the Haversine function H (θ ) is
defined as:

H (θ ) = sin2
(
θ

2

)
=

1

2
(1 − cos(θ )). (4)

For each directed edge ei j , we count the number of cycling records starting from station vi and
arriving atvj , and treat it as the weightwi j of the edge. Note thatwi j � w ji . In this way, we obtain

the set of weightsW of all directed edges E and create a weighted digraphmodelG = (V , E, D,W ).
(2) Remove inferior bicycle stations. As mentioned above, due to low deployment costs and

vicious competition from peers, a large number of redundant bicycles are deployed in locations

that are not frequently used. We need to detect and remove these stations from the bicycle station

graph to maximize the benefits and utility of the DL-PBS network.

Definition 1 (Station Revenue). The revenue of a bicycle station is the sum of the cycling costs of

all bicycles rented (departing) from the station. The revenue of each station vi is calculated as:

Pi =
∑

wi j ∈W
(wi j × di j × α ), (5)

where α is the cycling cost per unit distance, and (di j × α ) is the cycling cost of a bicycle from vi
to vj .

Definition 2 (Station Utility). The throughput of a bicycle station refers to the number of bicycles

leaving or arriving at this station. The utility of a station is the ratio of the station’s throughput to

the entire graph’s throughput. The throughput of a station vi is defined as:

TPi =
∑

wi j ,w j′i ∈W

(
wi j +w j′i

)
, (6)

wherewi j is the weight of the directed edges leaving vi to any station vj andw j′i is the weight of
the directed edges arriving at vi from any station vj . Let TPG =

∑
wi j ∈W wi j be the throughput of

the entire graph, we can calculate the utility of station vi as:

Ui =
TPi
2TPG

=
∑

wi j ,w j′i ∈W

(
wi j +w j′i

) /
2
∑

wi j ∈W
wi j . (7)

The relationship of station utilization and station degrees: Utilization is the number of borrowed

and returned bicycles at this station, and station degrees refers to the station of the number of

access.

Definition 3 (Inferior Bicycle Stations). A bicycle station vi is regarded as an inferior station if its

revenue Pi is below the given threshold θP and its utilityUi is below the given threshold θU .
Station revenue is positively related to station utility. Namely, an increase in station utility will

bring an increase in station revenue. In the actual operation of theDL-PBS network, due to different

DL-PBS network layouts and densities in different cities, distinct values are set to these thresholds.

Based on the station revenue and utility, we can detect inferior bicycle stations and remove them

and their associated edges from the bicycle station graph.

Algorithm 3.2 describes the detailed steps of bicycle station graph modeling. In Algorithm 3.2,

the process of the bicycle station graphmodeling includes sub-processes of graph construction and

inferior bicycle stations deletion. Assuming that the number of bicycle station clusters is equal to

|C |, that is, the number of vertices of the bicycle station graphG, the computational complexity of

Algorithm 3.2 is O ( |C |).
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Fig. 6. Bicycle station updating and graph sequence modeling.

ALGORITHM 3.2: Bicycle station graph modeling

Input:
C : The clustering results of the bicycle stations;
X : A temporal subset of cycling trajectory records;
θP : The threshold of station revenue;
θU : The threshold of station utility;

Output:
G : the graph model of the DL-PBS network.

1: for each cluster ci in clusters C do
2: identify the cluster center and create a vertex vi ← center(ci );
3: calculate attributes of φi ,ψi , and ni for vi ;
4: calculate directed edges E and weightsW from C and X ;
5: calculate the distances D between vertices using Equation (3);
6: build a graph model G ← (V , E, D, W );
7: for each vertex vi in V do
8: calculate station revenue Pi using Equation (5);
9: calculate station utilityUi using Equation (7);
10: if Pi < θP and Ui < θU then
11: detect vi as an inferior station and remove vi from V ;
12: remove edges ei j and eji from E ;
13: return G .

3.4 Graph Sequence Model of DL-PBS Network

In the previous section, we established a bicycle station graph for each temporal subset of cycling

trajectory records in a city or administrative region. In this way, we can build a series of graphs

between different time periods in the same area. In this section, we consider updates to bicycle

stations across time periods, add a time dimension to these graphs, and build a graph sequence

model. An example of the graph sequence modeling process is illustrated in Figure 6.

Given a time seriesT = {1, . . . , t }, we divide a region’s historical cycling trajectory records into
a series of temporal subsets X = X1, . . . ,Xt , and then build a graph model Gt for each subset Xt .

In this way, we can build a series of graphs and create a graph sequence modelGS = {G1, . . . ,Gt }.

4 BICYCLE STATION DYNAMIC PLANNING SYSTEM

Based on bicycle drop-off location clustering, we established a series of bicycle station graph mod-

els and further created a graph sequence model. In this section, we propose a Bicycle Station

Dynamic Planning (BSDP) system to predict the location of stations and their bicycle-sharing de-

mands in the next period. The GGNN model is used to train the bicycle station graph sequence
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Fig. 7. Structure of the GGNN-based bicycle-station location prediction model.

model and predict a bicycle station graph in the next period. In addition, we fine-tune the location

of bicycle stations by matching the predictions with the government’s urban management plan.

Finally, we provide a bicycle station layout recommendation for the DL-BPS system.

4.1 GGNN-based Bicycle-station Location Prediction

We introduce the Gated Graph Neural Network (GGNN) model [21] to train the large-scale his-

torical graph sequence datasets of each city and predict the bicycle station layout in the next time

period. The structure of the GGNN-based bicycle-station location prediction model is shown in

Figure 7.

• Input: We collect large-scale historical cycling trajectory records from the DL-PBS network

in different cities and administrative regions and then construct a set of bicycle station

graph datasetsGS = {G1, . . . ,Gt } for each of them. Each bicycle station graphGt ∈ GS in a

historical time period is used as an input of the GGNN model.

• Output: Given an input Gt , the output of the GGNN model is a predicted bicycle station

graph Gt+1 for the (t + 1)-th time period. From Gt+1, we can obtain the location of the

predicted bicycle stations and the number of bicycles needed at each station.

(1) The forward-propagation prediction process. We represent the bicycle station graph se-

quence dataset GS = {G1, . . . ,Gt } as X = {x1, . . . ,xt } and use each graph xt = Gt as the input

of the GGNN model. We use the Gated Recurrent Unit (GRU) cells as the gate layer of the GGNN

model. LetH = {h1, . . . ,ht } ∈ RD×n be the hidden state matrix of the GRU module, where D is the
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dimension of the hidden state of each unit. For the input xt of the t th time period, the values of

the reset gate and update gate are calculated as:

rt =σ (Wr � [ht−1,xt ] + br ),
zt =σ (Wz � [ht−1,xt ] + bz ),

(8)

whereWr and br are the weight-parameter and bias matrices of the reset gate,Wz and bz are those
of the update gate, and operation � indicates an element-wise multiplication. σ () is a sigmoid acti-

vation function, and σ (x ) = (1 + e−x )−1. Based on the reset and update gates, we further calculate

the values of the hidden and output layers:

h̃t = tanh
(
W

h̃
� [rt × ht−1,xt ]

)
,

ht = (1 − zt ) × ht−1 + zt × h̃t ,
yt =σ (Wo � ht ).

(9)

In this way, for each input xt = Gt , we can obtain the corresponding output yt from the GGNN

model and treat it as the predicted bicycle station graph Gt+1 for the (t + 1)-th time period.

(2) The backward-propagation training process. In the previous process, we obtain yt = Gt+1

for each input xt = Gt in each period t . Benefiting from large-scale historical bicycle station graph

sequence modelsG1 ∼ Gt , we can continuously train the GGNNmodel to be stable and convergent

by comparing the predicted graph value of each historical period with the actual value. Let yt be
the predicted graph and yd be the actual graph of the bicycle stations in the (t + 1)-th time period.

The core loss functions between different gates and layers are calculated as follows:

δy,t = (yd − yt ) � σ ′,
δh,t =δy,tWo + δz,t+1Wzh + δt+1Wh̃h

rt+1 + δh,t+1Wrh + δh,t+1 (1 − zt+1),
δz,t =δt,h (h̃ − ht−1) � σ ′,
δt =δh,t � zt � tanh′,

δr,t =
[
(δh,t � zt � tanh′)W

h̃h

]
� σ ′,

(10)

where Wrx is the weight matrix between the reset gate and the input layer, Wrh is the weight

matrix between the reset gate and the previous hidden layer, andWr is the join link ofWrx and

Wrh :
Wr =Wrx +Wrh ,

Wz =Wzx +Wzh ,

W
h̃
=W

h̃x
+W

h̃h
.

(11)

We use the above equations to iteratively update the weight matrixes, such asWr ,Wz ,Wh̃
,Wh , and

Wo . In this way, the weight parameters between different gates and layers are successively updated

to obtain a stable and convergent GGNNmodel. The detailed steps of GGNN-based bicycle station

prediction are presented in Algorithm 4.1.

4.2 Bicycle Station Layout Recommendation

Based on the prediction results of bicycle-sharing demand, we can obtain the location of bicycle

stations and the number of bicycles needed at each station in the next period. As mentioned above,

in a DL-PBS network, users can not only find available bicycles at any nearest location via GPS

positioning, but also return bicycle to anywhere near their destination. Given that users may re-

turn public bicycles to locations that are not permitted by the government, the bicycle stations
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ALGORITHM 4.1: GGNN-based bicycle station prediction

Input:
GS = {G1, . . . , Gt }: A historical graph sequence model of DL-BPS bicycle stations;

Output:
Gt+1: the predicted bicycle station graph for the (t + 1)-th time period.

1: initialize the weight parameters of the GGNN model;
2: for each iteration epoch i do
3: for each graph dataset Gt in GS do
4: forward propagation and predict yt ← GGNN(Gt );
5: calculate the loss functions using Equation (10);
6: update the weight parameters of the GGNN model using Equation (11);
7: save the trained GGNN model;
8: predict bicycle station graph Gt+1 ← GGNN(GS );
9: return Gt+1.

predicted from these records may be located outside of government-permitted parking positions.

Therefore, we need to fine-tune the location of bicycle stations by matching the predictions with

the government’s urbanmanagement plan. Specifically, if a predicted station is in a permitted area,

set it as a bicycle station, otherwise, we fine-tune the location of the current station to the nearest

permitted area.

Let Gt+1 = (V ,E,D,W ) be a predicted bicycle station graph model for the subsequent pe-

riod t + 1, where V = {v1,v2, . . . ,vn } represents a set of candidate bicycle stations. Each station

vi = (φi ,ψi ,ni ) consists of three attributes: the station location (longitude φi and latitude ψi ) and
the number ni of bicycles needed at this station. Let P = {p1,p2, . . . ,pm } be a set of urban pub-

lic places that allow parking of public bicycles (termed as legal parking positions). Each posi-

tion pj = (φ j ,ψj ,nj ) also contains three attributes: the location (longitude φ j and latitude ψj ) and

the maximum number nj of bicycles that the position can hold. For each predicted bicycle sta-

tion vi , we find the nearest legal parking position pj ∈ P . There are three situations between vi
and pj .

• Case (a): di j ≤ θd and nj ≥ ni : vi is in a legal parking position with sufficient space. We use

Equation (3) to obtain the distance di j between vi and pj . Considering the deviation of GIS

data acquisition, we set a deviation threshold θd for position matching. If di j ≤ θd , then the

locations of vi and pj are considered coincident, that is, vi is in pj . In addition, if nj ≥ ni ,
then this means that pj has sufficient space to accommodatevi ’s predicted bicycles, and we
accept this station and the predicted bicycles without any adjustments.

• Case (b): di j ≤ θd and nj < ni : vi is in a legal parking position with insufficient space. If

di j ≤ θd and nj < ni , it means that the number of bicycles at vi exceeds the available space
provided bypj . We need to split the stationvi by finding another near legal parking position
p ′j for the extra bicycles (ni − nj ).

• Case (c): di j > θd : vi is in an illegal position. If vi is not in any legal parking position, then

we need to fine-tune the location of vi to pj : (φi ,ψi ) = (φ j ,ψj ). Then, we go to Case (a) or

Case (b) to further judge whether the available space of pj meets the conditions.

Examples of the relationship between predicted bicycle stations and legal parking positions are

shown in Figure 8.

After matching the predicted bicycle stations to the legal parking positions, we fine-tune the

stations by updating the predicted station locations and the number of bicycles at each station.

Finally, we obtain the recommendation scheme of bicycle station layout for the current urban

area. Algorithm 4.2 gives detailed steps of the fine-tuning and recommendation process of the

predicted bicycle stations.
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Fig. 8. Examples of the relationship between predicted bicycle stations and legal parking positions.

ALGORITHM 4.2: Bicycle station fine-tuning and recommendation

Input:
Gt+1: The predicted graph model of bicycle stations;
P : A set of legal parking positions for public bicycles;
θd : Distance deviation threshold of station location matching;

Output:
G′t+1: The fine-tuned bicycle station layout scheme.

1: load predicted bicycle stations V fromGt+1;
2: while V is not empty do
3: for each station vi in V do
4: find the nearest legal parking position pj ← (vi , P );
5: if di j ≤ θd then
6: if nj ≥ ni then
7: move vi from Gt+1 to G

′
t+1;

8: else
9: update the value of vertex vi as (φi , ψi , nj );
10: move vi from Gt+1 to G

′
t+1;

11: find another nearest legal parking position p′j ← (vi , P − pj );
12: create a new vertex v ′i with the attributes of (φ j′ ,ψj′ , ni − nj );
13: append v ′i to G

′
t+1;

14: else
15: update the location of station vi (φi ,ψi )← (φ j ,ψj );
16: return G′t+1.

5 EXPERIMENTS

5.1 Experimental Setup

We collect bicycle GPS datasets and cycling trajectory records from a DL-PBS provider in China.

These datasets are collected from 16 administrative regions in Beijing, China, from January 1st,

2018, to December 31st, 2019. According to administrative divisions, these datasets are divided

into 16 spatial subsets, and each spatial subset is further divided into multiple temporal subsets

by days or weeks. The demand for shared bikes is real-time, and bicycle demand forecasting and

station planning are the basis of bicycle dispatching. The total circulation and dispatch frequency

of bicycles in different administrative regions are different. In this case, we forecast bicycle demand

according to the time period of bicycle dispatching (i.e., daily or weekly).

In the comparison experiments, we use k-fold cross-validation to divide the training set and test

set. We set k = 5 and perform 5-fold cross-validation. For each spatial subset of an administrative

division, we divide the spatio-temporal subsets into 5 groups. Then, 4 groups are used as the train-

ing set and the remaining 1 group is used as the test set. We repeat this process until every 5-fold

serves as the test set. Finally, we take the average of the recorded scores as the accuracy of the

corresponding algorithm.
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5.2 Discussion of Experimental Results

In this section, we discuss the experiment results of bicycle drop-off location clustering and

bicycle-station location prediction. In three cases, we discuss the experimental results of four

administrative regions in Beijing, such as Dongcheng District, Xicheng District, Haidian District,

and Fengtai District.

5.2.1 Case Study 1: Dongcheng and Xicheng Districts. In the first case, we divide the spatial DL-

PBS datasets of Dongcheng and Xicheng Districts into 730 temporal subsets by day, each of which

has approximately 418,392 cycling trajectory records. We implement the proposed bicycle drop-

off location clustering algorithm on each historical temporal subset and obtain the corresponding

clustering results. Based on the clustering result of each temporal subset, we construct a corre-

sponding bicycle-station graph model for each time period and then collect all graph models in

different periods to form a graph sequence model. Finally, we execute the GGNN algorithm on the

graph sequence model to predict the bicycle-station graph model in the next time period. Taking

the graph models from October 22, 2018, to October 24, 2018, as an example, the experimental

results are shown in Figure 9.

Figure 9(a) shows the clustering results of bicycle drop-off locations in Dongcheng and Xicheng

Districts during October 22, 2018. According to the number of bicycles that can be accommodated

at each bicycle station, we divide these stations into four levels: micro station (each station can

accommodate 5 to 10 bicycles), small station (10 to 20 bicycles), medium station (20 to 30 bicy-

cles), and large station (more than 30 bicycles). In this way, from the clustering results, we obtain

145 micro stations, 137 small stations, 59 medium stations, and 5 large stations. Bicycle drop-off

location clusters with less than 5 bicycles will be ignored.

Based on the clustering results, we include the cycling records between the clusters and build a

bicycle-station graphmodel for October 22, 2018. Then, we calculate the revenue and utility of each

candidate station and remove 43 inferior stations from the graphG20181022, as shown in Figure 9(b).

In the same way, we build a bicycle-station graph model for October 23, 2018, based on the corre-

sponding clustering results. As shown in Figure 9(c), there are 91 micro stations, 136 small stations,

49 medium stations, and 18 large stations in the graph model G20181023. By comparing the graphs

G20181022 andG20181023, we can see that the number of bicycles at almost every station has changed

dynamically. FromG20181022 andG20181023, 6 micro stations and 2 small stations disappeared, but 2

new micro stations appeared. As bicycles flow, 13 micro stations expand to small stations; 6 small

stations expand to medium stations and 4 shrink to micro stations; 13 medium stations expand to

large stations and 3 shrink to small stations. In this way, we continue to perform the processes of

bicycle drop-off location clustering and bicycle-station graph modeling for each temporal subset

and create a graph sequence model.

After obtaining the graph sequence model of Dongcheng and Xicheng Districts, we train the

GGNN model using the graph sequence data and get a predicted bicycle-station graphG20181024 in

the next day (October 24, 2018), as shown in Figure 9(d). Then, we fine-tune the location of bicycle

stations by matching the predictions with Dongcheng and Xicheng Districts’ urban management

plan. Finally, we get the location of each bicycle station and the number of bicycles needed.

5.2.2 Case Study 2: Haidian District. In the second case, we discuss the experimental results

of the spatial DL-PBS datasets in Haidian District, Beijing. The spatial DL-PBS dataset is divided

into 104 temporal subsets by week, each of which has approximately 3,521,486 cycling trajectory

records. The experimental results of bicycle drop-off location clustering, bicycle-station graph con-

struction, and bicycle station prediction are shown in Figure 10.

Figure 10(a) shows the clustering results of bicycle drop-off locations in Haidian District during

the first week of June 2018. We obtain 123 micro stations, 119 small stations, 45 medium stations,
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Fig. 9. Results of bicycle drop-off location clustering and bicycle station prediction in the Dongcheng and

Xicheng Districts. (a) is the clustering results of bicycle drop-off locations on October 22, 2018, where four

types of bicycle stations are detected, such as micro stations, small stations, medium stations, and large

stations. (b) is the bicycle station graph model based on the clustering results on October 22, 2018. (c) is

the bicycle station graph model based on the clustering results on October 23, 2018. (d) is the predicted

bicycle-station graph for October 24, 2018.

and 7 large stations. Based on the clustering results, we include the cycling records between the

clusters and build a bicycle-station graphmodel for this period. Then, we calculate the revenue and

utility of each candidate station and remove 28 inferior stations from the graphG2018061w , as shown

in Figure 10(b). As shown in Figure 10(c), we build the bicycle-station graph model G2018062w for

the second week of June 2018, which contains 139 micro stations, 121 small stations, 41 medium

stations, and 25 large stations. We continue to perform the processes of bicycle drop-off location

clustering and bicycle-station graphmodeling for each temporal subset in the sameway and create

a graph sequence model. Next step, we train the GGNN model using the graph sequence data and
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Fig. 10. Results of bicycle drop-off location clustering and bicycle station prediction in the Haidian District.

We group the historical bicycle GPS datasets and predict the bicycle station graph by weeks. (a) and (b) are

the clustering results of bicycle drop-off locations and the related bicycle station graphmodel for the 1st week

of June 2018, (c) is the graph model for the 2nd week of June 2018, and (d) is the predicted bicycle-station

graph for the 3rd week of June 2018.

get a predicted bicycle-station graph G2018063w in the next period (the third week of June 2018),

as shown in Figure 10(d). After fine-tuning the location of bicycle stations with Haidian District’s

urban management plan, we get the location of each bicycle station and the number of bicycles

needed.

5.2.3 Case Study 3: Fengtai District. In the third case, we discuss the experimental results of the

spatial DL-PBS datasets in Fengtai District, Beijing. We divide the spatial DL-PBS dataset into 104

temporal subsets by week, each of which has approximately 3,107,753 cycling trajectory records.
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Fig. 11. Results of bicycle drop-off location clustering and bicycle station prediction in the Fengtai District.

(a) and (b) are the clustering results of bicycle drop-off locations and the related bicycle station graph model

for the 1st week of June 2018, where 131 micro stations, 160 small stations, 37 medium stations, and 19 large

stations are detected. (c) is the graph model for the 2nd week of June 2018, where 141 micro stations, 129

small stations, 67 medium stations, and 17 large stations are detected. (d) is the predicted bicycle-station

graph for the 3rd week of June 2018, where 119 micro stations, 125 small stations, 67 medium stations, and

20 large stations are predicted.

The experimental results of bicycle drop-off location clustering, bicycle-station graph construction,

and bicycle station prediction are shown in Figure 11.

Figure 11(a) shows the clustering results of bicycle drop-off locations in Fentai District during

the first week of Sept. 2018. We obtain 131 micro stations, 160 small stations, 37 medium stations,

and 19 large stations. Based on the clustering results, we include the cycling records between

the clusters and build a bicycle-station graph model G2018091w for the current period, as shown in

Figure 11(b).
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Fig. 12. Accuracy evaluation of bicycle drop-off location clustering.

We continue to build the bicycle-station graph modelG2018092w for the second week of Septem-

ber 2018, which contains 141 micro stations, 129 small stations, 67 medium stations, and 17 large

stations, as shown in Figure 11(c). We continue to perform the above processes in the same way

and create a graph sequence model. Then, we train the GGNN model using the graph sequence

data and get a predicted bicycle-station graphG2018093w in the next period (the third week of Sep-

tember 2018), as shown in Figure 11(d). Note thatG2018093w is not only predicted by G2018093w and

G2018093w , but is predicted by all historical graph models in the current spatial dataset. After fine-

tuning the location of bicycle stations with Fengtai District’s urban management plan, we get the

location of each bicycle station and the number of bicycles needed. The experimental results show

that by learning a large number of historical graph sequence data, the GGNN model can capture

changes in bicycle stations in different periods and accurately predict the bicycle station layout in

the next period.

5.3 Evaluation of Bicycle Drop-off Location Clustering

To evaluate the accuracy of DADC-based bicycle drop-off location clustering, we use two groups of

DL-PBS cycling trajectory records to perform the experiments.Wematched the bicycle coordinates

in the cycling trajectory records with the actual map and then manually labeled the cluster of each

data point in the two datasets. Then, we compare the DADC method [6] with the Density-Peak-

based clustering (DPC) [27] and DBSCAN [8] algorithms. The average of the Area Under ROC

Curve (AUC) is used as an clustering accuracy indicator by comparing the clustering results with

the labels. The experiment results are shown in Figure 12.

Figure 12(a) and (b) show that in all cases, the DADC-based bicycle drop-off location clustering

method achieves higher AUC values than DPC and DBSCAN. Note that cycling trajectory data has

the characteristics of varying density distribution, that is, there are coexisting areas with obvious

different region densities, such as dense and sparse regions (i.e., some stations have more bicycles

while other stations have fewer bicycles). DADC detects data points with dense neighbors by

calculating the local density. Based on the delta distance, DADC can efficiently identify the density

peaks in each region as cluster centers. In contrast, DPC and DBSCAN methods cannot effectively

address the above issues, thereby achieving low clustering accuracy. The average AUC value of

DADC is 0.82, the average AUC value of DPC is 0.76, and that of DBSCAN is the lowest, which

is 0.71. In addition, the AUC value increases significantly with the number of cycling trajectory

records. As the number of records increases from 104 to 107, the AUC value of DADC increases
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Fig. 13. Performance evaluation of bicycle station prediction.

from 0.63 to 0.91, the AUC value of DPC rises from 0.60 to 0.84, and that of DBSCAN only increases

from 0.56 to 0.77. Therefore, in this work, we choose the DADCmethod to perform bicycle drop-off

location clustering.

5.4 Evaluation of Bicycle-station Location Prediction

Based on the previous experimental results, we establish distinct graph sequencemodels of DL-PBS

networks for different administrative regions. To evaluate the performance of the GGNN model,

we conduct experiments with these graph sequence models for bicycle station prediction by com-

paring GGNN [21], GNN [28], GCN [31], and LSTM [12] models. We discuss the performance of

the comparison methods in terms of AUC and Root Mean Square Error (RMSE) [14], as shown in

Figure 13.

As shown in Figure 13(a), the average AUC value of the GGNN-based bicycle station prediction

method increases and reaches convergence with the number of training iterations. Compared to

other methods, GGNN can make full use of graph sequence data and capture associations between

graphs in different time periods, thereby obtaining higher prediction accuracy. In contrast, GNN

and GCN methods separate the input graph at each time point, ignoring the association between

these graphs. Although the LSTM method also uses a gated module to memorize the continuous

input, it lacks effective processing of the graph structure of the input. For example, after 100 train-

ing iterations, the average AUC value of GGNN is 0.91, the average AUC value of GNN is 0.83,

the average AUC value of GCN is 0.80, and the average AUC value of LSTM is 0.71. In addition,

as shown in Figure 13(b), as the number of training iterations increases, the average RMSE value

of GGNN decreases rapidly and converges to a minimum. For example, after 100 iterations, the

average RMSE value of GGNN is 0.13, while the average RMSE values of GGN, GCN, and LSTM

are 0.26, 0.29, and 0.33, respectively. The experimental results demonstrate that compared with the

comparison methods, the GGNN model is suitable for bicycle station prediction and achieves the

highest prediction accuracy.

6 CONCLUSIONS

In this article, we proposed a bicycle station dynamic planning (BSDP) system, which can

dynamically predict DL-PBS bicycle demands and provide the optimized layout of public bicycle

stations. First, by clustering large-scale historical cycling trajectory data, we established a
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weighted digraph model for bicycle drop-off locations. In addition, by tracking the update of the

stations in the time dimension, we further built a graph sequence model based on the bicycle

drop-off digraph models. Based on this, the GGNN model was introduced to train the graph

sequence model and predict the cycling trajectory and usage requirements in the next period.

Finally, according to the requirements of public bicycle use, we provided the optimized layout

of DL-PBS bicycle stations. Experiments with actual DL-PBS datasets have verified the proposed

BSDP system in terms of feasibility, accuracy, and performance.

In future work, wewill focus on downstream applications of the DL-PBS network, such as public

bicycle dispatching, cycling trajectory tracking, and faulty bicycle detection.
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