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Abstract
Different algorithmic performances are required in different engineering fields for 
solving both the symmetric and asymmetric traveling salesman problem (STSP and 
ATSP), both of which are commonly referred to as TSP. In the background of small-
scale TSP, according to the principle of the optimal Hamiltonian loop, this paper 
describes an angular bisector insertion algorithm (ABIA) that can solve TSP. The 
main processes of ABIA are as follows. First, the angular bisector of the point group 
is constructed. Second, the farthest vertex perpendicular to the angular bisector is 
identified as the search criterion. Finally, for both STSP and ATSP, initial loop for-
mation rules and vertex insertion rules are constructed. Experiments were conducted 
for all STSP and ATSP instances with up to 100 points in the TSPLIB database. The 
performance of ABIA was compared with that of the 2-point farthest insertion algo-
rithm, convex hull insertion algorithm, branch-and-bound algorithm, and a genetic 
algorithm. The experimental results show that, for small-scale TSP (up to 40 points), 
the runtime of ABIA is second only to the convex hull insertion algorithm, and the 
gap between ABIA and the optimal solution is second only to the exact algorithm. 
ABIA offers good overall performance in solving small-scale TSP.

Keywords Angle bisector insertion algorithm · Asymmetric traveling salesman 
problem (ATSP) · Constructive heuristic algorithm · Hamiltonian cycle · Traveling 
salesman problem (TSP)

1 Introduction

A traveling salesman travels from one city to another to several cities (one city at 
a time) to sell goods and return to the city where he starts his journey. One of the 
problems he has to address is to find the shortest journey. If the journey from City 
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A to City B is equal to that from City B to City A, this problem is called symmet-
ric traveling salesman problem (STSP). Otherwise, it is called asymmetric traveling 
salesman problem (ATSP). STSP and ATSP are collectively called TSP.

TSP can be expressed in terms of finding the optimum Hamiltonian cycle in a 
weighted undirected/directed graph (STSP/ATSP), which is an NP-hard combina-
torial optimization problem. TSP widely exists across network wiring, mechanical 
drilling, artificial intelligence, distribution logistics, and other engineering fields 
(Yang et  al. 2018). However, different engineering fields have different algorithm 
performance requirements. For example, in solving a large-scale vehicle routing 
problem (VRP), it is necessary to repeatedly compare the ATSP paths of different 
delivering store combinations. That is to say, the frequency required to solve the 
ATSP is high, but due to the rated loading capacity of vehicles involved, the num-
ber of combined stores is usually restricted to not more than 30, and the stability of 
results are also required. A further example related to distribution networks, is to 
solve 1000 small scale (around 40 cities) TSP within 30 seconds, that is, high speed 
algorithms are required (Sakurai et al. 2006). At present, the attention of academics 
has been focused on large-scale meta-heuristic algorithms. But for small-scale TSP 
applications that require high speed and stability, theoretically, meta-heuristic algo-
rithms are usually inferior to constructive heuristic algorithms in terms of computa-
tional speed and stability (Rao and Jin 2012; Ismail 2019). Therefore, it has greater 
application value in respect to the study of constructive heuristic algorithms with 
high-precision, high speed and stability for STSP and ATSP.

The algorithms available to solve TSP can be categorized into exact algorithms 
and heuristic algorithms. Although exact algorithms can be used to obtain an 
optimal solution, it requires a lot of computation time. For example, a STSP of 
20 points will have about 1.22 ×  1017 feasible solutions (Kanda et  al. 2016). As 
the number of points increases, the computation time will increase exponentially. 
While heuristic algorithms can be adopted to obtain an approximately optimal 
solution, heuristic algorithms can be categorized into constructive algorithms and 
meta-heuristic algorithms (the latter sometimes referred to as an improved heuris-
tic algorithm). Constructive heuristic algorithms begin with one city, iteratively 
expanding sub-loops, one city at a time through determined search rules. The 
main constructive heuristic algorithms are ‘greedy’ algorithms (Reinelt 1994), 
insertion algorithms (Hore et  al. 2018), and convex hull insertion algorithms 
(Golden et  al. 1980). Because the search rules are definitive, constructive heu-
ristic algorithms are typically very fast and can provide stable calculation results. 
But they can be easily trapped around local optima (Rosenkrantz et  al. 1977) 
and are difficult to use in solving large-scale STSP. Current research is mainly 
focused on how to establish global heuristic rules (Ursani and Corne 2016) and 
segment solution algorithms for large-scale TSP (Xiang et al. 2015). In contrast, 
meta-heuristic algorithms begin with a complete journey and then make rear-
rangements in order to improve it. The representative meta-heuristic algorithms 
include genetic algorithms, simulated annealing algorithms (Yang et  al. 2019), 
and particle swarm optimization (Zhong et  al. 2018). Compared with construc-
tive heuristic algorithms, meta-heuristic algorithms generally have higher pre-
cision when they are used to solve TSP. However, the results are unstable with 
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slow processing speeds. The current research is mainly focused on 1) how to con-
struct random operators to avoid falling into local optimum in solving large-scale 
TSP (Pan et al. 2016; Zhu et al. 2017), 2) how to take the advantage of different 
types of algorithms available for comprehensive application (Hore et  al. 2018; 
Zhang et al. 2018, 3) and how to design large-scale parallel computing algorithms 
(Siemiński and Kopel 2019).

In this paper, a new insertion algorithm (IA), angular bisector insertion algo-
rithm (ABIA), is proposed to solve small-scale TSP. According to Hamiltonian 
loop theory, the main idea can be put forward that any vertex can be regarded as 
the starting point, the angle bisector of point group is made, and a 2-vertex initial 
loop is constructed. Then the vertices farthest from the angle bisector are inserted 
into the loop in turn to solve STSP and ATSP. In ABIA, the bisector reflects spa-
tial distribution of point group, and the bisector is always taken as the baseline 
in vertex search algorithm. Compared with other insertion algorithms, ABIA can 
avoid local optimum in a better way.

The remainder of this paper is organized as follows. In Sect.  2, the correla-
tive theory of Hamiltonian loops and the IA are introduced. The proposed angu-
lar bisector insertion algorithm for STSP and ATSP is described and analyzed in 
Sect. 3. In Sect. 4, the experiments that compare ABIA with the 2-point farthest 
insertion algorithm (FIA-2), convex hull insertion algorithm (CHIA), genetic 
algorithm (GA), and branch-and-bound algorithm (B&B) are evaluated. Finally, 
Sect. 5 presents our conclusions and ideas for future research.

2  Hamiltonian loop and inserting constructive heuristic algorithms

2.1  Correlative theory of Hamiltonian

In a graph G(V,E), V and E denote the vertex set and the edge set of graph, 
respectively. Let vi(i ∈ V) be vertex i and let eij(i, j ∈ V) be the distance between 
vertex i and vertex j.

Definition 1 If loop C passes through all vertices in G only once, it is called a Ham-
iltonian sloop (H-loop for short) of G. A graph with a H-loop is called a Hamilto-
nian graph.

Theorem 1 (Bondy and Murty 1976) If G has a H-loop, then for any non-empty sub-
set, the number of connected components of graph G\S is at most |S| (Fig. 1).

Theorem 2 (Ore 1960) Let n(G) be the number of vertices of graph G, n(G) ≥ 3 . Let 
�
(
vu
)
 be the degree of vu . If any two non-adjacent vertices vu and vv in graph G have 

�
(
vu
)
+ �

(
vv
)
≥ n(G) , then G is a Hamiltonian graph.
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Corollary 1 (Dirac 1952) If G is a simple graph with n(G) ≥ 3 and the degree of each 
vertex is at least n(G)∕2 , then G is a Hamiltonian graph.

A Hamiltonian graph usually has a large number of edges. If there are certain 
conditions to ensure that the edges in the graph are “scattered,” particularly to 
avoid circuit crossing, then graphs with only a few edges may contain an H-loop.

Definition 2 The weighted graph G (V, E, W) is a Hamiltonian graph. The weight of 
edge eij ∈ E is wij ∈ W(i, j ∈ V) . Let H be the H-loop set of G; h ∈ H and 
d(h) =

∑
∀eij∈h

wij . If dmin(c) = min (d(h)|h ∈ H) for some c ∈ H , then c is the optimal 

H-loop.

The number of Hamiltonian loops in graph G is the number of combination of 
edges constrained by Hamiltonian rules. According to theorem 1, the number of ver-
tices of non-empty subset V(S) is related to the number of connected branches. If G 
is incomplete graph, the number of connected branches of V(S) is also related to the 
vertex degree of graph G, that is, to the spatial distribution of vertices.

2.2  Insertion algorithm

The basic idea of the IA is to form an initial loop with fewer vertices and then insert 
the remaining vertices into the loop to minimize the loop path. The basic processes 
of the insertion heuristic algorithm can be summed up as follows:

(1) Arbitrarily select an initial loop with k vertices, v1, v2,⋯ , vk(k ≥ 1) . Let the set 
S be V∖

{
v1, v2,⋯ , vk

}
.

(2) As long as S ≠ ∅ , perform the following steps:

 (2.1) Select vertex j(j ∈ S) according to the same search rule.
 (2.2) Insert vertex j into the loop, so that S = S�

{
vj
}
.

In the IA, there can be one or more initial loop vertices, and various search rules 
can be used to select a vertex. Under the basic idea of the IA, different initial loop 

Fig. 1  Connected components 
of graph G\S
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generation rules or vertex insertion search rules are formulated to produce differ-
ent IAs. The existing IAs include the nearest insertion algorithm, farthest insertion 
algorithm, least-cost insertion algorithm, arbitrary insertion algorithm and CHIA. 
Among them, the nearest insertion algorithm, farthest insertion algorithm, and 
CHIA are most commonly used.

Let the vertex set of the initial loop of IA be V(R) =
{
v1, v2,⋯ , vk

}
(k ≥ 1) , and 

V(R) ⊆ V(G) . The optimal Hamiltonian loop of subgraph R is cR = v1v2 ⋯ vkv1 . 
The set of directed edges formed in the same clockwise or counterclockwise 
direction is E

(
cR
)
=
{
< v1, v2 >,< v2, vk >,< v1, vk >,⋯ ,< vk, v1 >

}
 , where 

< v1, vk >≠< vk, v1 > . The optimal Hamiltonian loop of G is cG = v1v2 ⋯ vivk ⋯ vjv1 . 
The set of directed edges formed in the same clockwise or counterclockwise direc-
tion is E

(
CG

)
 . For IA, it can be characterized as follows:

(1) If E
(
CR

)
⊆ E

(
CG

)
 , that is, the order of vertices in E

(
CR

)
 is the same as 

that of E
(
CG

)
 , when a new vertex is inserted into the initial loop, let the set of 

directed edges formed by all vertices in the loop be E
(
CI

)
,and E

(
CR

)
⊆ E

(
CI

)
 . If 

E
(
CI

)
⊄ E

(
CG

)
 , E

(
CG

)
 cannot be obtained, it means that the optimal Hamiltonian 

loop cannot be obtained. But when all vertices are completely inserted into the ini-
tial loop, E

(
CI

)
⊆ E

(
CG

)
,that is E

(
CG

)
 can be obtained. (2) If E

(
CR

)
⊄ E

(
CG

)
 , no 

matter what search rule is adopted, E
(
CG

)
 cannot be obtained.

Based on the above analysis, when the insertion algorithm is designed, it is ben-
eficial to obtain E

(
CG

)
 according to the following design principles:

Principle 1 Select the global initial vertex set by the vertex spatial distribution 
characteristics of graph G.
Principle 2 E

(
CR

)
⊆ E

(
CG

)
 requires that the initial loop is a part of the globally 

optimal Hamiltonian loop.
Principle 3 The search rules should be global, and crossing of edges should be 
avoided as far as possible when new vertex is inserted into the loop.

2.2.1  2‑Point farthest insertion algorithm

In 2-Point farthest insertion algorithm (FIA-2), any two vertices are taken to form 
an initial loop, with vertex (not in the loop) farthest from each vertex (in the loop) 
selected to insert into the loop in turn. The shortest distance from vertex j (not in the 
loop) to vertex i (in the loop) is defined as j ∈ S, dmin(j) = min

(
wij|i ∈ V�S

)
.The 

basic process of FIA-2 can be described as follows:

(1) Arbitrarily select an initial loop with two vertices v1, v2 , and let set 
S = V�

{
v1, v2

}
.

(2) As long as S ≠ ∅ , perform the following steps:

 (2.1) Select vertex j ∈ S to satisfy dmin(j) = max
(
dmin(m)|m ∈ S

)
.

 (2.2) Insert vertex j into the loop, and then S = S\{vj}.

In the process of FIA-2, the initial vertex is selected arbitrarily, and the selection 
of vertex exerts an impact on the TSP result (not in conformity with Principle 1). 
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The number of initial vertices is 2, which satisfies E
(
CR

)
⊆ E

(
CG

)
 (in conformity 

with Principle 2). According to FIA-2 search rule, with the new vertex inserted into 
the loop, the reference points for finding the farthest vertex changes, which means 
that the currently inserted vertex has an influence on the vertices inserted later. Once 
E
(
CI

)
⊄ E

(
CG

)
 appears, it will have a great influence on vertex insertion in the 

future (not in conformity with Principle 3).

2.2.2  Convex hull insertion algorithm

According to the basic idea of convex hull insertion algorithm (CHIA): If k ver-
tices v1, v2 ⋯ , vk(k ≥ 3) can form a maximum convex hull in which the remain-
ing vertices are contained, it will be the initial loop. And then the vertex that 
minimizes the cost of the loop is inserted into the loop. When vertex j is inserted 
into loop, its adjacent vertices u and v are defined as: where j ∈ S u and v satisfy 
dmin(u, j, v) = min

(
wuj + wjv − wuv|u, v ∈ V�S

)
.

The basic flow of the algorithm is presented as follows:

(1) Form the initial loop of convex hull with k vertices v1, v2,⋯ , vk(k ≥ 3) , then set 
|||S = V�

{
v1, v2,⋯ , vk

}
.

(2) As long as S ≠ ∅ , perform the following steps:

 (2.1) Select vertex j ∈ S satisfying dmin(u, j, v) = min
(
dmin(u,m, v)|m ∈ S

)
.

 (2.2) Insert vertex j into the loop, and then S = S�{vj}.

CHIA is difficult to guarantee that E
(
CR

)
⊆ E

(
CG

)
 (not in line with Principle 2). 

In addition, like FIA-2, the step of vertex selection changes with the vertices in the 
loop. But initial loop of CHIA is determined according to the spatial distribution of 
vertices. Meanwhile, the edges of the loop can be dispersed as much as possible by 
inserting the vertex with the least cost into the loop formed by convex hull. (in con-
formity with to principle 1 and partially in conformity with principle 3).

3  Angular bisector insertion algorithm

In angular bisector insertion algorithm (ABIA), any vertex is taken as starting point 
to make an angular bisector of point group, with the vertex farthest from the starting 
point selected as initial path point. If there is no other vertex on the angular bisector, 
a projection is made from the farthest point to the bisector so as to form a projective 
point, with the vertex closest to the projective point selected as the initial path point. 
And it will form an initial loop with the starting point and the initial path point. The 
remaining vertices are inserted into the loop with the maximum vertical distance 
from the angle bisector.
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Let dij = wij be the distance between i ∈ V  and j ∈ V  , and d(i, L) be the vertical 
distance from vertex i to the bisector line L . ABIA uses two vertices (the initial ver-
tex and the initial path point) to form the initial loop. The basic rules can be summed 
up as follows:

(1) Generation rule for angular bisector: select any initial vertex o ∈ V  in the graph 
and form an angle ∠� that ensures all vertices are in the interior. On this basis, 
create a bisector line L of ∠� (see Fig. 2a).

(2) Initial path point selection rule: let t ∈ V be the initial path point, with three steps 
as follows:

 (2.1) Select the farthest point u ∈ V  from vertex o , i.e., dou = max
(
woi|i ∈ V

)
.

 (2.2) If vertex u is on the angular bisector L , then t=u.
 (2.3) Else, let u′ be an auxiliary point on L and set dou = dou� . Select the nearest 

point p ∈ V  from u′ , i.e., du�p = min
(
wu�i|i ∈ V

)
 , t=p (See Fig. 2b).

(3) Ver tex inser t ion search rule:  select  ver tex j ∈ S  such that 
d(j, L) = max(d(m,L)|m ∈ S).

(4) Vertex insertion rule: if u , v satisfy min
(
wuj + wjv − wuv|u, v ∈ V�S

)
 , insert ver-

tex j into euv.

At present, the existing IA is based on an undirected graph without involving the 
directed graph. In other words, it concerns STSP rules only and is not applicable to 
ATSP. In this section, the STSP and ATSP rules are formulated respectively to form 
the ABIA for STSP and ATSP.

(a) (b)

Fig. 2  ABIA-STSP initial loop and the order of vertices added to loop schematic diagram
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3.1  Initial loop generation and vertex insertion rules for STSP

(1) Determine the initial loop according to step1 (1) and (2) above. Connect the 
vertices to form the loop c = vovtvo so that the set of vertices that are not in the 
loop is S = V�

{
vo, vt

}
.

(2) As long as S ≠ ∅ , perform the following steps:

 (2.1) Select the vertex to be inserted according to step (3) above.
 (2.2) Insert vertex i into the loop c , so that S = V�{vi}.

When S=� , i.e., all vertices of graph G are in loop c , the solution of the STSP is 
c (Fig. 2b).

3.2  Initial loop generation and vertex insertion rules for ATSP

Let G(V, E, W) be a directed weighted graph with wij ≠ wji . The clockwise and coun-
terclockwise loops of vertex i, j are c = vi → vj → vi , c� = vi ← vj ← vi , respectively.

(1) Determine the initial loop vertex according to Step (1) and (2) in Sect. 3. Connect 
vertices to form the clockwise loop c = vo → vt → vo , counterclockwise loop 
c� = vo ← vt ← vo , and the set of vertices that are not in the loop S = V�{vo, vt} 
(Fig. 3a).

(2) As long as S ≠ ∅ , perform the following steps:

 (2.1) Select the vertex to be inserted according to Step (3) in Sect. 3.
 (2.2) Insert vertex i into the clockwise loop c and counterclockwise loop c′ , so 

that S = V�{vi} (Fig. 3b).

When S=� , min
(
c, c′

)
 is the solution of the ATSP.

(a) Initial loop (b) Order of vertices added to loop

L

o

1
2

u

3

4

5
t

clockwise
counterclockwise

L

o

1
2

u

3

4

5
t

clockwise
counterclockwise

Fig. 3  Schematic Diagram for ABIA-ATSP initial loop and the order of vertices added to loop
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3.3  Characteristics and complexity of ABIA

The initial loop of ABIA is a 2-vertex loop. There is E
(
CR

)
⊆ E

(
CG

)
 for 

STSP, E
(
CR

)
⊆ E

(
CG

)
 for the directed edge of ATSP clockwise loop c , and 

E
(
C′
R

)
⊆ E

(
C′
G

)
 for counterclockwise loop c′ . Therefore, the initial loop of ABIA 

is the optimal Hamiltonian loop. The benchmark of ABIA is the bisector that can 
reflect the spatial distribution characteristics of point groups. In vertex search, the 
bisector is always taken as the reference line. When E

(
CI

)
⊄ E

(
CG

)
 , the new inser-

tion point has little influence on the subsequent loop, so the search rule of ABIA is 
global. At the same time, when the vertex furthest from the angle bisector is inserted 
into the loop, the edges of the loop will be dispersed as much as possible. However, 
ABIA is also affected by the selection of initial vertices as FIA-2. Therefore, ABIA 
complies with principles 2 and 3 and partially complies with principle 1.

Hamiltonian loop is a combination of edges of graph. For STSP, the number of 
Hamiltonian loops is (n − 1)!∕2 . The time complexity of exact algorithm is 
O((n − 1)!∕2) , and the time complexity of CHIA is O (n log n) (Jünger et al. 1995). 
In order to eliminate the influence of the selection of initial vertex set on ABIA and 
FIA-2, all vertices are taken as starting point and the best loop is selected as the 
algorithm result. The time complexity of FIA-2 to obtain two-point initial loop is 
O

(
n(n−1)

2

)
 , and the total time complexity is O

(
n(n−1)×(n−2)2

2

)
 . When the two-point 

initial loop of ABIA determines a vertex, the other vertex does not need to be com-
bined with other n-1 vertices like FIA-2. In addition, the vertex selection only needs 
to be on one side of the angular bisector. If the number of vertices on both sides of 
the bisector is balanced, The time complexity of ABIA is O

(
3n

2 +
2n

3−8n2+8n

2

)
 . The 

time complexity of GA is O (Tn0n
2) . While n0 is the initial size of population and T 

is the number of outer iterations (Hui 2012). In conclusion, CHIA has the lowest 
time complexity. When the scale of points is small, FIA-2 does not need to preproc-
ess points like ABIA, so FIA-2 is faster than ABIA. On the contrary, when the scale 
of points is larger, ABIA is faster. GA is affected by iteration times and initial popu-
lation. For small-scale STSP, the operation time of GA is higher than ABIA.

For ATSP, the number of Hamiltonian loops is (n-1)!. The STSP operation is 
required for ABIA once in clockwise and counterclockwise directions respectively. 
Its time complexity is twice that of STSP. In terms of GA, the edges are combined to 
obtain the optimal solution from the combinations according to the rules of genetic 
algorithm, and its time complexity is O

(
Tn0(2n)

2
)
 . Compared with STSP, ATSP-GA 

is more time-consuming than ATSP-ABIA.

4  Experimental analysis

Experiments were conducted to compare the performance of ABIA against that of 
other insertion, exact, and meta-heuristic algorithms. The other insertion algorithms 
were selected according to their similarity to the heuristic rules of ABIA. Therefore, 
FIA-2 and CHIA were implemented by us for comparison. To solve the problem 
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of initial vertex selection, all 2 vertex combinations will be calculated for FIA-2 to 
take the optimal as the solution to the algorithm. Meanwhile, all vertices are calcu-
lated for ABIA to take the optimal as the solution. Because these algorithms have no 
ATSP rules, only STSP experiments were performed.

Exact algorithms and meta-heuristic algorithms have been intensively studied. 
There are various improved algorithms based on the basic methods. For the com-
parison experiments, the basic B&B and GA were applied to STSP and ATSP 
scenarios.

The experimental data consisted of instances with up to 100 vertices from 
TSPLIB (Reinelt 1991), the standard instance database for STSP and ATSP. The 
experiments were conducted using a computer with 8 GB memory and an  Intel(R) 
 Core(™) i7-4710HQ 2.50 GHz CPU. The experiments were coded in the JAVA pro-
gramming language.

4.1  STSP experiment by using ABIA and other insertion algorithms

According to the principle of similarity of heuristic rules, FIA-2 has the same num-
ber of vertices as ABIA’s initial loop. The initial loop in CHIA uses the strategy that 
disperse the edges of loop as much as possible and avoid intersections within the 
loop. It is a similar construction strategy to ABIA. The results for the STSP instances 
calculated by ABIA and other insertion algorithms are presented in Table  1. The 
deviation of the optimal solution and algorithm runtime are given in the table.

To analyze the data trends, the computation time and deviation of ABIA and the 
other insertion algorithms with respect to the STSP scale are shown in Fig.  4. If 
there are multiple instances with the same number of points, the average value of 
each instance is taken. Figure 4a shows the number of points (Point Num) against 
the cumulative deviation (Cum Dev) and Fig. 4b shows Point Num against time.

The following conclusions can be drawn from Table 1 and Fig. 4:

(1) The total deviation between the optimal solution and ABIA, FIA-2 and CHIA is 
48.6%, 60.0%, and 78.6% respectively. Meanwhile, with the increasing number 
of vertex, the deviation between FIA-2 and CHIA increases faster than that of 
ABIA.

(2) Total runtime of ABIA, FIA-2 and CHIA is 10823.5 ms, 125,103.3 ms and 
12.6 ms respectively. The operation speed of CHIA is the fastest. When there 
are less than 24 vertices, the operation efficiency of FIA-2 is higher than that of 
ABIA, and ABIA runs faster than FIA-2 as the number of vertices increases.

4.2  STSP experiment using ABIA, B&B, and GA

As an accurate algorithm, B&B is often used to solve mini-scale TSP, with the ini-
tial lower bound obtained by using a greedy algorithm. GAs are meta-heuristic algo-
rithms that have been widely studied in solving TSP, allowing a series of improved 
GAs to be developed. In this experiment, the traditional GA is adopted and the 
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parameters are set according to the relevant literature ((De Jong and De Jong 1975; 
Davis 1985; Ezugwu and Adewumi 2017); see Table 2).

Among these parameters, OX denotes order crossover, ES denotes elitist selec-
tion, and RWS denotes roulette wheel selection. The maximum number of genera-
tions is determined by a preliminary experiment using instance KroA100. The per-
formance index of GA is shown in Fig. 5.

The GA is repeated 20 times to give an average solution deviation (ASD) and the 
optimal solution deviation (BSD). The runtime of GA is the average of these 20 exe-
cutions. The calculation results for ABIA, B&B, and GA are presented in Table 3.

Table 1  STSP instances calculated by ABIA and other insertion algorithms

Instance ABIA FIA-2 CHIA

Name Best Time(ms) Dev (%) Time(ms) Dev (%) Time(ms) Dev (%)

burma14 3323 4.4 (0) 0.0 1.5 (0) 0.0 0.1 (0) 0.0
ulysses16 6859 4.9 (0) 0.0 2.6 (0) 0.0 0.1 (113) 1.7
gr17 2085 5.7 (0) 0.0 2.9 (0) 0.0 0.1 (10) 0.5
gr21 2707 11.0 (0) 0.0 6.8 (0) 0.0 0.1 (2) 0.1
ulysses22 7013 11.1 (0) 0.0 11.1 (0) 0.0 0.1 (30) 0.0
gr24 1272 12.3 (0) 0.0 14.7 (7) 0.9 0.1 (47) 3.7
fri26 937 17.2 (0) 0.0 19.3 (0) 0.0 0.1 (19) 2.0
bays29 2020 21.6 (6) 0.3 34.4 (6) 0.3 0.4 (75) 3.7
bayg29 1610 21.1 (5) 0.3 33.8 (8) 0.5 0.2 (22) 1.4
dantzig42 699 63.0 (6) 0.9 206.8 (13) 1.9 0.3 (25) 3.6
swiss42 1273 59.2 (0) 0.0 198.5 (12) 0.9 0.1 (13) 1.0
gr48 5046 99.3 (64) 1.3 393.7 (22) 0.4 0.2 (229) 4.5
att48 10,628 98.2 (224) 2.1 443.3 (66) 0.6 1.1 (323) 3.0
hk48 11,461 100.2 (168) 1.5 379.0 (182) 1.6 0.1 (250) 2.2
eilon51 426 130.2 (6) 1.4 544.1 (15) 3.5 0.3 (18) 4.2
berlin52 7542 123.1 (0) 0.0 574.1 (233) 3.1 0.3 (81) 1.1
brazil58 25,395 179.1 (333) 1.3 970.5 (231) 0.9 0.4 (1452) 5.7
st70 675 342.1 (18) 2.7 2483.2 (28) 4.2 0.3 (29) 4.3
eil76 538 457.6 (28) 5.2 3705.6 (29) 5.3 0.7 (38) 7.1
pr76 108,159 454.4 (3888) 3.6 3683.5 (3647) 3.4 0.4 (4319) 4.0
gr96 55,209 979.4 (2309) 4.1 11,301.4 (1934) 3.5 1.4 (1205) 2.2
rat99 1211 1060.8 (67) 5.5 13,446.5 (65) 5.4 0.8 (32) 2.6
kroA100 21,282 1108.3 (534) 2.5 14,606.2 (1025) 4.8 0.9 (772) 3.6
kroB100 22,141 1069.4 (857) 3.9 14,306.6 (1161) 5.2 0.8 (557) 2.5
kroC100 20,749 1109.1 (331) 1.6 14,668.7 (619) 2.9 0.8 (527) 2.5
kroD100 21,294 1100.6 (479) 2.3 14,565.2 (476) 2.2 0.7 (498) 2.3
kroE100 22,068 1105.0 (591) 2.7 14,202.3 (1134) 5.1 0.8 (836) 3.8
rd100 7910 1075.2 (331) 5.4 14,297.0 (272) 3.4 0.9 (415) 5.3
Total – 10,823.5 (10,341) 48.6 125,103.3 (11,185) 60.0 12.6 11,937 (78.6)
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It can be seen from Table 3 that, when the number of points is insignificant, the 
runtime of B&B is much longer than that of ABIA. The worst time complexity of 
B&B is O(n!) . The B&B runtime is clearly reflected through the three instances indi-
cated in Table 3, so the other instances are not taken into account. Figure 6 shows 
the trends in runtime and deviation of ABIA and GA with respect to the STSP scale. 
Meanwhile, Fig.  6a shows Point Num against Cum Dev and Fig.  6b shows Point 
Num against time.

The following conclusions can be drawn from Table 3 and Fig. 6:

(1) On account of the same results of ABIA no matter how many times it is calcu-
lated, ABIA is more stable than GA.

(2) Where there are not more than 40 points, the total deviation between the optimal 
solution and ABIA is 0.6%, while the deviation between the optimal solution and 
GA-ASD is 0.71%. When there are not more than 100 points, the total deviation 
between the optimal solution and ABIA is 48.6%, while the deviation between 
the optimal deviation and GA-ASD is17.8%. With the increasing number of 
vertices, the deviation growth rate of ABIA is higher than that of GA.

(3) When there are not more than 100 points, the total runtime of ABIA-STSP is 
only 3.6% of that of GA algorithm. But with the increase of STSP scale, the 
runtime of ABIA-STSP will increase faster than that of GA.

(4) The runtime of B&B is much longer than that of ABIA. When there are more 
than 16 points, B&B takes  105 times longer than ABIA.

4.3  ATSP experiment using GA, B&B, and ABIA

Without coordinate data, The ATSP instances in the TSPLIB database contain only 
the bidirectional distances between vertices. However, as ABIA requires coordinate 
data, the corresponding coordinates are obtained from the original paper (Gower 
1966). In solving ATSP, B&B takes each vertex as the root node. The parameters of 

Fig. 4  Computation time and deviation between ABIA and other insertion algorithms with respect to 
STSP scale
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GA are similar to those for STSP. The results for ATSP given by ABIA, B&B, and 
GA are presented in Table 4.

From Table  4, it can be seen that the runtime of B&B for ATSP is similar to 
that for STSP—much longer than the other algorithms. Figure 7 shows the trends in 
runtime and deviation for ABIA and GA with respect to ATSP scale.

The following conclusions can be drawn from Table 4 and Fig. 7:

(1) On account of the same results of ABIA no matter how many times it is calcu-
lated, ABIA is more stable than GA for ATSP.

(2) The total deviation between ABIA and the optimal solution is 33.4%, and GA-
ASD is 145.3%. With the increasing number of vertices, the accuracy of GA 
will get worse, which is caused by insufficient iterations when vertices increase 
(the parameters consistent with STSP are adopted for comparison).

(3) The total runtime of ABIA is 1491.8 ms, while that of GA is 11708.0 ms. With 
the increasing number of vertices, the runtime of ABIA increases faster than that 
of GA, and the runtime of B&B is much longer than that of ABIA and GA.

5  Conclusion

On the basis of the fundamental principle of optimal Hamiltonian loops, ABIA 
applies an angular bisector to the point group to disperse the edges of loop as much 
as possible and avoid loop intersections. Based on this angular bisector, the initial 
loop formation rules and vertex insertion rules for STSP and ATSP are formu-
lated respectively. The angular bisector reflects the global spatial distribution of the 
point groups. The vertex search strategy based on the angular bisector is a global 
search, which is helpful to avoid local optima. Comparison experiments with simi-
lar insertion algorithms show that ABIA has good overall performance for solving 

Table 2  GA parameters Name Parameter

Population size 50
Crossover operator OX
Mutation operator Insertion
Crossover probability 0.95
Mutation probability 0.25
Selection operator ES&RWS
Max generation 3500
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small-scale TSP. It is especially suitable for small-scale applications that require sta-
ble and rapid results.

As a new constructive heuristic insertion algorithm, the following aspects of 
ABIA require further study: (1) The angular bisector reflects the distribution charac-
teristics of point groups, and so ABIA is affected by the distribution of point groups; 
(2) When the scale of STSP and ATSP is large, it is difficult for a single angular 
bisector to fully reflect the distribution characteristics of point groups.

Table 3  STSP instances calculated by ABIA, B&B, and GA

Instances ABIA GA B&B

Name Best Time(ms) Dev (%) ASD BSD (%) Time(ms) Time(ms)

burma14 3323 4.4 (0) 0.0 (0) 0.0 (0) 0.0 204.1 10,246.0
ulysses16 6859 4.9 (0) 0.0 (1) 0.01 (0) 0.0 232.7 3,930,341.0
gr17 2085 5.7 (0) 0.0 (0) 0.0 (0) 0.0 246.9 3,455,931.0
gr21 2707 11.0 (0) 0.0 (0) 0.0 (0) 0.0 337.2 –
ulysses22 7013 11.1 (0) 0.0 (0) 0.0 (0) 0.0 343.4 –
gr24 1272 12.3 (0) 0.0 (0) 0.0 (0) 0.0 358.8 –
fri26 937 17.2 (0) 0.0 (0) 0.0 (0) 0.0 408.4 –
bays29 2020 21.6 (6) 0.3 (8) 0.4 (0) 0.0 456.4 –
bayg29 1610 21.1 (5) 0.3 (5) 0.3 (0) 0.0 461.6 –
dantzig42 699 63.0 (6) 0.9 (1) 0.1 (0) 0.0 706.1 –
swiss42 1273 59.2 (0) 0.0 (0) 0.0 (0) 0.0 709.6 –
gr48 5046 99.3 (64) 1.3 (61) 1.2 (40) 0.8 841.4 –
att48 10,628 98.2 (224) 2.1 (43) 0.4 (0) 0.0 854.4 –
hk48 11,461 100.2 (168) 1.5 (5) 0.0 (0) 0.0 882.9 –
eilon51 426 130.2 (6) 1.4 (2) 0.5 (0) 0.0 921.9 –
berlin52 7542 123.1 (0) 0.0 (83) 1.1 (0) 0.0 911.6 –
brazil58 25,395 179.1 (333) 1.3 (279) 1.1 (0) 0.0 1179.2 –
st70 675 342.1 (18) 2.7 (10) 1.5 (1) 0.2 1374.3 –
eil76 538 457.6 (28) 5.2 (8) 1.4 (0) 0.0 1575.0 –
pr76 108,159 454.4 (3888) 3.6 (2163) 2.0 (0) 0.0 1640.1 –
gr96 55,209 979.4 (2309) 4.1 (607) 1.1 (110)0.2 2300.8 –
rat99 1211 1060.8 (67) 5.5 (15) 1.2 (1) 0.1 2428.3 –
kroA100 21,282 1108.3 (534) 2.5 (149) 0.7 (0) 0.0 2400.8 –
kroB100 22,141 1069.4 (857) 3.9 (266) 1.2 (44) 0.2 2441.3 –
kroC100 20,749 1109.1 (331) 1.6 (104) 0.5 (0) 0.0 2400.8 –
kroD100 21,294 1100.6 (479) 2.3 (319) 1.5 (106) 0.5 2433.7 –
kroE100 22,068 1105.0 (591) 2.7 (132) 0.6 (44) 0.2 2473.8 –
rd100 7910 1075.2 (331) 5.4 (71) 0.9 (0) 0.0 2396.6 –
Total within 40 

points
– 109.3 (11) 0.6 (14) 0.71 (0) 0.0 16.9 –

Total – 10,823.5 (10,341) 48.6 (4332) 17.8 (346) 2.2 2824 –
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Fig. 6  Computation time and deviation of ABIA and GA with respect to STSP scale

Table 4  ATSP instances calculated by ABIA, B&B, and GA

Instances ABIA GA B&B

Name Best Time (ms) Dev. (%) ASD BSD (%) Time (ms) Times (ms)

br17 39 6.2 (0) 0.0 (0) 0.0 (0) 0.0 264.8 3,949,598.0
ftv33 1286 33.4 (15) 1.2 (73) 5.7 (0) 0.0 553.1 –
ftv35 1473 36.6 (40) 2.7 (82) 5.6 (27) 1.8 591.6 –
ftv38 1530 46.4 (41) 2.7 (110) 7.2 (23) 1.5 651.2 –
p43 5620 65.3 (6) 0.1 (2) 0.0 (0) 0.0 744.6 –
ftv44 1613 73.8 (39) 2.4 (158) 9.8 (81) 5.0 793.0 –
ftv47 1776 89.5 (46) 2.6 (279) 15.7 (151) 8.5 901.3 –
ry48p 14,422 89.8 (462) 3.2 (288) 2.0 (115) 0.8 881.3 –
ft53 6905 135.9 (304) 4.4 (1491) 21.6 (1139) 16.5 1012.7 –
ftv55 1608 146.0 (43) 2.7 (254) 15.8 (148) 9.2 1087.7 –
ftv64 1839 235.1 (88) 4.8 (432) 23.5 (235) 12.8 1305.9 –
ftv70 1950 305.2 (53) 2.7 (503) 25.8 (343) 17.6 1481.7 –
ft70 38,673 314.5 (1508) 3.9 (4873) 12.6 (3983) 10.3 1439.1 –
Total – 1491.8 (2645) 33.4 (8545) 145.3 (6245) 84.0 1491.8 –
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