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 INTRODUCTION 

obots equipped with rich perception and mobile manipulation systems have increasingly served
n real-world unstructured human environments [ 29 , 104 ], such as homes, hospitals, and hotels.
iven a task in these scenarios, the robot needs to actively sense its surroundings, make decisions,
nd execute them. For example, if a robot needs to deliver an object to the goal region of another
oom, then it has to approach the target object, sense its precise location, grasp it, search paths
o transport it to the target room, and finally place it in the goal region. Traditional AI planning
pproaches can reason at a high level for the sequence of actions to achieve the task. However, the
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Fig. 1. The architecture of P-ALS. 

p  

m
 

c  

T  

g  

c  

l  

c  

h  

e  

c  

t  

a  

s  

n  

a  

i  

p  

t  

l
 

t  

t  

w  

c  

a  

c  

t  

d  

a  

t  

b  

A  

c  

A

lanned solutions are not comprehensive enough and may fail due to conflicts with the environ-
ent, such as collisions. 
Task and Motion Planning (TAMP) or Hybrid Planning [ 14 , 36 , 125 ] has received a signifi-

ant amount of attention from researchers in the AI Planning Community over the past few years.
AMP takes account of geometric constraints while logically reasoning at the task level, it inte-
rates high-level task planning with low-level motion planning to obtain feasible solutions for
ompleting long-horizon tasks. TAMP avoids repetitively planning from scratch by these low-
evel considerations compared with the traditional planning approaches; however, it also provides
oncrete input for the motion planner and instructs the implementation of the schedule compre-
ensively. Although, even if TAMP can provide a near-perfect action plan for the robot, dynamic
nvironments, imperfect models, imperfect perceptions, and imperfect executions still pose great
hallenges to TAMP in real-world applications [ 127 , 145 ]. As Wolfgang and Goethe wrote, “To
hink is easy, to act is hard, The hardest is to act following your thinking” [ 67 ]. Besides, TAMP is
 highly integrated planning system internally where action sequencing coupled with parameter
earching, the computational efforts grow exponentially in the number of related objects; exter-
ally, planning is limited by domain knowledge and action library, which are manually defined
nd coded. Consequently, it is intractable for generalizing TAMP to different tasks due to these
nternal and external constraints. This survey concludes two main types of challenges when ap-
lying TAMP approaches to real-world unstructured human environments, determining (1) how
o improve the robustness of TAMP structure and (2) how to afford generalization from TAMP and
everage it. 

The AI Planning community has focused on extending the basic TAMP approaches to handle
he first type of challenges in belief space [ 64 , 90 , 165 ]. Along with the development of TAMP,
he behavior planning approaches with action control structures such as Hierarchical Task Net-

ork (HTN) [ 49 ] and Behavior Trees (BTs) [ 33 , 68 ], they have been applied to robotics from
omputer game applications. These approaches present control structures for action executions
nd are capable of handling disturbances reactively to some extent. The next big step in TAMP is
ombining TAMP with acting as an online closed-loop planning system. There are many factors
o be accounted for by the robot during the planning and acting, for example, determining what to
o when a grasped target drops from the robot’s hand. Such unexpected events are likely to cause
 failure in performing tasks. A comprehensive online planning system should be able to moni-
or and understand these unexpectations sensitively, and then decide what adjustments need to
e made, or replan the task from scratch. The online planning system formulates as a Planning-

cting Loop System (P-ALS) interacts with the environment frequently, Figure 1 gives the ar-
hitecture of P-ALS. Each control action is followed by perceptual action to monitor and estimate
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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urrent states, which are then compared with the predicted states. The improvements make the
nternal structure of TAMP more reliable and robust. 

In recent years, machine learning has been a useful tool in TAMP to solve the second type of
hallenges [ 100 , 156 , 161 ]. Geometric constraints are coupled with action sequencing, they affect
he search space of TAMP jointly. For example, the poses where the robot manipulates and the
hysical properties of objects to be manipulated are important information for TAMP. Learning
lgorithms can extract characteristics of different transitions and relevant constraints from past
xperience or demonstrations, and then guide TAMP in addressing similar problems as well as ex-
editing the planning process. Besides, learning symbolic primitive operators has been studied for
 very long history [ 6 , 7 ] and implemented for TAMP in recent years [ 179 , 180 ]. The capability of
erforming various complex long-horizon tasks optimally with a robot depends on the richness of
he operator library to some extent. The learned operators with symbolic representations describe
he transition relationships between states and guide the overall planning procedure. Moreover,
eneralizing TAMP to real-world applications also needs to account for uncertainties during the
lanning and acting. Reinforcement learning has been used in many decision-making systems and
as been presented to solve TAMP problems under uncertainties in recent years [ 86 , 135 ]. Pioneer-

ng work of learning algorithms in TAMP can refine the prior model of task planner with visual
ata instead of learning from scratch [ 113 , 192 ]. The majority of relative learning algorithms can
e embedded in P-ALS, they can cover each part of P-ALS, aiming to reveal the general features of
AMP and improve the scalability of TAMP in various real-world applications. 
We organize this survey according to solutions for the following three Research Questions: 

• RQ1 : What are the strategy inclinations of integrating task planning and motion planning?
• RQ2 : What are the current tools, strategies and mechanisms used to improve the robustness

of TAMP structure internally under uncertainties? 
• RQ3 : How to leverage learning algorithms for generalizing TAMP approaches? 

he answers to the three Research Questions summarize the development of TAMP research field.
ection 2 offers a historical background of the relevant literature in TAMP. Then, we show the
ecent trends in regular TAMP approaches and answer RQ1 according to their concentrations in
ection 3 . The studies about RQ1 figure out the basic structure and strategy development process
f early TAMP. They provide the technical basis for the follow-up researches about RQ2 and RQ3 .
e further detail the trends in online TAMP and answer RQ2 in Section 4 . The researches of

Q2 improve and expand the basic structure of TAMP to deal with uncertainties. Compared with
he studies about RQ1 , they either consider the failure response strategy or added the execution
nto the planning system to form an effective closed-loop, making TAMP more robust. Section 5
resents different learning algorithms in TAMP and gives solutions for RQ3 . The approaches in RQ3

over the entire structure of TAMP, including domain knowledge representations, primitive action
enerations, transitions between different states and the planning policies. Learning algorithms are
ore like external tools for TAMP to help it extract features for generalization. Finally, we conclude

his survey and present some promising future research fields of TAMP approaches in Section 6 . 

 BACKGROUND 

he AI Planning Community has focused on automated solutions for planning and scheduling
roblems in the last decades. These problems are specified and solved by using a descriptive
odel called planning domains , which is also an approximate representation of environment and

ctions. The STRIPS [ 54 ] is developed with the first systematic classical representations to de-
ide what sequence of commands for controlling the autonomous robot Shakey. The well-known
lanning Domain Definition Language (PDDL) [ 2 ] is the extended representation language for
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Fig. 2. PDDL representation for action pick . 
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lassical planning, there are many further evolutions of it such as PDDL2.1 [ 56 ], PDDL3.0 [ 66 ], and
DDL+ [ 55 ]. Alternatively, Simple Action Specification (SAS) [ 8 ] is a simplified action structure
or describing the planning problems with finite domain representations [ 130 , 199 ], it is expres-
ively equivalent to STRIPS without action parameters, while the main difference is that it supports
ariables with both propositional domains and discrete domains. The Hierarchical Task Net-

ork (HTN) is a refined structure comprised of partially or totally ordered actions constrained
y state variables, it has been proved that HTN planning makes better expressive performance
han classical planning [ 48 ]. 

TAMP approaches are formally different according to the implemented symbolic task planners.
n total, we have detailed 87 papers of which 61 are explicitly implementing a specification lan-
uage for task planners, these are presented in Table 1 . TAMP combines discrete classical planning
ith continuous geometric satisfying to find a sequence of actions to reach the final states. Given

n initial set of states S 0 and a goal set of states S ∗, classical task planning is to find a discrete
equence of actions π in all model-defined transitions T ⊆ S × S from S 0 to S ∗. S represents
ll possible states in planning domains and each action corresponds to a transition defined in the
omain. However, given an initial configuration q 0 and a target configuration q ∗, the motion plan-
ing problem for a robot with d degrees of freedom is to find a continuous feasible path τ in the
obot configuration space Q ⊂ R 

d , such as a collision-free path from start to end [ 83 ]. A PDDL
ction a of π for S is a tuple a = < he ad (a ), pre (a ), e f f (a ), cost (a ) > , each element of which is: 

• head(a) : Containing the action name and a list of related parameters a (z 1 , z 2 , z 3 , . . . , z k ),
the parameters must cooperate all of the variables in pre (a ) and e f f (a ). 

• pre(a) : A set of literas {p 1 , p 2 , . . . , p m 

}, which represent the facts must hold before per-
forming action a , including positive literal and negative literal . 

• eff(a) : A set of literas {e 1 , e 2 , . . . , e m 

}, which represent the facts must hold after perform-
ing action a , including positive literal and negative literal . 

• cost(a) : A positive number denoting the cost of action a , sometimes is omitted with a
default value of 1. 

igure 2 presents the PDDL representation for action pick , the robot in configuration q will pick
p the object at pose p once there are a safe trajectory plan and available arm, the related world
tates will change according to the effect. 

TAMP is essentially a strategy for determining how to handle hybrid constraint satisfaction
roblems, it couples action sequencing with continuous parameter searching. Shakey the Ro-
ot [ 136 ] performs the first TAMP algorithm by first finding high-level abstract action sequences
nd then searching for continuous values for motion planning. The strategy of semantic attach-
ents [ 44 , 45 ] searches for continuous motion parameters during task planning. Alternatively,

ome methods [ 39 , 162 ] perform continuous parameter searching after and in alternation with
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Table 1. TAMP Approaches in Sections 3 and 4 

Reference Task formulation/Tools Employed Applications/Experiments 

[ 92 , 93 ] HPN with HTN formulations restaurant manipulations 

[ 164 ] HTN formulations Barrett WAM robots, dual-arm manipulations 

[ 163 ] CHIMP with HTN formulations PR2 restaurant manipulations 

[ 97 ] Hierarchical planning system with HTN formulations online re-planning, dual-arm manipulations 

[ 3 ] AC decomposed by symbolic tasks LFD, manipulations under external perturbation 

[ 109 ] CTAMP with CSP solver Robot manipulations 

[ 38 , 39 ] IDTMP with STRIPS formulations and SMT solver Rethink Robotics Baxter manipulations 

[ 129 ] Constrained Graph representations and CSP solver Rethink Robotics Baxter manipulations 

[ 107 ] ASP task planner Robot manipulations and culprit detection problems 

[ 162 ] PDDL formulations PR2 manipulations 

[ 60 ] EAS extended by SAS+ PR2 manipulations 

[ 61 , 62 , 63 ] PDDL formulations and CSP solver PR2 restaurant manipulations 

[ 150 ] PDDL formulations and MCTS search algorithm PR2 restaurant manipulations 

[ 169 ] PDDL formulations PR2 manipulations in Gazebo 

[ 191 ] heuristic TSP solver as a weighted graph pick-and-place domain experiments 

[ 155 ] MTL formulations and MILP solver Baxter manipulations in MATLAB 

[ 26 ] LTL formulations and MILP solver Robot manipulations 

[ 103 ] HIOA [ 120 ] formulations and MILP solver Mars Transportation, Air Refueling and Truck-and-Drone Delivery domains 

[ 74 ] LTL formulations and MDP planner iRobot navigation 

[ 146 ] POLGP with Decision tree formulations Robot manipulations under uncertainties 

[ 110 ] M-VFH formulations and A 

∗ search algorithm Robot manipulations in clutter with Moveit! 

[ 4 ] PDDL formulations and Fast Forward planner Robot manipulations 

[ 132 ] MPLP with graph-based formulations and parallel algorithm PR2 manipulations in Gazebo 

[ 87 ] VKC with PDDL formulations Robot manipulations 

[ 195 , 196 ] Ontology-based formulations of Action-specific Knowledge Manipulation trajectory control 

[ 46 ] PDDL2.1 formulations Robot navigation 

[ 149 ] RobMAP with PDDL2.1 formulations Robot navigation 

[ 116 ] PELON with ASP and PDDL formulations, FD solver Robot navigation 

[ 168 ] MPTP with PDDL2.1 formulations Robot navigation under uncertainties 

[ 42 ] TMPUD with ASP task planner Urban self-Driving under uncertainties 

[ 77 ] LGP formulations Architectural robotic manipulations 

[ 184 ] HTN formulations Robot manipulations with incomplete knowledge 

[ 47 ] HTN formulations and FSM executor Dynamic robot manipulations 

[ 152 ] HTN and PDDL formulations, BTs executor Dynamic robot manipulations 

[ 126 ] PDDL2.1 formulations and BTs executor, PlanSys2 Dynamic robot manipulations 

[ 165 ] TMM with MDP planner Robot navigation under uncertainties 

[ 157 ] STAMP with MDP planner Robot manipulations under uncertainties 

[ 194 ] Hierarchical POMDP planner Robot manipulations under uncertainties 

[ 90 ] HTN formulations Robot manipulations under uncertainties 

[ 76 ] IBSP with STRIPS formulations PR2 manipulations under uncertainties 

[ 80 ] HTN formulations and A 

∗ search algorithm AUV navigation under uncertainties 

[ 64 ] PDDL formulations PR2 manipulations under uncertainties 

[ 122 ] Directed acyclic contingent planning graphs Wumpus, localize and rock sample domains 

[ 1 ] LESAMPLE with PDDL formulations Robot manipulations in clutter under uncertainties 

(Continued) 

ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Table 1. Continued 

Reference Task formulation/Tools Employed Applications/Experiments 

[ 153 ] BBTs executor R1 robot manipulations under uncertainties 

[ 187 , 188 , 189 ] MDP planner, ASP formulations Robot navigation and detection under uncertainties in Gazebo 

[ 37 ] TMKit with PDDL formulations Robot manipulations under uncertainties 

[ 70 ] Hierarchical tree structures and MoveIt! Robot manipulations under uncertainties 

[ 177 ] Heuristic search task planner Test tubes manipulation and rearrangement 

[ 128 ] extended LGP with STRIPS formulations Robot manipulations with Tower of Hanoi problem 

[ 142 ] PDDL2.1 formulations KUKA LBR iiwa robots, Dual-arm manipulations under uncertainties 

[ 176 ] Extended SAS+ formulations and vector-field reactive layer Robot navigation and manipulations under uncertainties 

[ 53 ] PLATINUm task planner with EPSL Human-robot coordination in manipulations 

[ 24 ] RH-TAMP with PDDL formulations Panda and UR5 manipulations under uncertainties 

Fig. 3. PR2 benchmark problems for TAMP approaches in Reference [ 108 ]. 
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ask planning. A recent review from Garrett et al. [ 59 ] provides a comprehensive description of
AMP. It is based on foundations in classical task planning, motion planning and multi-modal mo-
ion planning [ 121 ]. They classify general TAMP methods according to the sequential strategies of
olving hybrid constraint satisfaction problems. While either sequencing before satisfying or sat-
sfying before sequencing or alternating between them is to obtain a detailed plan considering the
ow-level constraints. Additionally, Lagriffoul et al. [ 108 ] present the first platform-independent
valuation benchmark scenarios for TAMP, the properties of these benchmark scenarios provide a
eference for many subsequent research experiments [ 24 , 62 , 63 ], Figure 3 shows some PR2 applica-
ion scenarios. This article surveys the strategies of these regular TAMP approaches that generally
ssume the environment is static or perceptions are perfect. The strategy inclinations of these ap-
roaches reflect the origin of TAMP structure and how to solve the hybrid planning problem. In
ontrast to the previous work, we further survey online TAMP methods that can deal with un-
ertainties, these methods improve the internal structure of TAMP, making the planning system
ore robust. Additionally, we also present how learning algorithms contribute to TAMP in recent

ears. 
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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A survey by Ingrand et al. [ 84 ] presents a global overview of deliberation functions for au-
onomous robots including planning, acting, monitoring, observing and learning. They show the
erspective that deliberation in robotics does not limit to task planning but also acting and mon-

toring. Similarly, a book from Ghallab et al. [ 67 ] shows the significant need for deliberatively
cting to decide how to perform each primitive action, they focus on the reasoning functions.
oreover, a book from Colledanchise et al. [ 34 ] introduces BTs for online behavior planning and

cting. They show the historical development of BTs from the computer game industry to robotic
pplications. BTs synthesize the advantages of different decision-making structures, including
inite-state Machines, Subsumption Architecture, Teleo-Reactive programs, and Decision Trees.
iménez et al. [ 88 ] review the techniques in machine learning for automated planning and orga-
ize them into two categories, including learning algorithms for action model planning and search
ontrolling. 

While our article is different from their studies, we verify their arguments from the perspective
f TAMP. In other words, we limit the scope of this article to TAMP, a comprehensive planning
pproach considering both high-level task planning and low-level motion planning. We do not
imit the approaches used in task planning or motion planning, because that TAMP is composed
f them, there are large amounts of state-of-art for them separately. We do care about the studies
ombining them to solve real-world long-horizon tasks. Besides, whether the task planner is based
n PDDL or STRIPS and other related planners is not important. 

 RECENT TRENDS IN REGULAR TASK AND MOTION PLANNING 

AMP is a more comprehensive planning method that treats low-level motion planning constraints
s factors in high-level task planning than traditional task planners. Benefiting from these consid-
rations, long-horizon tasks are more tractable without complex programming in motion planning.
n this section, we survey the trends of relevant approaches reported in the literature for deter-
ining how to integrate task planning with motion planning (Section 3.1 ); how to make TAMP

omputational efficient (Section 3.2 ). Most of these TAMP methods are applied in robot manipula-
ion, and a small number of them are used in robot navigation or other field scenarios (Section 3.3 ).

.1 General Task and Motion Planning 

ur work does not classify TAMP methods according to the performing strategy of task planning
nd motion planning [ 59 ], we classify them according to their preferred concentrations instead.
he earlier TAMP methods focus on the hierarchical architecture of TAMP (Section 3.1.1 ), while
ome of these methods concentrate on the constraint relationship in TAMP (Section 3.1.2 ). Recent
AMP studies concentrate on getting a probability complete feasible solution in the constrained
earch space, such as the sampling-based approaches (Section 3.1.3 ), while other studies seek op-
imal plan trajectories according to objective functions (Section 3.1.4 ). 

3.1.1 Hierarchical-based Task and Motion Planning. Hierarchical-based TAMP approaches de-
ompose high-level abstract tasks into many sub-tasks, which can be easily solved, such as HTN.
iven a global task, the hierarchical structure can alleviate the computational effort of combining

ask sequencing and feasibility check by solving smaller decomposed TAMP problems. 
Kaelbling and Lozano-Pérez [ 92 ] propose a hierarchical planning and execution strategy

or task and motion planning in the now (HPN) . They integrate the continuous geometric
nformation with task planning to construct suitable choices for the operator’s parameters by
sing geometric “suggesters.” This method does not need a pre-discretization of the state space or
ction space. It continuously decomposes high-level abstract tasks into concrete primitive actions
y nested procedures. The same authors extend their work to apply it to belief space [ 93 ]. 
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Similarly, Suárez-Hernández et al. [ 164 ] propose a framework that integrates HTN task plan-
er with geometric feasibility check. The HTN planner constructs hierarchical control structures
ith complex geometrical constraints of robotic arms. There are two types of task classification,

rimitive or compound task. The HTN planner iteratively decomposes a compound task into one
r more sub-tasks until finding a feasible plan, these sub-tasks are stored in the planning stack. 
Stock et al. [ 163 ] propose a Conflict-driven Hierarchical Meta-CSP Planner (CHIMP) with

n expressive domain language to account for subtask dependencies, geometric or temporal con-
traints and resource usages. The hybrid search space is rigorously restricted by pre-defined de-
omposition rules. CHIMP uses a meta-CSP [ 124 ] reasoning method to search for a plan online. It
pends a low planning time despite the huge hybrid search space. CHIMP does not need to plan
rom scratch when receiving a new goal, it merges tasks by unifying the former task steps, which
an significantly reduce the planning and reaction time when facing some special situations. 

Kast et al. [ 97 ] propose a hierarchical planning system to solve the task and motion problem
ith difficult geometric constraints and combinatorial complexity. The system combines expert
nowledge with introspection capabilities to reach a given goal while solving the huge compu-
ational time problem due to high-dimensional state space. The hierarchical planner orchestrates
he action sequences even for long-horizon tasks based on the previous work [ 96 ], it constructs a
lanning domain with the description of concepts and operators. In addition, the hierarchical plan-
er is critical for efficient recovery and backtracking because of unforeseen circumstances during
xecution. Moreover, the approach can generate sequences of asynchronously parallel actions on
eal robots, by doing this, it can avoid unnecessary sequential execution and waiting times due to
esource locks. 

A strategy that hierarchically decomposes high-level abstract tasks into symbolic actions is pro-
osed by Agostini et al. [ 3 ]. This method uses a novel representation of object-centered geometric
onstraints in the object configuration space to generate consistent solutions, it avoids unneces-
ary computation by the motion planner. Symbolic tasks are decomposed into rooted tree nodes
hat correspond to certain robot actions. The process from task planner to certain actions is ar-
iculated through a new structure called action context (AC) . AC consists of information about
hat action to do next and what action was executed before. 

3.1.2 Constraint-based Task and Motion Planning. Constraint-based TAMP approaches regard
he combination of task sequencing and low-level geometric constraints as Constraint Satisfac-

ion Problems (CSPs) , they carefully process the constrained relationships by special solvers.
ask planning and geometric constraints evaluation are interleaved in the TAMP framework
f Reference [ 109 ] to generate symbolic action sequences. The planning space is explored dur-
ng geometric backtracking. The method constructs a constraint network to address the signif-
cant computation of geometric backtracking in kinematically constrained problems. The set of
onstraints in the network is formulated as a set of linear inequalities and equalities to remove
nconsistent actions. Dantam et al. [ 38 ] propose the IDTMP, which uses Satisfiability Modulo

heories (SMT) solvers incrementally and dynamically to make motion feasibility checks in task
lanning. The “constraint” corresponds to the logical assertion of the task planner based on satis-
ability checking in this study. The method generates task plans efficiently by incorporating geo-
etric constraint information from failed motion feasibility checks incrementally. The planning

omains are defined with a customized task language and scene graph . With a time-limited bound
ncrease, the constraint-based task planner is coupled with a sampling-based motion planner that
nsures the probabilistically complete. IDTMP is validated on a physical Baxter manipulator and
as better performance for task scalability and plan length than the previous similar framework
y He et al. [ 78 ], The extended version [ 39 ] modifies their work with a formal analysis of the
lgorithm and enhances communication between the task and motion layer. 
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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The constrained relationships can be constructed as a Constraint Graph by unifying task plan-
ing and motion planning under the rearrangement rules [ 129 ]. Rearrangement Planning [ 139 ] is a
ubclass of TAMP [ 59 ], including the topic of Navigation Among Movable Obstacles (NAMO)

r Manipulation Among Movable Obstacles (MAMO) . A concrete algorithm called the Manip-

lation RRT is proposed based on Constraint Graph to solve N/MAMO problems. Constraint Graph

ives a representation of facts to help Manipulation RRT understand the geometric relationships
etween objects. At the same time, Manipulation RRT provides more feedback to the task planner
han a normal motion planner, which makes the method suitable for integrating with a task plan-
er. Constraint Graph addresses task planning and motion planning problems simultaneously, it
voids complex feedback loops resulting from hierarchical planning. 

Two culprit detection mechanisms are built to transmit geometric constraints to the task level
n Reference [ 107 ]. The first mechanism generates relaxed geometric information by a set of ap-
roximated bounding boxes, which are represented by the network of linear constraints. The
econd mechanism takes input from the first mechanism to construct a spatial constraints graph of
eometric dependencies between operators. The planning problem becomes a hybrid search prob-
em when the failures are detected and fed back to the task layer. The shorter subsequence of ac-
ions can be generated and evaluated independently by the Answer Set Programming (ASP) [ 19 ]
ask planner. The task planner prunes the entire family of similar failure branches repeatedly to
btain a feasible solution. 

3.1.3 Sampling-based Task and Motion Planning. Sampling-based TAMP approaches focus on
nding feasible solutions in the constrained search space with probabilistic completeness. They
re often sampling at the intersectional region of different constraints, which significantly reduces
he hybrid search space. A novel representation of the geometric constraints is presented with the
orm of logical predicates in Reference [ 162 ], it makes the task-level actions to be identifiable and
xpressive. The author leverages off-the-shelf task planners and motion planners to bridge the gap
etween task planning and motion planning. The geometric representations of logical predicates
uch as “grasping pose for b 1 ” and “trajectory for reaching grasping pose for b 1 ,” are translated
rom the geometric reasoning layer. The task planner searches for the feasible solution efficiently
y parameterizing the discretization values sampled from the relevant constraints intersections. 

Similarly, Garrett et al. [ 60 ] propose FFRob as an efficient and probabilistically complete algo-
ithm for TAMP. The method introduces Extended Action Specification (EAS) as a new repre-
entation for symbolic planning. The conditions of actions are predicates incorporating geometric
nd kinematic constraints. The method pre-processes the discretization by sampling a finite num-
er of actions and then represents the geometric constraints in a finite domain with EAS. The task
lanner applies efficient heuristic search algorithms from AI Planning Community to find feasi-
le solutions. Their next work [ 61 ] gives a more comprehensive and theoretical explanation of
ampling-based methods for TAMP. They model the TAMP problems as factored transition sys-
ems that convert system states to the intersection submanifold of several constraint manifolds
here solutions lie. The method characterizes conditions on the submanifold and then uses a spe-

ial solver to find feasible solutions under these conditions. Each condition corresponds to a condi-
ional sampler that can be composed to generate suitable values on the submanifold. Additionally,
he author presents two algorithms ( Incremental and Focus ) to search for feasible solutions. Then
arrett et al. [ 62 ] modify and upgrade their previous work, present STRIPStream and the final ver-

ion PDDLStream [ 63 ] with an open-source TAMP framework. PDDLStream is a general-purpose
ramework for incorporating sampling generators in PDDL language, the conditional samplers are
ubstituted with streams that are presented in a stream.pddl file. Two new algorithms ( Adaptive

nd Bindings ), which are kind of Focus algorithms that satisfy constraints lazily are proposed to
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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olve a series of TAMP problems. The Bindings algorithm reconsiders each previously evaluated
tream plan during the search, it is relatively computationally expensive. While the Adaptive al-
orithm balances the computational effort of searching and sampling processes to aggressively
xplore more possible bindings. 

Ren et al. [ 150 ] propose eTAMP that integrates a top-k skeleton planner to generate different
ymbolic plan skeletons for long-horizon manipulation tasks. The method chooses the lowest cost
keleton candidate according to the current domain description. At the same time, the actions in
he symbolic plan are refined to concrete values from optimistic objects according to the geomet-
ic constraints. Moreover, these concrete values are generated by streams [ 63 ], the pre-defined
lack-box conditional generators in the task planning domain. The method integrates the skele-
on choosing process as an “additional stream” for sampling alternate skeletons in the discrete
ask space. Then a tree-structured search algorithm Monte Carlo Tree Search (MCTS) is used
o solve the hybrid planning problem. 

Thomason and Knepper [ 169 ] propose a novel TAMP method with a sampling-based motion
lanner to search for a symbolically and geometrically solution simultaneously in a single call.
he key idea is to consider symbolic state into continuous parameter space, this is done by auto-
atically deriving a function and leading a planner to regions of continuous space where symbolic

ction conditions are met. A factorization of the sampling problem is needed to decrease the di-
ensionality of the composite space. Besides, a continuous “semantics” is proposed for explicitly

epresenting the regions hold by geometric predicates, such as a description of how far a given
tate is from the nearest state. Finally, a planner-agnostic sampling algorithm is presented to search
or feasible plans. 

3.1.4 Optimization-based Task and Motion Planning. Many TAMP methods only concentrate
n satisfaction problems, while optimization-based TAMP methods search for feasible solutions
inimizing the planning cost or time. They concentrate on finding optimal solutions while keep-

ng manageable computational efficiency in TAMP. The specifications of operators are related to
emporal logic and cost features [ 123 ]. 

Zhang and Shah [ 191 ] propose a hierarchical optimization-based TAMP method. The large-scale
obotic manipulation applications are formulated as multi-level optimization problems, including
ask, action and motion planning levels. Given an optimization objective, the method finds an
ptimal performance metric sequence in the top task planning level by utilizing a heuristic TSP
olver. The approach explicitly models the robot migration cost from one task to another. For
xample, if one object blocks another object, the transition cost will be infinite and the task-level
lgorithm will consider lower-level problems to optimize the cost. 

Some methods optimize TAMP problems by using Mixed Integer-Linear Programming

MILP) . Saha and Julius [ 155 ] propose a TAMP framework that combines high-level MILP with
ow-level Metric Temporal Logic (MTL) formula for generating optimal solutions autonomously.

ILP searches for the MTL task specifications about the sequence of actions by using a knowledge

ap of the workspace. The low-level MTL specifications extend Linear Temporal Logic (LTL)

y appending time intervals to the temporal operators, the intervals are considered as constraints
o optimize TAMP problem. The process iteratively calls an optimization algorithm in each step
o modify the motion plan of the manipulator’s arm until it chooses an optimal task sequence to
eet the task-specified performance objective. However, if the chosen candidate sequence is not

easible, then the knowledge map will update the specifications to propose a new candidate. The
ptimization algorithm is based on gradient descent, it is proven to obtain a probabilistically com-
lete solution even though it only guarantees locally optimal solutions. An optimization-based
ybrid planning method uses MILP to inference on temporal concurrent goals [ 26 ]. MILP fixes the
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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ction number of automaton runs and plans over the mixed discrete-continuous spaces within a
easonable time to generate provably optimal plans. Kogo et al. [ 103 ] propose an improved model
f optimization-based TAMP that reduces computational costs in robotic manipulation problems.
he model integrated with collision avoidance is formulated as a MILP problem. The method solves

he problem efficiently by two approaches leveraging the properties of collision check. The first
resented approach is to reduce binary variables, which are related to collision check and substi-
uted as continuous variables with additional hard constraints. The second approach proposes soft
onstraints as a new term added to the objective function, which restricts the motion paths softly
n a delivery mission. Different from the hard constraints, soft constraints help the MILP solver

ore likely to find fractional solutions with shallower branching. 
Soft constraints satisfaction can not only guarantee probabilistic satisfiability it can also opti-
ize the mean cost in planning. Guo et al. [ 74 ] propose a hybrid plan algorithm for probabilistic
otion planning, it combines high-level LTL task specifications with risk constraints. Given a

ontrol objective, the method uses the Markov Decision Process (MDP) to solve optimization
lanning problems. The goal is to synthesize a finite-memory control policy to generate robot mo-
ion plan trajectories. The policy is refined by high-level task sequence specifications with desired
igh probability and objective cost. The prefix and suffix parts of the system trajectories with two
oupled linear programs are solved to obtain the optimal policies. In addition, this study considers
ases where the probability of feasible solutions is zero, this makes the MDP without an Accept-

ng End Component (AEC) [ 41 , 58 ]. To avoid returning no solutions in this situation as most
xisting methods do, the method treats task level satisfactions as soft constraints and presents a
elieved suffix plan to minimize the frequency of reaching a bad state. 

The optimal plans are treated as trajectory trees in the study of Phiquepal and Toussaint [ 146 ].
hey extend the previous work Logic-geometric Programming (LGP) [ 172 ] and propose a novel
ptimization-based TAMP solver. The solver works in two stages: first, it obtains a symbolic policy
y approximate path costs from a piece-wise trajectory optimization, and then optimizes the joint
rajectory tree corresponding to the policy. The whole trajectory in the symbolic decision tree
s optimized all at once instead of optimizing the sequences separately. Some methods optimize
AMP manipulation problems in Clutter situations. Lee et al. [ 110 ] propose a tree search-based
AMP to grasp targets optimally in clutter considering both prehensile and non-prehensile ma-
ipulations. The method points out three key issues in this problem: (1) figuring out the minimum
umber of obstacles to be relocated, (2) manipulation planning of these clustered obstacles, (3) fea-
ible motion planning to handle obstacles in issues (1) and (2). The first issue is optimally solved
y the tree-search-based planning algorithm with Modified Vector Field Histogram (M-VFH) .
-VFH is a local path generation algorithm that figures how many obstacles block an object. The

econd issue is solved by taking extra consideration of non-prehensile manipulation during tree-
earch-based planning such as pushing obstacles by a collision. The third issue is a general problem
f feasibility checks in the planning process. 

.2 Computational Optimization in Task and Motion Planning 

AMP is a hybrid planning approach, the computation of high-level task planning is less expen-
ive than low-level motion planning because of the discrete search space. While motion planning
eeds to search frequently in the continuous parameter space such as searching for a collision-
ree path that will take a lot of computational resources. As a result, it is significant to improve the
omputational efficiency [ 111 ] of the deliberative planning system. 

Sometimes a lazy search algorithm instead of an incremental one [ 61 , 63 ] can make the hybrid
lanning process more efficient. Akbari et al. [ 4 ] propose a TAMP method that delays the geomet-
ic feasibility check until the corresponding action is selected by the heuristic. This reduces the
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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omputation cost in the motion planner, at the same time, the backtracking is reduced, because
he task planner captures most of the geometric constraints, including grasp and place poses, in-
erse kinematics solutions and collision checks. Parallelization of computing [ 182 , 183 , 186 , 190 ] is
lways a suitable choice to improve the computational bottleneck of search algorithms in TAMP.
 Massively Parallelized Lazy Search Algorithm (MPLP) [ 132 ] leverages the modern multi-

ore CPU to solve planning problems efficiently. The computational effort is mainly dependent
n the evaluations of graph edges, which stand for the constraint satisfaction problems. MPLP
mplements massive parallelization by a Multiple-instruction Multiple-data (MIMD) execu-
ion model, which evaluates potential edges parallelly. Then the problem becomes determining
hat edges to evaluate, in what order and how to incorporate all these evaluations in the planning
omains, the problem is solved by graph search algorithms. 
Optimal compound actions may simplify the planning process instead of primitive actions. Jiao

t al. [ 87 ] propose a Virtual Kinematic Chain (VKC) , which is a composition of primitive ac-
ions. They treat VKC as a new primitive action to improve the task planning efficiency of mobile
anipulation problems. The method deliberatively consolidates the constraints of the mobile base,
anipulation arm and the object to be manipulated. Then the VKC perspective can define abstract

ctions and avoid unnecessary predicates in the intermediate of symbolic operators. 
Some methods use an ontology-based approach to reduce computational costs in motion plan-

ing. Zhao et al. [ 196 ] propose an ontology-based method that models a well-structured 3D envi-
onment as the task-oriented domain knowledge to improve path planning efficiency. The method
enerates a special path planning query for the primitive operator. The ontology method describes
bjects or regions involved in geometric constraints for the task, it presents a geometric model of
he environment as well. As a result, the specific path planning will obtain better performance on
omputational time and path relevance. However, this work is still preliminary because of lim-
ted conceptions and rules, the validation and evaluation processes are also lacking as well. In
he next step, they present their new work [ 195 ], focusing on simulating and validating processes
ith strong geometric constraints in robotic manipulation. The task-related information is a 3D
nvironment Ontology (ENVOn) , which introduces any geometric information of a given rigid
ody or a given place. The new method is validated through two different cases with incremental
eometric constraints added to the environment. They also point out that few works have con-
idered task-related information at the motion planning level, while it is the contribution they
ave done [ 10 , 59 ], this is also similar to the state-of-the-art autonomous exploration [ 21 , 198 ] in
obotics, they are using global task information to guide local exploration. 

.3 Task and Motion Planning in Navigation and Other Applications 

ver the past few years, TAMP has been mainly applied in long-horizon pick and place tasks
mong the research community. While TAMP approaches for navigation or other field applications
ave not yet been paid much attention to and therefore lack sufficient literature [ 116 , 168 ], they
resent different challenges compared with TAMP approaches for manipulation. 
In recent years, researchers have drawn attention to applying TAMP in navigation and

utonomous urban driving. Edelkamp et al. [ 46 ] integrate temporal task planning with
ampling-based motion planning to solve multi-goal motion planning problems under dynamic
nvironments and time limitations. The roadmap is obtained as the symbolic task-level specifi-
ation that informs the connectivity of the navigation space and helps the temporal task planner
nd a solution at each iteration. Then the sampling-based motion planner expands the roadmap
ased on the discrete solution. Similarly, a hybrid motion planning approach Robotic Motion

nd Action Planning (RobMAP) [ 149 ] is proposed to generate the optimal path with the prior
ask level sequence information. RobMAP leads to efficient navigation in a large-scale indoor
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 



Recent Trends in Task and Motion Planning for Robotics: A Survey 289:13 

e  

R
 

w  

f  

o  

e  

b  

a  

a  

g  

(  

T  

e
 

b  

t  

a  

p  

a  

i  

a  

T  

t  

t  

r

3

T  

t  

a  

T  

s  

f  

f  

t  

s  

w
 

s  

e  

fi  

i  

r

4

T  

s  
nvironment. The method is based on ROSPlan [ 23 ], using PDDL planner and sampling-based
RT to find collision-free solutions. 
Lo et al. [ 116 ] propose Planning Efficiently for Task-level-optimal Navigation (PETLON) ,

hich is a TAMP approach for robot navigation within optimal cost. They combine ASP and PDDL
ormulations as the task planner to solve planning problems with FastDownward solver [ 79 ]. Based
n their approach, Thomas et al. [ 168 ] propose a TAMP framework for navigation in large-scale
nvironments. They show a need for motion-planning-aware task planners. They present a proba-
ilistically complete method for navigation in unstructured human environments leveraging inter-
ctions between task and motion planning. The task planner generates an optimal path plan with
 given roadmap conditioned on action cost. A reliable planning system is critical for the navi-
ation of self-driving cars [ 9 ], Ding et al. [ 42 ] propose a TAMP algorithm for Urban Driving

TMPUD) , the first progress that uses TAMP to guide the safety level of urban driving actions.
MPUD presents a new safety estimator to judge actions’ safety levels, it is implemented and
valuated with an autonomous driving simulation platform. 

Building and construction applications are an extension of the basic manipulation problems,
ut with more rigorous requirements. Hartmann et al. [ 77 ] apply TAMP algorithm in architec-
ural applications. In the building industry, integrating automated planning with suitable design
nalysis tools can make the design iteration cycles faster for designers and engineers. The method
resents a multi-agent TAMP framework to solve hard long-horizon construction problems, such
s constructing a full-scale building. The long-horizon planning process is decomposed as reced-
ng horizon planning problems in TAMP. This study uses LGP as the planner and combines it with
 sampling-based method as well as an optimization-based method to form a robust TAMP-solver.
he geometric, kinematic and static feasibility is iteratively evaluated during the whole construc-

ion process. Similarly, Huang et al. [ 81 ] integrate TAMP with architectural design. They bridge
he gap between robotic construction and TAMP by presenting the plan skeleton formulations for
ealistic architectural case studies with TAMP solver. 

.4 Summary 

AMP is an essential research topic and progressing significantly in AI Planning Community for
he last decade, it is more general and comprehensive than other symbolic task planners. The hier-
rchical framework combining task planner and motion planner is studied in the earlier research.
hen TAMP develops into a hybrid planning system for long-horizon tasks and brings more con-
traints information from the motion layer to the task layer, CSP solvers are leveraged to find
easible solutions in the hybrid search space. But the search space is computationally intractable
or planning with the incremental growth of constrained factors. Sampling-based TAMP methods
ransparently reduce the dimensionality of the searching parameter space and generate feasible
olutions with probabilistic completeness, while optimization-based approaches look for solutions
ith minimal costs efficiently. 
TAMP works as a high-level centralized information system, therefore implementing an efficient

earch algorithm is critical. It is an especially important research field in real-time planning and
xecution systems. Significant research efforts have been devoted to this field. In Table 1 , we can
gure out that most TAMP approaches are applied in robot manipulations. Alternatively, there

s also a high potential in other planning domains where TAMP can be widely deployed such as
obot navigation, exploration and architectural construction applications. 

 RECENT TRENDS IN ONLINE TASK AND MOTION PLANNING 

he regular TAMP methods we have talked about are often associated with one or more as-
umptions, such as the full observability of the world or perfect perception, planning with static
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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nvironments, a complete knowledge base and deterministic actions. However, it is hard to com-
lete a long-horizon task in a real-world environment. There are a few of the introduced TAMP ap-
roaches have considered uncertainties [ 42 , 46 , 74 , 93 , 97 , 146 , 168 ]. The dynamic factor from other
gent or the object, the unexpected failure with action, the inaccurate sensory information, the ne-
lected or unobserved relevant part and the incomplete knowledge base, all of these will develop
nto uncertainties [ 18 , 94 , 138 , 185 ] that fail in the execution of the plan with a high possibility. In
his section, we review the research trends of online TAMP. These studies further optimize regular
AMP into an online planning system to deal with most uncertainties in real applications. Online
AMP considers re-planning according to unpredictable state changes. The internal robustness
f TAMP has been improved by different planning tools, strategies and mechanisms in this sec-
ion. We introduce the robust and reactive behavior planning approaches that are related to the
xecution of actions in Section 4.1 ; Section 4.2 discusses the trends of probability distributed TAMP
pproaches; Section 4.3 discusses trends of control-based TAMP approaches, which formulate the
lanning and acting processes as a control loop. 

.1 Behavior Planning 

f the task planner has found a sequence of actions, then the next step is to implement these actions
nto relevant executors. Thanks to the developments in motion planning, we do not have to deal
ith the specific parameters in motion planner, such as velocities and accelerations [ 137 ]. Since

hat, the simplest way to implement actions is to directly send commands (goal configurations in
ath planning) to the motion planner. However, this manner is sensitive to disturbances in the
nvironment even tiny tolerances or changes of the constrained parameters will cause a failure of
he action. Therefore a special action executor and replanning mechanism of actions are needed
or the planning system considering this situation. 

4.1.1 Hierarchical Task Network. HTN is designed for solving complex tasks. It can not only
ork as a task planner to search for solutions with domain knowledge; but can also manage the

xecution of each operator [ 98 ]. HTN is constructed by two types of tasks, called compound task
nd primitive task. Given a task description, HTN iteratively decomposes the task into primitive
asks to find solutions until there is no compound task. Each primitive task is encoded into the
tandard operator including precondition and effect specified by a set of literals. If the precondition
s not satisfiable during execution, then HTN can replan at that point instead of replanning from
he root task with a changed domain. Furthermore, a forward-search procedure is used for most
xisting HTN planners [ 133 , 134 ]. As a result, HTN can speed up planning with partial plans while
oes not have to complete the entire search before acting. 
Weser et al. [ 184 ] uses HTN to handle complex robotic scenarios without the Closed-world

ssumption (CWA) [ 167 ]. They integrate HTN with a robot control module to act and monitor
rimitive actions. The method generates a plan skeleton even with an incomplete domain repre-
entation (incorrect assumptions and unknown objects) while maintaining the properties of the
TN planner. It has a deliberative replanning procedure that corporates perceptual actions during

xecution to deal with unknown objects. Einig et al. [ 47 ] propose a State Machine-based parallel
xecution layer to perform actions generated from a high-level HTN planner. The method paral-
elizes the original sequence of actions by a defensive or offensive approach. Then it manages these
ptimal actions by a State Machine Architecture (SMACH) interpreter, which transposes the
tomic actions to sequence and parallel containers. The containers consist of states correspond-
ng to the atomic actions to be executed. Furthermore, the framework formulates as a closed-loop
tructure through a cost-function-based replanning algorithm to increase the robustness of the
ystem. 
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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4.1.2 Behavior Trees. BTs are also a kind of behavior planning structure for reactive and fault-
olerant task executions. BTs are either manually made by human experts or automatically gen-
rated by symbolic planners to solve complex tasks. BTs generalize advantages of many reactive
ehavior planning structures such as the Finite-state Machines (FSM) , Teleo-reactive Paradigm
nd Decision Trees [ 34 ]. There are four control flow nodes (Fallback, Sequence, Parallel, and Dec-
rator) and two execution nodes (Action and Condition) in BTs. Control flow nodes manage how
he execution nodes operate, while the Action nodes are directly related to concrete operators
onstrained by the Condition nodes. BTs are well known for their modularity, reusability and re-
ctivity in challenging behavior planning applications. BTs are available for many symbolic task
lanners that find a feasible plan and implement it into BTs [ 33 ]. 
Automatic generation of BTs is more practical than manual creation. Rovida et al. [ 152 ] combine

xecution behaviors with the planning domain to generate an extended Behavior Tree (eBT) .
hey use HTN planner and PDDL-based domain specifications to model planning problems. Given
 goal state, the planning algorithm FastDownward [ 79 ] is used to search for the sequence of
ctions that are then initialized to eBT. The modified HTN planner expands eBT by substituting
he abstract nodes with primitive actions. Additionally, the eBT specifies a total organization of
odes according to the context of the planner to optimize the execution time as well as the use
f resources. Similarly, an autonomous and optimal BTs generating method with a PDDL task
lanner is presented in Reference [ 126 ]. They use a temporal task planner based on PDDL2.1 to
odel the planning problems and generate the sequence of actions to complete long-horizon tasks.
hese actions are converted to a Directed Acyclic Graph (DAG) , of which the edges represent

he matched precondition and effect of actions according to the PDDL specifications. Finally, the
xecution of the planned solution is managed by control flow nodes of BTs, it is a compact, robust,
nd reactive way to execute the plan. 

.2 Task and Motion Planning in Belief Space 

eneral TAMP methods usually solve deterministic planning problems in a fully observable envi-
onment with zero entropy. However, there have been large amounts of studies about planning in
elief space within the AI Planning Community [ 12 , 20 ]. Planning problems with high entropy are
ften solved by Partially Observable Markov Decision Process (POMDP) methods [ 75 , 106 ],
hich deal with policy evaluation and state estimation in belief space. While it is in trouble with

he curse of dimensionality and long duration. Figure 4 presents the relationships between com-
utational effort and entropy of TAMP approaches. General TAMP approaches are more tractable
ue to the neglection of uncertainties, while directly planning in the belief space with high en-
ropy is computationally expensive. Benefiting from recent developments in robot sensor systems,
ncluding efficient algorithms and economical hardware, there is a research trend of deliberatively
lanning with low entropy, which balances the advantage of computational efficiency in zero-
ntropy planning with intractable policy optimization in high-entropy planning [ 1 ]. We mainly
urvey the relevant low-entropy TAMP approaches in this section. 

4.2.1 MDP-based Methods. MDP is a mathematical model of sequential decision-making,
hich generates stochastic policy and achievable reward to an agent. MDPs have been extended

o robotic planning under uncertainties for a long history [ 147 , 170 ] by searching for optimal poli-
ies with objective functions. However, we focus on the approaches keeping the basic structure of
AMP to complete the goal with a nondeterministic model instead of the approaches optimizing
he sum of rewards over a fixed long-horizon or the infinite horizon. 

Uncertainty information can be transferred from motion planning to task planning by the
ask Motion Multigraph (TMM) proposed in a Simultaneous Task and Motion Planning
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Fig. 4. An illustration comparing the relative computational tractability of TAMP approaches and the level 

of entropy in belief space [ 1 ]. 
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STAMP) framework [ 165 ]. The MDP planner is embedded with TMM, it solves directed acyclic
raphs problem at the symbolic task level and chooses the higher probabilistic feasible solution.
iven an MDP model, the value function is iteratively called by the planning system to find the
ptimal policy and generate a sequence of states. Each state extracted from the MDP corresponds
o the node in TMM. Moreover, specifications for uncertainties can be reflected on the edges of
he TMM. Similarly, Shah et al. [ 157 ] propose a probabilistically complete algorithm for anytime

omputing task and motion policies. The task-level specifications are formulated as Stochastic

hortest Path (SSP) planner problem, which is a subclass of MDPs [ 13 ]. The motion planner re-
nes each action of the abstract action policy by using the Plan Refinement Graph (PRG) . The
dges in PRG stand for policy-based transitions between states. The method iteratively extracts a
ath and refines it from PRG until the desired solution for most-likely outcomes is found during
xecution. 

Zhao and Chen [ 194 ] propose a new hierarchical POMDP approach that models the manipula-
ion planning problem in clutter. Both the high-level task planning and low-level motion planning
re formulated by POMDP and utilized to search for feasible solutions. An original belief tree is
enerated from the POMDP formulations, the motion planner checks the feasibilities of actions and
xpands the original tree. Furthermore, the expanded belief tree is generated by abstract POMDP
rocedures, which incorporate state and action definitions as well as the control policy. Finally,
he robot observes and updates its belief represented by a set of particles after each action. 

4.2.2 Approximated Model-based Methods. Some methods approximate the POMDP planning
odel as a deterministic model, then classical task planners can be used to solve the planning

roblems efficiently with a determinization process and even search in the large-scale space. 
The uncertainties of both the outcomes of actions and the current state are considered in a hi-

rarchical TAMP framework [ 90 ]. The method searches with an approximate determinization of
he task domain according to the uncertainties of operators. It replans when the outcomes mon-
tored during execution are distinct from the predictions. The uncertainties of the current state
re characterized as symbolic fluents. Symbolic fluents are also used to describe the world states,
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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oals and regression conditions. Finally, a regression-based planning algorithm is used to gener-
te the plan, which is then executed with continuously monitoring. Hadfield-Menell et al. [ 76 ]
ropose an Interfaced Belief Space Planning (IBSP) TAMP framework to solve long-horizon
asks under uncertainty. They extend the domain specifications from Srivastava et al. [ 162 ] to use
he Maximum Likelihood Observation (MLO) determinization as an approximate method for
OMDPs. The abstract domain specifications model system dynamics for MLO determinization.
hen IBSP searches for a plan skeleton, refines it and determines its success or failure. Moreover,

he operators are divided into actions and observations , they are defined in the belief space with
he probability distribution. 

POMDP is a general model with a state estimator for planning under uncertainties. A high-
evel planning method incorporating the symbolic representation of the belief state is proposed
o solve POMDP problems by Hou et al. [ 80 ]. K-means algorithm is used in their work to divide
artitions of the belief space with a fixed number of symbolic representations. The method avoids
xponential computation growth as the increase of dimensionality. It uses a classical task planner
HTN and A 

∗) to solve the planning problems with the discretization strategy. Then it constructs
 deterministic graph in the POMDP domain, which is a symbolic modeled transition system that
onsists of abstracted probabilistic distribution nodes corresponding to a set of belief states. 

4.2.3 Belief Representation-based Methods. Symbolic task planners can still leverage geomet-
ic representations from motion planners even in a partially observable environment. Some re-
earchers directly search plans in the hybrid belief space with the representations of probabilistic
istributed actions. 
Online planners combine actuation action with sensing action to estimate the state after execu-

ion. An online TAMP method [ 64 ] performs in the hybrid belief space by modeling deterministic
bservation, visibility checking and Bayesian belief filtering with weighted particles. The stochas-
ic planning problem is formulated as a hybrid, belief space Stochastic Shortest-path Problem

SSPP) [ 13 ]. Given a start prior belief state, the objective is to find a goal set of belief states for the
lanning system. The method extends the previous PDDLStream method [ 63 ] and constructs per-
eptual action with the outcomes determined by probability distributions. The relative stream of
he perception-action is operating on distribution with the encoded Bayesian filtering process. In
ddition, this study presents a replanning algorithm that plans reference to the old plan skeleton,
s a result, it can make the online planning progress move towards the target avoiding dupli-
ate searching. Similarly, Maliah et al. [ 122 ] propose an online contingent planner CPOR to avoid
epeated computation of sub-tasks caused by uncertainties. CPOR is planning throughout the ex-
cution process instead of searching for a complete plan offline. It iteratively calls to the online
lanner for the current belief state and then represents the planning tree as a modified and pruned
irected acyclic graph, where edges represent sensing actions and nodes stand for actuation ac-
ions. 

Adu-Bredu et al. [ 1 ] propose a goal-directed planning method Low-entropy Sampling plan-

er (LESAMPLE) leveraging the advantages in classical planning and belief space representa-
ion to solve low-entropy problems. LESAMPLE uses a set of weighted hypotheses to model each
tate, which is then sent to a weighted sampler to get a reliable estimation. LESAMPLE simultane-
usly updates the observed belief states after each planned action has been executed. If there are
ifferences between the updated belief states and the predicted outcomes, then LESAMPLE will
eweight, resample, and replan for new feasible solutions. 

4.2.4 BTs-based Methods. BTs can also work in belief space with their control flow nodes and
robabilistic actions. Belief Behavior Trees (BBTs) add an unknown status of the condition node
hat extends general BTs to handle partially-observable applications [ 153 ]. The task planner plans
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Fig. 5. A classic control-based TAMP framework from Reference [ 24 ]. 
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irectly in the belief space for constructing BBTs. The belief state is defined as the probabilistic dis-
ribution of physical states. Action nodes are divided into actuation actions and perception actions,
oth of which have probabilistic outcomes. The study uses Skipper node [ 154 ] as a new control
Ts node to handle current state uncertainties, additionally, it specifies actions with precondition
nd postcondition to handle future state uncertainties. 

Yang et al. [ 187 ] propose an Adjoint Action Model (AAM) that describes the continuous re-
ationship between actuation actions and observation actions. AAM integrates with the POMDP
lanner to construct a plan-executing model with intermediate invariant conditions, which en-
bles run-time observing during the execution of actuation actions. The same author [ 188 ] pro-
oses a novel Adjoint Sensing and Acting (ASA) framework that generates a high-level plan
ith two scheme modes and constructs an extended BT for executing the plan. The scheme mode

s either a sequential adjoint interaction with the robot observing and actuating or a parallel one.
he planner is integrated with the extended BT to deliberatively plan and reactively execute tasks

n partially observable domains. Furthermore, their recent study [ 189 ] integrates the POPF [ 32 ]
lanner and the Answer Set Planner Clingo [ 65 ] with motion controllers to implement their ad-
oint observation model during the planning and acting. 

.3 Control-based Task and Motion Planning 

lanning in belief space can solve many non-deterministic problems. It is important to monitor
he execution of plan steps in a deliberative planning system. The methods that combine planning
ith acting and formulate an online planning control loop are practical for challenging real-world

pplications. Control-based TAMP approaches typically separate the planning system into two
ayers, the TAMP and the acting layer of P-ALS as mentioned in Section 1 . The planning layer
enerates a feasible sequence of actions with detailed guidance to the acting layer, then the act-
ng layer performs these ordered actions by the implemented executors. Efficient and real-time
nteractions between the planning and acting layers have a major influence on the practical uti-
ization values of the TAMP framework. Figure 5 presents a classic structure of the control-based
AMP approach [ 24 ] that combines the planning layer with the acting layer. State estimation is
arried out after the performing of each ordered action; if an unexpected event is monitored during
xecution, then TAMP will react quickly and generate a modified plan based on the former one. 
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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An open-source TAMP framework TM Kit (TMKit) from Dantam et al. [ 37 ] is an end-to-
nd system for probabilistically complete planning and instantaneous acting. TMKit can integrate
ifferent planning methods with multiple domains. The refined sequence of actions to achieve task
oals are the immediate output of TMKit, it follows the execution process by interpolating values
o the motion planner and performing the corresponding actions. A feedback control law is used
o correct the positioning error during executions of the motion plan. 

Sometimes a recovery strategy to deal with failures is important during acting. Görner et al. [ 70 ]
ropose a modular and flexible TAMP system for robotic manipulation. The high-level task is rep-
esented as a hierarchical tree structure that generates sequential as well as parallel primitive
ctions. This study points out that a key bottleneck of existing general TAMP approaches is that
hese methods may suffer from the modification of the world state even a minor parameter change
ay cause a failure during the execution. The method does not need to forward the planned solu-

ion trajectory to the low-level controller, it can replan during execution especially when failures
re happening. An efficient scheduler is presented to first find out economical solutions as early
s possible. Then continuing planning is implemented during the execution of the early partial
lan. Failures can be readily evaluated by perceptions and separated from the planning stage. Wan
t al. [ 177 ] propose a hybrid control-based planning system that is implemented in the Medical
aboratory application scenario where large amounts of test tubes are needed to be pre-processed
o prevent COVID-19. The system autonomously recognizes, deliberatively plans and manipulates
o separate and arrange these tubes. Moreover, this study proposes an error identification and re-
overy strategy by visual detection. The hybrid planning system works recursively until reaching
he goal, and it ensures the completeness of the planner. 

We have shown the capability of a reactive action controller to perform in a dynamic environ-
ent such as BTs. A reactive operational space controller [ 99 ] is used to consummate the TAMP

ramework presented in Reference [ 128 ]. The method is robust with the dynamic environment
here even if the objects are moving, the planner can be processed by a reactive controller in

eal-time. The high-level symbolic specifications are described by STRIPS. If a candidate solu-
ion is presented, then the planner calculates the optimal trajectory for the solution according to
n objective function. Furthermore, this work extends LGP to handle disturbances in the execu-
ion environment with the new Cartesian frame formulation. It simplifies the manipulation task as
ontrolling a point relative to some reference frame. Pane et al. [ 142 ] combines the conventional
AMP approach with acting as a comprehensive planning system. The main contribution of the
tudy is the composition of reactive actions in the acting control layer, such as adding the collision
voidance ability to a primitive action without interrupting the executing task. The PDDL2.1-
ased task planner generates a nominal feasible plan, which is then refined into constraint-based
ctions. Then a FSM scheduler embeds each action into an eTaSL Controller (eTC) . The eTC
an not only execute each action in the plan reactively but can also receive feedback simultane-
usly by monitoring through the sensory modules of the platform layer. The planner will replan
or a new reactive composing solution when a disturbance is detected, which leaves the old plan
nfeasible. 

Vasilopoulos et al. [ 176 ] integrate a deliberative planning layer with a low-level vector-field-
ased reactive motion layer to plan in highly dynamic environments. The deliberative layer uses
he Continuous Constraint Contract (C3) , which is an extended version of the SAS+ formalism
o describe the states. Each state is a set of variable-value pairs that represent the constrained
onfigurations. The planner generates a sequence of actions and their configurations. Then
he corresponding C3 contracts are checked by the vector-field-based motion layer. Instead of
efining a single motion plan, the motion layer constructs a control policy that either completes
he objective from the deliberative layer or returns a failure specifying the incorrectness. Given
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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 target location, the vector field of the motion planner eventually leads the robot to it while
voiding the known or unforeseen obstacles in the environment. 

Real-time monitoring of the execution is important for most control-based TAMP approaches,
specially in the study [ 53 ] for Human-Robot Collaboration (HRC) tasks. The plan that con-
ists of human-robot coordination, symbolic action sequence and assignment is obtained from the
ask planner. Online planning with feedback from continuously monitoring is needed, since the
uration of human tasks is not sure. The framework is capable of handling the dynamic problem by
ursuing a Sense-Plan-Act loop. The task planner is implemented by PLATINUm [ 174 ] (a temporal
lanning framework), it plans or replans for a feasible solution. 
Castaman et al. [ 24 ] propose Receding Horizon Task and Motion Planning (RH-TAMP) ,

hich is an online planning algorithm over a receding horizon. RH-TAMP can handle disturbances
n the environment, unlike most existing general TAMP algorithms, which have to assume the
tatic environment and ideal perception. RH-TAMP does not limit to the once plan algorithms, it
efines an actions horizon as a partial sequence of the full plan computed once by the task planner.
ach action in the actions horizon is refined iteratively by the geometric reasoner. The planning
rocess will continue when the first action of the horizon is feasible to execute, it moves forward
he actions horizon window during execution. At the same time, a state estimation module im-
lemented with a sensory device will evaluate the actual states with the predicted output; if a
onfiguration difference happened, which means a failure or environment modification, then the
ask planner will replan for a new solution. 

.4 Summary 

he implementation of regular TAMP in real applications is not always going well because of un-
ertainties caused by the dynamic environment, partial observability or incomplete knowledge.
tudies in this section improve and expand the basic TAMP structure, formulating a closed-loop
nline planning system to deal with uncertainties. We first introduce the behavior planning meth-
ds in the related research field, which present control structures for action execution instead
f sending commands to the motion planner directly. Tolerable dynamics or disturbances can be
elf-handled by the control flows of these methods without replanning in the task layer. Then, we
how the low-entropy TAMP approaches in the belief state space. MDP-based approaches offer a
lassical framework for planning with probabilistic effects and compute an optimal action policy
hat maps states into applicable actions. However, approximated model-based approaches simplify
he planning processes in MDPs by symbolic task planning with deterministic transitions, they are
ore tractable in long-horizon tasks than MDP-based methods. In addition, some approaches make

epresentations for probabilistic distributed operators (sensory actions and actuation actions), they
earch for solutions directly in the belief space. Finally, we present the recent trends of control-
ased TAMP approaches, these approaches formulate the online planning-acting framework to
ddress the planning problem with environmental variability. It is a comprehensive and robust
ramework for robot planning systems, as we presented in Section 1 . More investigations in this
esearch field are needed for improving the capabilities of the promising framework. 

 RECENT TRENDS IN LEARNING ALGORITHMS FOR TASK AND MOTION 

PLANNING 

iven a goal, TAMP is aim to search for a sequence of actions to finish the task by specifying
 model with comprehensible representations. Then the question is whether we can leverage
he rapid development of machine learning to build the model in TAMP. TAMP is a deliberative
ecision-making process that can also be solved by a famous pure-learning approach, reinforce-
ent learning [ 91 , 166 ]. It learns a policy in MDPs to decide what step to execute according to
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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urrent and future states with a discount factor. However, it is limited in the capability of gen-
ralization, since it is complicated to generalize in different long-horizon manipulation problems.
ecent trends of learning algorithms in TAMP either learn guidance for planning (Section 5.1 ) or

earn for an intelligent low-level motion planner related to the task sequences (Section 5.2 ); fur-
hermore, generalizing TAMP to different applications will also face uncertainties, some of these
earning algorithms can handle uncertainties in real-world applications (Section 5.3 ). 

.1 Learning Guidance for Symbolic Planning 

ost of the general TAMP methods we presented before do not have the capability of learning
rom similar planning procedures or past experiences, while the capability can reduce the com-
utational effort significantly. However, pure-learning methods are often data-inefficient in long-
orizon problems such as AlphaGo Zero [ 160 ] with a value function and learned policy from past
xperiences. A promising approach to balance general TAMP methods with pure-learning methods
s to find suitable representations for plan trajectories to guide deliberative planning. 

Kim et al. [ 101 ] propose a learning method that uses score-space to evaluate the quality of a
et of solution constraints corresponding to a problem instance. The method learns to predict so-
ution constraints by finding a subset of decision parameters on the search space. The score-space
epresentation directly describes the similarity between problem instance and solution constraints .
urthermore, the method transfers knowledge from past experiences to current instances by re-
erring to the prediction of score-space and correlation of former solution constraints. Their re-
ent work [ 100 ] proposes a hierarchical learning algorithm called Sampling-based Abstract-edge

euristic Search (SAHS) to guide TAMP in the NAMO problems. They present a learned rank
unction to guide the symbolic search in high-level task planning; moreover, a learned sampler
s also presented for finding feasible motion-level solutions efficiently. An objective function is
esigned to follow these actions that have not been chosen in the states; as a result, the method
onsiders most of the state-action pairs and has a high probability to achieve a goal successfully.
esides, geometric predicates are used as representations for a graph, which is an input for Graph

eural Networks (GNNs) . Then the abstract action ranking is computed by GNNs. At the same
ime, the continuous parameter sampler is separately learned by a general adversarial network

GAN-GP [ 72 ] with the input of the key-configuration-based representations. 
The transition relationships between states can formulate as a task graph and learn from past

xperiences or demonstrations. A hierarchical end-to-end learning algorithm is designed for
-DoF grasping in clutter [ 178 ], it is based on partially-observed point cloud data. In this study, a
ariational autoencoder is learned from expert demonstrations to generate latent plans. The plans
re then encoded in an embedded space scored by a critic network to sample various motion
rajectories during execution. The critic network is used for plan selection at the high level, which
s trained by Q-learning [ 31 , 197 ]; it integrates with a control policy classifier, which is trained for
witching reactive policies to handle different instances. Similarly, a Geometric Task Network

GTN) embedded with the hierarchical and compositional planning framework [ 73 ] is presented
or offline learning and online execution in various scenarios. GTN is a task graph learned from
emonstrations without manual parameterized action representations. It details the transitions
mong operators and the associated geometric constraints. Zhu et al. [ 200 ] propose a vision-based
nd goal-conditioned hierarchical planning framework that integrates neuro-symbolic task
lanning with motion planning for long-horizon manipulation applications. They use task-level
ymbolic scene graph and motion-level geometric scene graph to represent the manipulation
nvironment with object-centered information. The symbolic scene graph models the abstract
emantic relationships between the robot and objects, while the geometric scene graph represents
-DoF poses and geometric constraints of the objects. The hierarchical graphs use GNNs to learn
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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eatures between nodes and edges. The task-level model is trained with demonstrations including
tate transitions, while the motion model is trained with task-agnostic primitive actions that are
uccessfully executed. 

Imitation learning is gaining popularity in AI Planning, since demonstrating the desired action
s easier than manually programming it [ 52 , 82 ]. Primitive operators learned from demonstrations
nd specified with domain representations can generalize to similar scenarios without heavy re-
rogramming efforts. The Learning Operators for TAMP (LOFT) algorithm [ 161 ] treats the
perators as non-deterministic transitions, since they can learn from the unavoidable lossiness.
iven a dataset of low-level transitions, then these symbolic operators with effects and match-

ng preconditions are learned from a bottom-up relational algorithm. The algorithm decouples
he effect clustering, precondition learning and parameter estimation procedures. Diehl et al. [ 40 ]
ropose a method to generate planning domain representations from human demonstrations auto-
atically. They specify segmentation and recognition of different classified action transitions from

uman demonstration. The relevant precondition and effect are extracted from a generated novel
perator. Finally, given a user-defined goal, the learned operators with an optimization criterion
re used by a symbolic planner to search for feasible solutions. 

Li et al. [ 112 ] propose a hierarchical learned framework including a low-level controller and a
iscrete high-level latent action space planner. They use imitation learning to generate a set of ex-
ert primitive actions, which are then transformed from the discrete space into a continuous space
hile learning a set of latent actions. A model-based high-level planner searches for a solution in

he learned latent action space to reach the desired goal. The low-level controller iteratively learns
 dynamic model given a latent action input. Among each cycle of learning, the dynamic model is
sed for model-predictive controlling, it can plan in a dynamic environment reactively. Sometimes
elf-imitation learning algorithm is data-efficient in applications where massive and broadly dis-
ributed data are needed. The Self-imitation Learning by Planning (SILP) algorithm from Luo
t al. [ 118 ] relabels the robot’s successful actions as demonstrations for policy learning. A proba-
ilistic roadmap is used as a planner to build the directed collision-free graph on the visited states,
hich are treated as nodes in the PRM. Then the planned path is specified as MDP formulations

or reinforcement learning. SILP can generate massive training data for reinforcement learning
ith motion planning tasks while not causing extra computational effort during training. 

.2 Learning Guidance for Task-constrained Motion Planning 

nother worth researching type of learning algorithms in TAMP is to guide task-related mo-
ion planning efficiently [ 100 ]. We survey the learning algorithms in task information constrained
otion planning based on the significant progress in pure-motion planning and machine learn-

ng [ 193 ]. Since the low-level feasibility check of TAMP is expensive, learning algorithms can
educe computational efforts of sampling or trajectory optimization procedures effectively, they
ither learn from past experiences or expert demonstrations. 

5.2.1 Learning Guidance for Sampling. Bowen et al. [ 16 ] employ a closed-loop, task model
uided motion planner that samples collision-free paths by sensing obstacles efficiently. The task
odel is learned from a set of expert demonstrations and can be generalized to new environments

or motion planning even with movable obstacles during execution. A TAMP algorithm with a
earned classifier [ 181 ] balances the heavy cost of motion feasibility check with the impractical-
ty of learning a classifier from scratch. The method uses the classifier on approximations and
oes not aim to generalize the classifier, but it can expand to new domains. Given a set of mini-
al standard scenes, the classifier is characterized by SVM. The information about world states,

ctions and obstacles is presented in the scene. The dataset is a set of labeled outputs from the
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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ampling-based motion planner, which runs for a long time ensuring probabilistic completeness.
ureshi et al. [ 148 ] propose a neural planning framework called Constrained Motion Planning

etworks X (CoMPNetX) . It consists of a conditional deep neural generator, discriminator, neu-
al projection operator, and neural samplers. The generator and discriminator are conditioned on
he representations of task and scene observations. CoMPNetX generates informed implicit man-
fold configurations and works with a motion planning algorithm to find feasible plans quickly.
OMPNetX is suitable for speeding up many underlying sampling-based planning algorithms due

o the informed but random sampling procedures as well as the parallelization capacity. Hier-

rchical Abstraction guided Robot Planner (HARP) in Reference [ 156 ] learns for a predic-
ive model of critical regions and guides the high-level navigation and low-level sampling of the
lanning process. HARP computes hierarchical state and action transitions with the model. The
raining data formulate a structure called the Region-based Voronoi Diagram (RBVD) from
ifferent domain environments. 
The low relevant information gathered now may influence future planning. The Learning a

otion Policy (LAMP) framework [ 173 ] gathers past paths in a navigation stack. LAMP learns
idden properties from the experiences, such as the obstacles observed before, this helps with
eactive online planning in navigation applications. Like expert demonstrations, successful plan
rajectories can be formulated as training data for the planner. Pairet et al. [ 140 ] propose two plan-
ers, Experience-driven Random Trees (ERT) and bi-directional version ERTConnect. They

everage prior experiences, which are decomposable and malleable to search in the task space.
he planners can generate a single prior action sequence among obviously varied task instances.
he planners iteratively construct a tree of segmented experience from a total path experience, the
uitable branches come from semi-randomly morphing segments of the experience. In addition,
he planners enable the ability to choose the best candidate given a library of path experiences. The
ibrary can be incrementally updated by adding newly generated action plans as well as learning
xperiences from human demonstrations. Similarly, an experience-based framework ALEF [ 102 ]
s presented to solve multi-modal planning problems. ALEF constructs a sparse roadmap in Aug-

ented Foliated Space (AFS) , which is a configuration state space including manifold constraints

rom different modes. AFS unifies and relates experience collected from each mode problem that
elongs to the same family, it learns from the paths in the roadmap. The related transitions are
sed to bias sampling in a sampling-based planner when there is a new search, which expedites
he search in similar problems. 

5.2.2 Learning Guidance for Optimization. Loula et al. [ 117 ] propose a framework to learn
onstraint-based TAMP model. Given a demonstration of the task, the model decomposes it into
ifferent sets of constraints for a low-level trajectory optimization problem. Each set of constraints
tands for a special mode, such as a contact between gripper and object. The observed demon-
trations during training are assumed with the same sequence of modes until a switch is called.
he model is trained by gradient descent to minimize the loss function, which corresponds to

he parametrized function of mode constraints. Angelov et al. [ 5 ] propose a framework that auto-
atically integrates different policies dealing with motion planning trajectories, dynamic action

rimitives and neural network controllers. They define a hierarchical controller according to the
et of existing transitions from the current state to the future state. A Goal Score estimator is
earned from expert demonstrations, it sequences the policies and leads the system to the task
oal according to the selected controller and evaluations between future and current states. 

.3 Learning-based Task and Motion Planning under Uncertainties 

e have reviewed the method of online TAMP to handle uncertainties in Section 4 . Learning-
ased TAMP approaches can extract features from training data set to deal with uncertainties
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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ather than optimize the internal structure of TAMP. The combinatorial explosion problem be-
omes more intractable when integrating learning algorithms in TAMP to handle uncertainties.
artial observability and incomplete knowledge of the constrained objects multiply the possible
tates that can be reached as well as the complexity of the search spaces. We take a review of re-
ent learning approaches for TAMP under uncertainties and present how they leverage the learned
nowledge to complete long-horizon tasks. 

5.3.1 Learning Planning Policies in Partially Observable Environments. The learned high-level
ction policy and low-level action control policy in TAMP can be treated as part of a heuristic
earch algorithm to solve long-horizon tasks. However, there is a major challenge of TAMP in
artially observable environments that no heuristic algorithm directly searches for the goal. Paxton
t al. [ 144 ] integrate MCTS with hierarchical neural net policies trained by reinforcement learning
o achieve dynamic self-driving tasks. The state-space of the planning system is augmented with
eterministic Rabin automaton [ 41 ] formulated memory. The policies are trained separately with
 set of constraints represented by LTL formulations, such as permitted and prohibited system
ctions. MCTS recursively descends through the tree from the current state and chooses a high-
evel option according to the Upper Confidence Bound metric. Then Progressive Widening [ 35 ] is
sed to add a new node and explore the branch until triggers a termination condition. Moreover,
he LTL feasibility check is called during the exploration of the MCTS. 

Policies in the hierarchical RL-based decision-making problems are limited by the modularity
nd generality of different agents or unseen tasks. Christen et al. [ 30 ] propose a novel hierarchi-
al reinforcement learning architecture HiDe to solve long-horizon planning tasks and alleviates
hese limitations. The RL-based planning layer generates subgoals to achieve, it uses a learned dy-
amic attention window to transform the task-relevant prior into a value map. The task-relevant
riors are proven as significant modules for HiDe in some challenging scenarios, such as unseen
est environments and large-scale environments. HiDe is functionally decomposed as a high-level
lan policy and low-level control policy, but the policies are trained jointly. The low-level control
olicy interacts with the environment and has access to the perceptual states to achieve subgoals.
imilarly, policies that are directly learned from visual input can generalize to different environ-
ents and tasks without retraining. Bradley et al. [ 17 ] propose a method to achieve task speci-
cations represented by temporal logic in a partially observable environment. Given a Labeled

ransition System (LTS) specified environment and Syntactically Co-safe LTL (scLTL) [ 105 ]
ormulated task, a set of high-level actions is defined in the study based on transitions of system
tates. Then POMDP model computes the outcome of each action and divides the actions into two
lasses, actions successfully make their transitions or not. They estimate the cost and success rate
f each action by a neural network and optimize the actions, the network is trained with images
nd encoding of the transitions. 

The experiences obtained from interactions with uncertain environments can be utilized by
eep Reinforcement Learning algorithms in TAMP. To search for computationally efficient solu-

ions for long-horizon tasks with uncertainties, Newaz et al. [ 135 ] employ MDPs to formulate a
ierarchical TAMP framework in the stochastic environment. The motion planner considers geo-
etric constraints and uncertainties to obtain an optimal control policy for single-robot motions

n the continuous state space. While the task planner searches for an optimal subtask policy in the
iscrete state space considering both uncertainties in the task and motion layer. The task layer pol-
cy is learned through the Deep Q-Network [ 51 ] algorithm, while the motion layer policy is learned
hrough the Deep Deterministic Policy Gradient (DDPG) curriculum learning algorithm [ 114 ].
ieselmann and Pokorny [ 69 ] propose a Planning-augmented Hierarchical Reinforcement

earning (PAHRL) algorithm to solve long-horizon planning problems with unknown dynamics,
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uch as deformable object manipulation. The method integrates hybrid planning with reinforce-
ent learning and extends previous work [ 50 ] to make it suitable for implicitly specified goals.
ierarchical RL is used to estimate distances between different states. Then the method utilizes

hem to generate the corresponding state memory graphs iteratively. Finally, a classical graph-
ased search algorithm is implemented for computing the sequence of states pointing to the goal.

5.3.2 Learning with Incomplete Knowledge of Objects. For some real-world applications, the
inematic model or physical properties of related objects may be not informed to the planner,
hile the visual data from interactive perception are available for learning algorithms to com-
lete the absent information. Give an unsegmented sequence of observed data from hybrid dy-
amic objects [ 119 ], A Model Inference Conditioned on Actions for Hierarchical Planning

MICAH) [ 85 ] is proposed to detect change points in the object kinematic model with a novel
ction-conditional reasoner called Act-CHAMP. MICAH then estimates the individual kinematic
odels with their parameters. These detections and estimations are converted into planning-

ompatible hybrid automaton [ 119 ] to help the hierarchical POMDP planner solve manipulation
roblems under uncertainty. Additionally, the kinematic graphs are used to represent the object
inematic model, there are six sets of demonstrations including kinesthetic data for the learning
rocedures. Ding et al. [ 43 ] propose the Task Motion Object-centric planning (TMOC) frame-
ork to handle manipulation scenarios where object properties are not known, such as block size

nd weight. A physics engine that describes the physical properties of grounding objects is em-
edded into the framework. Simulated interactive datasets of the grounding objects are used for
earning procedures. With an unknown object, three features are proposed to characterize the
hysical model including basic physical property, state mapping function and transition function.
ach of them is iteratively learned under the current estimation of the others by the TMOC algo-
ithm. The uncertainties from incomplete knowledge are a type of unknown unknowns, which are
ifferent from uncertainties of partial observability problems. Sharma et al. [ 159 ] propose a method
o handle manipulation tasks with an incomplete model in domain knowledge. Given an initial do-
ain model, they assume that there are a set of expert demonstrations that consist of the missing

omain knowledge before planning the sequence of actions. They learn from these demonstrations
nd search for a candidate model set that is updated from the initial domain model with a min-
malistic and deterministic model assumption. Finally, a robust heuristic-based planning method
earches for solutions with the highest probability of completing the task under the weighted set
f candidate models. 

.4 Summary 

ypical TAMP planners are not aware of leveraging the past planning data, while the pure-learning
pproaches in planning are data-inefficient. Although the state-of-art of learning algorithms in
AMP remain very preliminary, we have surveyed a few learning approaches for plan guid-
nce, task-constrained motion planning and planning under uncertainties. We conclude these ap-
roaches in Table 2 , most of which are learned from expert demonstrations and applied in robot
anipulations and a few of them are applied in robot navigation. The main purpose of learning

lgorithms in TAMP remains in generalizing TAMP approaches, reducing computational efforts
nd learning domain models autonomously. We hope the current review of these methods can
uide future research on intelligent learning algorithms in TAMP. 

 CONCLUSION AND FU T URE TRENDS 

I Planning is a central and promising research field in robotics. While TAMP is a delibera-
ive planning method that integrates both high-level abstract reasoning and low-level feasibility
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Table 2. Learning Approaches in TAMP 

Reference Learning objects Training datas Applications/Experiments 

[ 101 ] Score-space of solution constraints 1000 tuples of solution-constraint values Robot manipulations 

[ 100 ] rank function and motion sampler A fixed set of planning experience, GANS PR2 restaurant manipulations 

[ 178 ] A variational autoencoder,control policy Expert demonstrations Robot manipulations in clutter 

[ 73 ] GTN Expert demonstrations Robot manipulations 

[ 200 ] Symbolic and geometric scene graphs Expert demonstrations Robot manipulations 

[ 161 ] Operators Dataset of low-level transitions Robot manipulations in clutter 

[ 40 ] Operators Expert demonstrations Robot manipulations 

[ 112 ] Task planner and motion controller Expert demonstrations Robot manipulations 

[ 118 ] PRM path policy Self-generated demonstrations Robot manipulations 

[ 16 ] Task model Expert demonstrations Baxter robot manipulations 

[ 181 ] Motion planning feasibility classifier Set of labeled motion planner outputs Robot manipulations 

[ 148 ] CoMPNetX Expert demonstrations and observation data Robot manipulations 

[ 156 ] HARP 20 environments formulated by RBVD Robot navigation 

[ 173 ] Motion Policy Hidden properties from the experiences Robot navigation 

[ 140 ] ERT and ERTConnect Prior experiences Robot manipulations 

[ 102 ] ALEF Path experiences Robot manipulations 

[ 117 ] Constraint-based TAMP models Expert demonstrations Robot manipulations 

[ 5 ] Goal Score estimator Expert demonstrations PR2 manipulations 

[ 144 ] Hierarchical neural net policies A set of constraints represented by LTL formulations Self-driving applications 

[ 30 ] Hierarchical policies in TAMP Hindsight action and hindsight goal transitions Robot manipulations and navigation 

[ 135 ] Hierarchical policies in TAMP All of the experiences accumulated UAV manipulations and navigation 

[ 17 ] An action evaluation neural network Visual inputs and encoding of the transitions Robot navigation 

[ 69 ] learning for score-space of solution constraints 1000 tuples of solution-constraint values Robot manipulations 

[ 85 ] The kinematic graph of MICAH Six sets of demonstrations including kinesthetic data Robot manipulations 

[ 43 ] Three features of the physical properties Simulated interactive datasets of the grounding objects Robot manipulations 

[ 159 ] Domain model Expert demonstrations Robot manipulations 
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valuation, it generates detailed solutions that instruct the robot to complete long-horizon tasks in
nstructured human environments. Intelligent robots will be more mature and comprehensively
pplied to human daily life when equipped with a deliberative planning system. 

.1 Conclusion 

he deliberative planning system is not simply a matter of sending commands, it should capable of
lanning, acting and monitoring, it is more like a high-level controlling system with the structure
f P-ALS. Since TAMP is an integrated planning system, the state-of-art is rich and broad but quite
ragmented. The relationships between these fragments need to be studied. Numerous contribu-
ions to the deliberative planning system have been proposed in the last decade, and some of them
ave been presented in the preceding sections. The purpose of this article is to comprehensively
urvey the state-of-art in TAMP and present a detailed overview of this research field. Section 2
as discussed related surveys and distinctions between these surveys and our article. Our work
resents three solutions corresponding to the Research Questions introduced in Section 1 for the
ey issue of implementing TAMP as a deliberative planning system in real-world applications. 
First, we have shown the regular TAMP trends about RQ1 that is how to generate detailed solu-

ions combining task planning with motion planning. We categorize these approaches according to
heir concentrations. The former studies concentrate on structures of TAMP or planning solvers.
CM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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hen the researchers are interested in simplifying the hybrid planning problems to generate fea-
ible solutions with probabilistic completeness or optimizing them. Recently, a few studies are
eginning to focus on optimizing the computational efforts of TAMP and leveraging TAMP in
avigation scenarios or other fields. 
Second, we have sought the solutions for RQ2 . The online methods optimize the internal struc-

ure of regular TAMP methods. We survey the reactive behavior planning, belief space TAMP and
ontrol-based TAMP approaches to deal with uncertainties. These approaches can make reactive
esponses to different levels of uncertainties, from tolerable disturbances to unexpected events
r failures. They optimize TAMP into an online closed-loop planning system, making the system
ore reliable and robust. 
Finally, we have presented the answers for RQ3 . Learning algorithms are leveraged as exter-

al tools to help TAMP in symbolic planning, task-related motion planning, and handling un-
ertainties. TAMP approaches should formulate the model representations and search solutions
n the hybrid space to generate a partial plan in a single loop of planning. Despite the features in
AMP procedures being hard to characterize, each part of the whole TAMP procedure has received
ositive effects from recent studies of learning algorithms. These algorithms either learn from past
xperiences, demonstrations, or real-time visual data, speeding up the searching processes or deal-
ng with uncertainties. 

.2 Future Trends of Task and Motion Planning 

his article has surveyed many TAMP approaches from the early 2010s and given a linear trend
n the research field. However, most of the applications of TAMP approaches are implemented
n robot manipulations. As a comprehensive planning system, there are many potential research
elds of TAMP that can be developed. 

6.2.1 Robotic Exploration. We have presented a few robotic navigation applications of TAMP
pproaches [ 46 , 116 , 149 , 168 ], while robotic exploration is a branch of robotic navigation but
s more complicated. The Defense Advanced Research Projects Agency (DARPA) has orga-
ized many competitions in the last decade to spur technology for the development of autonomous
obots. The DARPA Subterranean Challenge (SubT) [ 151 ] is a multi-robotic Exploration compe-
ition of underground environments. The mobile robots have to detect and report the positions of
pecific objects, which is a complicated long-horizon task. Some excellent exploration algorithms
resent the idea of hierarchical exploration planning [ 198 ] and achieved good performance in the
ompetition [ 21 , 22 ]. Extending TAMP to the exploration of highly convoluted environments re-
earch field may help the robot finish the exploring mission and even more complicated tasks. 

6.2.2 Multi-agent Task and Motion Planning. Cooperative Multi-agent Planning (MAP) is a
elatively recent research field that combines the AI Planning community with the Multi-agent
ystems community. MAP is more of an optimally distributed problem of solving scheme rather
han the classical single-agent planning paradigm [ 15 , 171 ]. With the significant progress of TAMP,
AMP has also extended to the MAP research field and presented in three ways: 

• Single-robot dual-arm manipulation: Most of the surveyed works consider sequential ac-
tions and single-arm manipulation even implemented with a dual-arm robot such as a PR2
robot. However, the symbolic planner has to account for the feasible motion of both arms
in bi-manual tasks [ 89 , 164 ]. 

• Multi-robot cooperation: A complete TAMP method in multi-robot cooperation applica-
tions should reason the high-level abstract task decomposition as well as task allocation.
ACM Computing Surveys, Vol. 55, No. 13s, Article 289. Publication date: July 2023. 
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Multi-robot TAMP approaches pose challenges to scalability of regular TAMP approaches
[ 11 , 131 , 141 ]. 

• Human-robot cooperation: TAMP approaches are increasingly integrated into an unstruc-
tured human workspace to complete collaborative tasks. The communication between hu-
man and robot is important [ 27 , 71 ] and the robot should be capable of predicting human
intentions during cooperation [ 28 , 143 ]. 

6.2.3 Explainable Robot Planning. Explainable AI Planning (XAIP) focuses on explanations
f the planning process and has received increasing interest in recent years [ 57 , 95 ]. It bridges the
ap between end-to-end planning algorithms and real-world applications. XAIP is composed of
xplanation generation and explanation communication [ 175 ]. Most of the TAMP approaches are
ependent on domain representations and reasoning, while XAIP can leverage a popular approach
o bring the human-defined domain model closer to the agent’s model, which is called model rec-
nciliation [ 25 ]. There are a few studies that integrate TAMP with XAIP, which have demonstrated
ignificant communication benefits between users and planning system [ 115 , 158 ]. 

On the whole, this survey has analyzed the recent trends in TAMP literature, giving state-of-
he-art solutions for applying TAMP in real-world robots; it also points out the direction for future
esearch. We hope that our research will enable more researchers to pay attention to TAMP and
romote a rapid expansion of this field in a wide range of research directions. 
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