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Abstract—The attribute-based keyword search (ABKS), which simultaneously achieves searching and fine-grained access control

over encrypted data, is frequently applied in cloud computing environments characterized by data storage and sharing. Recently,

inspired by attribute-based encryption (ABE) and searchable encryption (SE) primitives, several ABKS schemes have been presented.

However, almost all existing ABKS schemes actually only provide an attribute-based keyword equality match function and do not have a

structural index to support practical search efficiency and dynamic data updates in real-world applications. To the best of our

knowledge, this study is the first to realize an attribute-based keyword search construction supporting numerical comparison

expressions with the practical search efficient and dynamic data update capacity (ABKS-NICEST), based on our proposed attribute-

based keyword secure search scheme supporting numerical comparison expressions (ABKS-NICE) and an exclusive OR-chain-based

inverted index structure. To the best of our knowledge, ABKS-NICEST is the first attributed-based keyword search scheme with

practical search efficiency and dynamic data update capacity. In addition, numerical values are an important and common attribute, so

providing comparison expressions among numerical values can greatly enhance the expressivity of access policy. Therefore, we use

the prefix membership verification technique to design a method to support any numeric comparison expression in a flexible and

uniform manner. Through theoretical and experimental evaluations, we determine that ABKS-NICEST is the most efficient ABKS

scheme.

Index Terms—Attribute-based keyword search, cloud computing, data security and access control, dynamic data update, practical search

efficiency

Ç

1 INTRODUCTION

1.1 Motivation

THE enormous advantages of cloud computing have
driven numerous enterprises and individuals to out-

source applications and data to cloud platforms. The end-
users are able to access applications and data throughmobile
devices anytime and anywhere. However, the security of

cloud computing is always a controversial issue as storing
data to cloud platforms also means that data owners discard
the control power of their data. Without a sturdy protection
measure, the malicious attackers including even the cloud
server self can easily obtain the outsourced data [1].

Encryption before uploading data to the cloud server is
most effective way to guarantee the confidentiality of data [2].
A challenging problem is how to efficiently perform opera-
tions over ciphertext exactly like being in the plaintext domain
without decrypting them. It is critical for cloud applications,
as the cloud computing is characterized by not only massive
data storage, but efficient data processing.

A number of studies has been conducted to achieve opera-
tions directly over ciphertext, amongwhich searchable encryp-
tion is a recently vibrant research field, aiming at guaranteeing
both confidentiality and searchability over encrypted data.
Song et al. [3] presented the first practical searchable encryption
construction. Subsequent researches [4], [5] devoted to persis-
tently refining the search complexity and security, even
explored the more practical dynamic schemes [6], [7], [8] sup-
porting secure data addition and deletion. As all these con-
structions were built in the symmetric key system, they are
referred to as searchable symmetrical encryption (SSE).

In practical, access control is a required mechanism to
prevent data from being illegally accessed by unauthorized
entities, especially in the data-sharing cloud environment.
This practical requirement has broken new ground in
designing searchable encryption with data access control,
called attribute-based keyword search (ABKS) [9]. Such
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solutions [10], [11], [12], [13], [14], [15] are able to achieve
private search and fine-grained access control simulta-
neously in the ciphertext environment, inspired by attri-
bute-based encryption [16] and searchable encryption.
However, so far almost all existing ABKS schemes just pro-
vide an attribute-based keyword equality test functionality.
How to employ them in real-world data set with practical
search efficiency is still unknown. Meaningfully, these
researches provide a theoretical conclusion for the technical
feasibility of the attribute-based searchable encryption.

Inspired by searchable encryption, Work [13] and [14]
equipped their ABKS with inverted index on the real-world
data set, as shown in Fig. 1, where each encrypted keyword
involves an access policy specifying its search permission
and ind denotes the identifier of a data file containing key-
word w. Though thus a construction can obtain search
results from real world data set, it still suffers from an
impractical search efficiency.

When a search query is issued, the search algorithm
linearly scans encrypted keywords in such a way that for
each keyword it has to first performs a search authoriza-
tion as long as the search query has access to the keyword,
followed by the private textual match between the search
query and current keyword according to the intermediate
result produced by the search authorization. Unfortu-
nately, the search authorization based on ABE systems
involves time-consuming public-key operations such as
pairings and exponentiations. Though being able to obtain
data files containing a certain search query, the simple
index construction may lead to many redundant search
authorizations that incur a long search process. For exam-
ple, there is a super data user that has the search permis-
sions of all index keywords. Some point in time, when she
issues a search query with respect to the last keyword wn

in the index, ðn� 1Þ search authorizations have to be con-
ducted one by one, which introduces a large number of
time-consuming pairing and exponentiation operations.
More generally, if we refer to the index keywords that a
search query can access as its the authorization keyword
set (AKS), the average of needed pairing and exponentia-
tion operations increases linearly with the size of AKS,
which will become a performance bottleneck of this con-
struction. Also, this is a simple static construction unsuit-
able for the real-world cloud application, without a
mechanism to update data dynamically. Motivated by
these limitations, in this paper, for the first time, we real-
ize a practically efficient and dynamic ABKS construction
based on our proposed exclusive-OR chain. The construc-
tion can ensure that the heavy search authorization is
only performed one time at most regardless of the size of
AKS, as well as the dynamic data and keyword search

permission update. To the best of our knowledge, ABKS-
NICEST is the first attributed-based keyword search
scheme with practical search efficient and dynamic data
update.

In addition, as few original ABE systems have focused
on numerical value comparisons in access policies,
almost all ABKS schemes do not consider the widely
existing numeric comparison expression. Number is a
kind of very important and common attribute in the
practical application. For example, policy ((“DOCTOR” OR
“PROFESSOR”) AND “COMPUTER SCIENCE” AND “30� age �
50” AND “level> 5”) indicates that only person who is a
doctor or a professor and works in the department of
computer science and whose age is between 30 and 50
with the supervisory level greater than 5 can access the
corresponding ciphertext. A naive approach to deal with
the numeric comparison expressions “30� age � 50” and
“level> 5” is to enumerate all values within these two
ranges and express them using OR gates, i.e., “age=30
OR 31...OR 50” and “level=6 OR 7... OR max,” where
max may be a reasonably preset value to denote the
maximum of the attribute level. Obviously, such an
expression is impractical when the value space is large.
In this paper, we propose to use the prefix membership
verification technique to convert the numeric comparison
expression into the equivalent OR gate policy and realize
the match between a numerical attribute and the con-
verted policy. Our approach can greatly reduce the num-
ber of OR gates and can be used by all ABE and ABKS
schemes as an building-block to express numeric attri-
bute comparisons.

1.2 Contributions

Wemake the following four contributions.
1. Based on the efficient and provably secure ABE

scheme by Waters [17], we construct an Attribute-Based
Keyword secure Search scheme supporting NumerIcal
Comparison Expressions, named ABKS-NICE. Functionally,
similar to existing ABKS schemes, ABKS-NICE is just an
attribute-based keyword equality test scheme. However,
except for supporting numerical comparison expressions,
ABKS-NICE uses more general LSSS representation and has
better efficiency due to the lesser pairing operations.

2. We design an inverted index construction based on
encrypted XOR chain. Combining it and ABKS-NICE, for
the first time, we propose the Attribute-Based Keyword
Search construction supporting NumerIcal Comparison
Expressions with the practical Search efficient and dynamic
data updaTe capacity, ABKS-NICEST.

3. We use the prefix membership verification technique
to realize an approach in ABE or ABKS systems that can
support any numerical attribute comparison operation in a
flexible and uniform manner.

4. We provide formal security proofs and extensive
experiments for ABKS-NICE and ABKS-NICEST. The eval-
uation results show that ABKS-NICEST is a truly practical
ABKS scheme over the real-world data set.

We believe that the technical contribution of ABKS-NIC-
EST is to provide a feasible research line for the practical
and dynamic attribute-based keyword search.

Fig. 1. Static and Linear Index in schemes [13] and [14].
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2 RELATED WORK

2.1 Searchable Encryption

In [18], Chase and Kamara proposed the concept of the
structured encryption. As its a particular case, searchable
encryption has plentiful research results, recently. Song
et al. [3] designed the first practical SSE and later Chang
and Mitzenmacher [4] proposed a construction achieving
forward privacy. The search time cost of both of them is lin-
ear in the size of the data files. It was not until 2006 when
the SSE construction that achieves sub-linear search com-
plexity was designed by Curtomla et al. [5]. They first pro-
posed to use encrypted inverted index structure to speed
up search process. Since then, the encrypted inverted index
becomes a core data structure for designing efficient and
practical SSE. In order to be applicable in real-word cloud
storage systems, SSE was further extended to a dynamic
environment, allowing for the dynamic and secure data
addition and deletion [6], [7], [8]. Due to recently developed
file injection attacks [19], the dynamic SEE constructions
with forward privacy have been intensively researched [20],
[21], [22], [23], [24]. The forward privacy guarantees that
updating a document does not leak more information than
what a predefined leakage function leaks and thus makes
the file injection attack ineffective. Backward privacy is
another stronger security notion. It requires that a search
query does not reveal information from data that were
deleted. Several SSE schemes achieving backward privacy
are also proposed in [25], [26].

2.2 Attribute-Based Encryption and Attribute-Based
Keyword Search

Sahai and Waters proposed the first attribute-based encryp-
tion scheme in [16]. Goyal et al. [27] and Bethencourt et al.
[28] introduced more expressive attribute-based encryption
by using tree based access policy. The former is a KP-ABE,
which means the access policy is embedded into the key
and the ciphertext is associated with a set of attributes. On
the contrary, the later is that the access policy is in the
ciphertext and the key is described by attributes, referred to
as a CP-ABE. No matter what construction you chooses, a
successful decryption has to require that the attributes sat-
isfy the access policy. Many variants of ABE were proposed
to acquire more excellent properties, such as multiple
authorities [29] and hidden access structure [30].

Recently, in order to make the encrypted cloud data
searchable with the flexible data access control, combining
ABE and SE, a number of ABKS schemes are proposed
in [10], [11], [12], [13], [14], [15]. However, these ABKS
schemes just provide an attribute-based keyword equality
test functionality and are short of effective index mecha-
nism for a practical search efficiency in the real application.
Though work [14] constructed a raw index by simply associ-
ating each encrypted keyword with data files containing the
keyword to speed up the search process, without a full-
fledged index structure, it still suffers from impractical
search efficient in practice due to redundant and expensive
search authorizations.

To enhance the expressivity of ABE scheme, authors [28]
first considered to deal with numeric comparison expres-
sion in the access policy and transformed an integer

comparisons into AND and OR gate policies over “bag of
bits” divided by a numeric comparison expression. How-
ever, this transformation is relatively complex, resulting in
the inefficiency. In order to degrade the complexity, Xue
et al. [31] used only OR gates to convert access policies of
numeric comparison expressions by using 0-encoding and
1-encoding technique. Though this scheme considers two
inequality operations “> ” and “< ,” it is defective to sup-
port other widely used relationships such as “6¼ ,” “� ,”
“� ,” etc.

3 PRELIMINARIES

In this section, we introduce several techniques used in our
schemes, including Bilinear Pairing Map [16], Access Struc-
ture [28], Linear Secret Sharing Scheme (LSSS) [17], Prefix
Membership Verification [32], Pseudo Random Function [5].
We present the detailed descriptions about these techniques
in Appendix A.

4 PROBLEM FORMULATIONS

Our attribute-based keyword search problem is based on a
service-oriented cloud computing outsourcing environ-
ment, as shown in Fig. 2, where the cloud server provides
powerful data storage and computation services. Roughly
speaking, the cloud server provides a service to store out-
sourced encrypted data and secure index; if the cloud server
receives an outsourced computation request, it will provide
the corresponding computation services such as data
searching or data updating based on ciphertexts. Our ser-
vice-oriented computation model fully embodies the idea of
“Service Computing,” including “Storage-as-a-Service,”
“Software-as-a-Service,” and “Security-as-a-Service”. We
will describe a more detailed system model in Section 4.1.

4.1 System Model

Our system model is illustrated in Fig. 3, in which three
entities are involved. In order to make the outsourced data
secure and searchable, before uploading the data, the data
owner (DO) encrypts data using a symmetric encryption
and construct searchable secure index using a CP-ABE
scheme with access polices. Via secure communication
channels, DO sends secret key with attributes to a data user

Fig. 2. A service-oriented cloud computing outsourcing environment.
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(DU), by which DU can generate a token (encrypted key-
word) he wants to search or update. The cloud server (CS)
stores the encrypted data and index and, upon receiving a
token, performs data searching if the token is a search token
or data updating if it is a update token, on behalf of the data
user. In ABKS-NICE and ABKS-NICEST, if and only if a
data user has access to a certain index and his submitted
search token matches the index, a successful search will
complete.

4.2 Threat Model

We consider both DO and DU are fully trusted, but CS is an
“honest-but-curious” passive adversary. In this threat
model, the cloud server commits to obey with the security
assurance protocol, but it may try to deduce as much infor-
mation as possible from secure index, search query, and the
encrypted data self. DO and DU do not leak their secret
information to other parties such as unauthorized ones. In
addition, in order to guarantee secure authorization to DU,
we suppose that there exist secure communication channels
between DO and DU.

5 ACHIEVING NUMERIC COMPARISON

EXPRESSIONS IN ABE

Simply converting a numeric comparison expression to the
OR gate policy by enumerating all satisfied value may lead
to impractical length of OR gates. To address this problem,
we propose to use the prefix membership verification tech-
nique to reduce the number of OR gates and realize the
match between a numerical attribute and the converted pol-
icy. The main idea is to convert a numeric comparison
expression to a range R and compute the minimum set of
prefixes SðRÞ of R. For a numeric attribute n, it is denoted

as the prefix family PFðnÞ. The prefix membership verifica-
tion technique tells us that if n is in R, there exists a com-
mon prefix in SðRÞ and PFðnÞ. Thus, we convert the
problem of whether a numerical attribute satisfies a
numeric comparison policy to the verification of whether
exists a common prefix in SðRÞ and PFðnÞ.

Table 1 shows numeric comparison expressions and cor-
responding transformed ranges, where max and min are
reasonable values to denote the maximum and the mini-
mum of an attribute. For example, for attribute age, we can
set max and min to be 0 and 100. Naturally, for expressions
v1 < attr < v2 and v1 � attr � v2, the transformed ranges
are ½v1 þ 1; v2 � 1� and ½v1; v2�, respectively.

Example. To help understand how our idea works, we
give a concrete example. Consider an access policy “A AND
(B OR 10<C < 16) ”. Our goal is to convert the numeric
comparison expression “10< C< 16” to OR gates of non-
numeric attributes. First, “10<C < 16” is converted to a
range [11,15]. Then, we compute the minimum set of pre-
fixes Sð½11; 15�Þ ¼ f1011;11**g. Next, the transformed access
policy can be represented as “A AND (B OR (1011 OR
11**))”. Thus, expression “10< C< 16” is converted to an
equivalent policy of an OR gate with two prefix strings.
Finally, we convert it to the corresponding LSSS matrix by a
standard algorithm [29]. The access tree and the LSSS matrix
are shown in Fig. 4.

Suppose that a decryptor has an attribute set fA, C=12g,
which can be converted to the attribute set fA, 1100, 110*,
11**, 1***, ****g by solving the prefix family of 12. Due to
having attributes “A” and “11**,” the decryptor can decrypt
a ciphertext encrypted under the policy “A AND (B OR
(1011 OR 11**))”.

Remark. Obviously, converting a comparison expression
to the minimum set of prefixes actually increases the num-
ber of attributes, resulting in the extension of rows of the
LSSS matrix. Theoretically, it will increase both storage and
computation cost of the LSSS matrix. Fortunately, given a
range ½v1; v2�, its minimum set of prefixes Sð½v1; v2�Þ contains
at most 2h� 2 prefixes [33], where h denotes the bit length
of v1 and v2, whose upper bound is a linear function of h.
This is a very nice feature. Further, for all possible intervals
½v1; v2�, if we assume all the intervals appear with the same
probability, the average number of prefixes in Sð½v1; v2�Þ is
equal to ðh�2Þ2

2h�1þðhþ1Þ2hþ1
22h�1þ2h�1 ; which is approximately equal to

h� 2 [34]. For example, if we set h to be 8 bits, converting a
numeric comparison expression only needs 14 prefixes
(attributes) and 13OR gates in the worst case. As a compari-
son, the naive approach based on numerical value enumera-
tion produces 128 attributes and 127 OR gates in the worst
case (0 � attr � 127).

Fig. 3. The system model.

TABLE 1
Numeric Comparison Expressions and Corresponding Ranges

Comparison operation Expression Transformed range

Greater than attr > v ½vþ 1;max�
Greater than or equal attr � v ½v;max�
Less than attr < v ½min; v� 1�
Less than or equal attr � v ½min; v�
Unequal attr! ¼ v ½min; v� 1�

W
½vþ 1;max�

Equal attr ¼ v ½v; v�

Fig. 4. The transformation of access policy.
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6 ABKS-NICE

6.1 Construction

ABKS-NICE consists of SetUp, Enc, KeyGen, TokenGen, Search
five algorithms. We describe the algorithm implementation
in Fig. 5.

The work flow of ABKS-NICE incorporated into a ser-
vice-oriented cloud computing environment is illustrated in
Fig. 6. Though ABKS-NICE supports flexible numeric com-
parison expression policy, it only achieves the attribute-
based textual matching between two encrypted keyword.
Like existing ABKS schemes, it is still unknown to apply
ABKS-NICE on real data set to facilitate practically efficient
data searching and dynamic data updating. As the funda-
mental building block, ABKS-NICE will be integrated into
ABKS-NICEST to achieve a truly practical, dynamic, and
attribute-based searchable encryption.

6.2 Correctness

Theorem 1. Given a ciphertext Iw of keyword w and LSSS
matrix ðA; rÞ and a search token T Q of query keyword Q and
attribute set U, if U satisfies ðA; rÞ and w ¼ Q, the search algo-
rithm Search will return true.

Proof. First, if U satisfies ðA; rÞ, we can find a subset I �
f1; 2; . . .; jSjg and a set of constants fvi 2 Z�pgi2I such that
Si2IviAi ¼ ð1; 0; . . .; 0Þ, where I is defined as I ¼ fi :
rðiÞ 2 Ug. Further, the algorithm computes

eððIwÞ:I2; ðT QÞ:T 1Þ ¼ ðgs; gaH2ðQÞgxtuH2ðQÞÞ
¼ eðgs; gaH2ðQÞÞeðgs; gxtuH2ðQÞÞ
¼ eðg; gÞsaH2ðQÞeðg; gÞsxtuH2ðQÞ

and

Y
i2I

�
e ðIwÞ:Ci; ðT QÞ:T 2ð Þe ðIwÞ:Di; ðT QÞ:T rðiÞ

� ��vi

¼
Y
i2I

�
e gx�iH1ðrðiÞÞ�ri ; gtuH2ðQÞ
� �

	

e gri ; H1ðrðiÞÞtuH2ðQÞ
� ��vi

¼
Y
i2I

�
e gx�i ; gtuH2ðQÞ
� �

	 e H1ðrðiÞÞ�ri ; gtuH2ðQÞ
� �

	

e gri ; H1ðrðiÞÞtuH2ðQÞ
� ��vi

¼
Y
i2I

�
e gx�i ; gtuH2ðQÞ
� �

	

e H1ðrðiÞÞ; gð Þ�rituH2ðQÞþrituH2ðQÞ
�vi

¼
Y
i2I

�
e gx�i ; gtuH2ðQÞ
� ��vi

¼ e gx; gtuH2ðQÞ
� �P

i2I �ivi¼ e gx; gtuH2ðQÞ
� �P

i2I v!Aivi

¼ e gx; gtuH2ðQÞ
� �ðs;y2;...;ynÞð1;0;...;0Þ¼ e gx; gtuH2ðQÞ

� �s

:

Therefore, we have

eððIwÞ:I2; ðT QÞ:T 1ÞQ
i2I

�
e ðIwÞ:Ci; ðT QÞ:T 2ð Þe ðIwÞ:Di; ðT QÞ:T rðiÞ

� ��vi

¼ eðg; gÞsH2ðwÞaeðg; gÞsH2ðwÞatu

e ga; gtuH2ðQÞð Þs

¼¼¼w¼Q
eðg; gÞasH2ðwÞ

¼ Iw:I 1:

The proof is completed. tu

6.3 Performance

Functionally, similar to the existing ABKS schemes [10],
[11], [12], [13], [14], [15], (which were constructed over the
access tree structure based ABE scheme of Bethencourt
et. al. [28] and have asymptotically same computation com-
plexity), ABKS-NICE is only an attribute-based keyword
equality match scheme without providing the data index
construction for real-world data set. However, ABKS-NICE
has better match efficiency as the required pairing opera-
tions are less than that of the above mentioned schemes.
Moreover, ABKS-NICE uses more general LSSS representa-
tion with better expressivity as well as supports numerical
comparison expressions. We will conduct the theoretical
and experimental evaluations of the algorithms in ABKS-
NICE with the new scheme ABKS-NIEST together in Sec-
tions 7 and 8.

6.4 Security

Inspired by the security proof technique present in ABE
scheme by Waters [17], we adopt the reduction idea to
prove the security of ABKS-NICE. Loosely speaking, prov-
ing ABKS-NICE’s security will be reduced to try to solve
the decisional q-parallel Bilinear Diffie-Hellman Exponent
problem [17]. However, the decisional q-parallel BDHE
problem is acknowledgedly intractable in the polynomial
time. Here, in brief, we review the decisional q-parallel
BDHE problem/assumption as follows.

Let G;GT be cyclic groups of prime order p and g be a
generator of group G. The Decisional q-Parallel BDHE prob-
lem is defined that an adversary A has non-negligible
advantage � to solve decisional q-parallel BDHE problem if���Pr½Að x!;M¼ eðg; gÞx

qþ1sÞ ¼ 0�

� Pr½Að x!;M¼ RÞ ¼ 0�
��� � �;

where x!¼

g; gs; gx; . . .; gðx
qÞ; gðx

qþ2Þ;...;gð2qÞ ;

81�j�q gs	yj ; gx=yi ; . . .; gðx
q=yjÞ; gðx

qþ2=yjÞ; . . .; gðx
2q=yjÞ

81�j;k�q;k6¼j gx	s	yk=yj ; . . .; gðx
q 	s yk=yjÞ

and x; s; y1; . . .; yq 2 Z�p are chosen at random, R is randomly
chosen from GT . The decisional q-parallel BDHE assump-
tion indicates that there is no adversary that can solve this
problem within the polynomial time.
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Also, we adopt the standard security model in the ABKS
scheme, namely Adaptively Chosen-Keyword Attack model,
which is formalized by the following game between a Chal-
lenger B and a PPT adversaryA.

Adaptively Chosen-Keyword Attack Game (ACKA):

Setup. B runs an algorithm Setup to establish the public
parameter P and sends P to A.

Phase 1. A requests trapdoors T Q1
; . . .; T Qn of keywords

Q1; . . .;Qn corresponding to sets of attributes S1; . . .; Sn by
adaptively querying the following two oracles.

Fig. 5. The construction of ABKS-NICE.
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� OKeyGen(P, Si): B runs an algorithm KeyGen to estab-
lish the private key Kið1 � i � nÞ and sends it to A.

� OTrapGenðKi, Qi): B runs an algorithm TrapGen to
establish the query trapdoor T Qi

ð1 � i � nÞ and
sends it to A.

Challenge. A chooses a challenging LSSS matrix A� and
two keywords w0 and w1, which are sent to B. The restric-
tion is that if Sið1 � i � nÞ satisfies A�, then
w0; w1 =2 fQ1; . . .;Qng. B randomly picks up a bit b 2 f0; 1g
and encrypts wb with A�. OEnc responds the ciphertext Iwb

to A.
Phase 2. A repeats Phase 1. There is a restriction that if an

attribute set Sx corresponding to a requested trapdoor T qx

satisfies A�, then w0; w1 6¼ Qx.
Guess. A outputs a guess b0 of b.
The advantage that a PPT adversary A wins the game is

defined as Adv ¼Pr½b ¼ b0� � 1
2 .

Theorem 2. Given the one-way secure hashH2, whenmodelingH1

as a random oracle, the proposed ABKS-NICE is secure against
ACKA under the decisional q-parallel BDHE assumption.

Refer to Appendix B to find the complete proof.

7 ABKS-NICEST

7.1 Main Idea

Our basic goal is to achieve attribute-based and dynamic
searchable encryption with practical search complexity. In
this section, we design ABKS-NICEST by employing the
classic inverted index-based structural framework and
ABKS-NICE scheme. In ABKS-NICEST construction, we
propose the exclusive-OR chain to be able to dynamically
form the inverted list of a keyword w with Oð1Þ keyword
authorization search. At a high level, when a new file (iden-
tifier) indcþ1 containing w is about to be added in the corre-
sponding list, the client first computes two secure update
tokens Tc and Tcþ1 based on a locally maintained counter c,
which counts the current number of files matching w before
inserting indcþ1; and then computes Tc 
 Tcþ1 and the
encryption version dindcþ1 of indcþ1. c is incremented and
ðTc; Tcþ1; Tc 
 Tcþ1; dindcþ1Þ is sent to the server. After receiv-
ing the update information, the server needs to perform two
operations. One is to store ðTc 
 Tcþ1Þ along with dindcþ1 to a
hash table at location Tcþ1. The second operation is that the
server deletes w0s search permission denoted by ’w from

entity at location Tc and re-attaches ’w with entity Tcþ1,
where ’w implies an access policy determining who have
permission to search with w.

When a search query with respect to the search token
Tcþ1 is issued, the server first performs a search permission
verification between Tcþ1 and ’w (search authorization). If
Tcþ1 has the search permission to w, then it is arrowed to
obtain indcþ1 and ðTc 
 Tcþ1Þ; by computing ðTc 
 Tcþ1 

Tcþ1Þ, Tc is obtained subsequently leading to indc and ðTc�1 

TcÞ, and iteratively the server obtains all file identifiers until
meets a sentinel T0, which are sent to the client as search
results; otherwise, the search returns nothing.

Fig. 7 shows the main idea of proposed ABKS-NICEST
scheme. To place the ABKS scheme in the practice, the most
essential goal is to let the computational complexity of the
heavy attribute-based search authorization achieve Oð1Þ,
regardless of the size of data files and keywords. We
achieve this goal by designing the XOR chain construction
and letting search permission of a keyword only associate
with the latest entity to be added in the chain. Thus, in
a search process, the search authorization can be per-
formed at most one time. Meanwhile, thanks to XOR
chain, the dynamic update of files and correct search can
be achieved.

7.2 Construction

In essence, our proposed ABKS-NICEST is a combination of
the ABKS scheme ABKS-NICE and a dynamic SSE scheme
based on XOR chain index construction. We use the stan-
dard SSE protocol framework to describe ABKS-NICEST
construction implementation. Formally, ABKS-NICEST
consists of three polynomial-time protocols ABKS-
NICEST=ðSetup;Update;SearchÞ between a client and a
server.

Let F : f0; 1gk � f0; 1g� ! f0; 1gk be a pseudo-random
function, and H3 : f0; 1gk � f0; 1g� ! f0; 1gk and H4 :
f0; 1gk � f0; 1g� ! f0; 1g3 k be two keyed hash functions,
and c : f0; 1g� ! f0; 1g3 k be one-way hash function, where
k is the system security parameter. Notation a $ X denotes
that a is selected uniformly at random from a finite set X
and notation a X (or X ! a) denotes that a is the output
of algorithm X, or X is assigned to a if X is only a value.
Finally, we use notation G to denote the proposed ABKS-
NICE scheme.

Setupðk;?Þ. The client takes a security parameter k as
input, the algorithm generates a system master key K and
invokes G:Setup and G:Keygen to obtain ABKS-NICE’s public
parameter, master key, and private key. Two empty hash
tables CT, ST are maintained by the client and the server,

Fig. 6. The workflow of ABKS-NICE.

Fig. 7. Update and Search in ABKS-NICEST.
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respectively. Algorithm 1 provides a pseudo-code descrip-
tion of setup implementation.

Algorithm 1. Setupðk;?Þ
Input: security parameter k
Output: system master key K, ABKS-NICE’s public parame-

ter P, master keyMK, private key K, and two hash tables CT,
ST
Client:

1: K f0; 1gk
$

2: ½P ¼ ðG;GT ;H1; H2; g; g
x; eðg; gÞaÞ;MK ¼ ðx;aÞ�  G:Setup

3: ½K ¼ ðk1  ga; k2  gat; k3  gt; fku  H1ðuÞtgu2UÞ�  G:KeyGen

4: CT empty hash table
Server:

5: ST empty hash table

UpdateðK;CT; ind; w;STÞ. Update is a protocol between the
sever and the client. Running this protocol, in the encryption
way, a new file ind matching w is inserted into the inverted
index with respect to keyword w, where ind denotes the file
identifier with k bits length. Algorithm 2 provides a pseudo-
code description of this protocol implementation.

Algorithm 2. UpdateðK;CT; ind; w;STÞ
Input: system key master K, hash tables CT and ST, keyword

w and file identifier ind
Output: updated hash tables CT and ST
Client:
1: Kw  F ðK; wjj1Þ;K0w  F ðK; wjj2Þ
2: ðcnt; I1Þ  CT½w�.
3: if ðcnt; I1Þ ¼ ? then

4: T0  f0; 1gk,
$

cnt 0
5: ðI1; I2; fCi;Dig1�i�jSjÞ  G:Enc
6: else
7: Rcnt  F ðKw;

0 cntÞ
8: Tcnt  H3ðKw;RcntÞ
9: end if
10: Rcntþ1  F ðKw;

0 cntþ 1Þ
11: Tcntþ1  H3ðKw;Rcntþ1Þ
12: Ucntþ1  Tcnt

L
Tcntþ1

13: cind ðRcntjjUcntþ1jjindÞ
L

H4ðKw;Rcntþ1Þ
14: Send ðcind; Tcnt; Tcntþ1;cðI1Þ; I2; fCi;Dig1�i�jSjÞ to the

server.
15: cnt cntþ 1
16: CT½w�  ðcnt; I1Þ

Server:
17: ðm; I2; fCi;Dig1�i�jSjÞ  ST½Tcnt�
18: if ððm; I2; fCi;Dig1�i�jSjÞ 6¼ ?) then
19: ST½Tcnt�  m

L
cðI1Þ

20: end if
21: m cindLcðI1Þ
22: ST½Tcntþ1�  ðm; I2; fCi;Dig1�i�jSjÞ

The client takes themaster key K, the hash tableCT, the key-
word w, and the file identifer to be inserted ind containing w as
input, the protocol generates two secret keysKw andK0w using
the pseudo-random function F under the master key K, and
proceeds as follows. The client retrievesCT½w� to take the num-
ber cnt of files currently containingw andw0s search permission
component I1. If keyword w appears for the first time, the
client invokes G:Enc to encrypt w as ciphertexts Iw :

ðI1; I2; fCi;Dig1�i�jSjÞ, sets a sentinel T0 and initializes cnt to
be 0 aswell (lines 3-5). Recall that, in ABKS-NICE scheme, since
the ciphertext Iw contains the access policy determining who
havepermission to searchw, here,we call Iw the searchpermis-
sion of keyword w. Otherwise, it derives a pseudo-random
value Rcnt using F from K0w and cnt, and subsequently gener-
ates Tcnt using H3 from Kw and Rcnt. The same operations are
performed on cntþ 1 to generateRcntþ1 and Tcntþ1. Here, the use
of pseudo-random value R (line 7 and line 10) is to guarantee
forward privacy, and we will discuss this security issue in next
section. Next, a new encrypted entity is formed cind containing
information Rcnt, Tcnt 
 Tcntþ1, and identifier ind (lines 12 and
13). Finally, cnt is incremented and ðcnt; I 1Þ is stored inCT½w�.

The server takes the hash table ST as input, it first tries to
gain a value by retrieving ST½Tcnt�. If the value exists, this
means ind is not the first file to be inserted containing w. The
sever needs to wipe the search permission component Iw
from current entity stored in ST½Tcnt� (line 19). Finally, the
server generates a new entity u by associating I 1 with cind
using a XOR operation (line 21). u along with the other two
search permission components I 2 and fCi;Dig is stored in
ST at locations Tcntþ1 (line 22).

Algorithm 3. SearchðK;CT; w;STÞ
Input: system master key K, hash tables CT and ST, query

keyword w
Output: a set rest of search results
Client:
1: Kw  F ðK; wjj1Þ; K0w  F ðK; wjj2Þ
2: ðcnt; I1Þ  CT½w�.
3: if ðcnt; I1Þ ¼ ? then
4: return ;
5: end if
6: Rcnt  F ðKw;

0 cntÞ
7: Tcnt  H3ðKw;RcntÞ
8: ðT 1; T 2; fT ugu2UÞ  G:TrapGen

9: Send ðKw;Rcnt; Tcnt; T 1; T 2; fT ug; cntÞ to the server.
Server:

10: rest ;
11: ðm; I2; fCi;Dig1�i�jSjÞ  ST½Tcnt�
12: if ð9fvi 2 Z�pgi2ðI�f1;2;...;jSjgÞÞ then

13: x eðI2; T 1Þ
	Q

i2I

�
eðCi; T 2ÞeðDi; T rðiÞÞ

�vi

14: cind m
L

cðxÞ
15: ðind; Ucnt; Rcnt�1Þ  cindLH4ðKw;RcntÞ
16: rest rest

S
findg

17: if cnt � 2 then
18: for c ¼ cnt to 2 do
19: Tc�1  Uc

L
Tc

20: cind ST½Tc�1�Þ
21: ðind; Uc�1; Rc�2Þ  cindLH4ðKw;Rc�1Þ
22: rest rest

S
findg

23: end for
24: end if
25: end if
26: return rest

SearchðK;CT; w;STÞ. Search is a protocol between the cli-
ent and the server. Running this protocol, the server will
return to the client a set of file identifiers matching w or an
empty set. Algorithm 3 provides a pseudo-code description
of this protocol implementation.
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The client takes the master key K, the table CT, and a
query keyword w as input, two secret keys Kw and K0w are
derived from wjj1 and wjj2, respectively. The protocol pro-
ceeds as follows. The client retrieves ðcnt; IwÞ from CT½w� (If
cnt does not exist, the protocol will terminate in advance)
and generates Rcnt and Tcnt. Also, the client invokes algo-
rithm TrapGen in ABKS-NICE to generate a search trapdoor
T w used to verify whether this search has permission to
obtain the results containing w.

The server takes the table ST as input and retrieves entity
umatching w and w0s search permission components I2 and
fCi;Dig. If the attribute set embedded in T w satisfies the
access policy associated with I 2 and fCi;Dig, the server can
obtain the cntth file identifier indcnt, since (see G:Match algo-
rithm)

eðI2; T 1Þ
	Y

i2I

�
eðCi; T 2ÞeðDi; T rðiÞÞ

�vi

¼ I 1 ¼ x;

m
M

cðxÞ ¼ cindMcðI1Þ
M

cðxÞ ¼ cind:
Decrypt cind to obtain ðindcnt; Ucnt; Rcnt�1Þ and add indcnt into

the result set rest (lines 15 and 16). Having Ucnt ¼ Tcnt�1 

Tcnt, Rcnt�1, and Tcnt, by the XOR chain, the server iteratively
obtains search results indcnt�1; indcnt�2; . . .; ind1 (lines 18-22).

7.3 Performance

In order to highlight the practicality of ABKS schemes in the
real scenario, we theoretically evaluate the computational
performance trends of ABKS algorithms (especially the
search efficiency) caused by the size of the index keyword
universe. In the evaluation, for simplicity, we just consider
heavy group operations in ABE environment (public-key
setting), that is, the pairing operation, the exponentiation
operation, and the hash operation H1, while ignoring light-

weight computations in symmetric cryptographic setting.
As a comparison, we evaluate the similar work proposed
in [14], the only ABKS scheme so far that the authors use
real-world data set to evaluate its search efficiency via a
simple inverted index. Recall that ABKS-NICE is also an
attribute-based keyword equality match scheme, and we
generate a same index construction as scheme [14] in a real
data set to evaluate its performance. Several notations are
shown in Table 2. We describe the computational cost of
each algorithm for different schemes in Table 3.

Table 3 demonstrates that ABKS-NICE, ABKS-NICEST,
and scheme [14] have the asymptotically same computa-
tional complexity in terms of KeyGen and Enc algorithms,
and the TrapGen algorithm in scheme [14] keeps the constant
exponentiation operations and is relatively efficient com-
pared with ABKS-NICE and ABKS-NICEST. Note that, in
ABKS-NICEST, the algorithm KeyGen, Enc, TrapGen is
invoked by Setup, Update, and Search, respectively. We can
observe that the time-consuming exponentiation operation
E and hash operation H1 in Enc are linear with the size of
the keyword universe (the asymptotic complexity is OðjDjÞ,
which will lead to a high computational overhead especially
when the size of the keyword universe is large. However, to
achieve retrieve on ciphertexts, the encrypted index con-
struction may be a high price that any searchable encryption
must pay for.

The search efficiency is of paramount importance in
determining availability for a practical search system. Simi-
lar to scheme [14], given a search query, the expensive pair-
ing and exponentiation operations in ABKS-NICE scale
with the size of AKS of the search query. This is because
those two schemes need to linearly scan the encrypted index
keywords to obtain matched data files, which may lead to
redundant search authorizations. As a result, the higher the
search permission of a data user is, the higher the average
search complexity is. An extreme case is that if a data user
has the search permission of the whole index keyword uni-
verse, the average search complexity is OðjDjÞ. Note that
ABKS-NICE has slightly better search efficient than
scheme [14], as the pairing operations in ABKS-NICE are
linear in j�j, but jSj in Scheme [14], usually jSj > j�j.

ABKS-NICEST has the optimal search efficient with com-
plexity Oð1Þ on both search query and search authorization,
regardless of the size of the keyword universe.

7.4 Security

As an application case of structured encryption, ABKS-NIC-
EST is a searchable encryption by structurally indexing
encrypted data. Therefore, in the real-world service, ABKS-
NICEST unavoidably leaks information to the cloud server
(adversary) for pursuing a practical search efficiency. This

TABLE 2
Notations for Evaluation

Notation Description

D keyword universe
D0 authorized keyword set of a given search query, D0 �

D
P bilinear pairing operation
F the set of data files
E;ET exponentiation operation in group G, GT ,

respectively
H1 hashing a string to an element in G
S the set of attributes in an access policy
U the data user’s attribute set
� the least attribute set satisfying an access policy

TABLE 3
The Computational Cost of Each Algorithm in Different Schemes

Algorithms ABKS-NICE scheme ABKS-NICEST scheme Scheme [14] ABKS-HD [13]

KeyGen ð3þ jUjÞE þ jUjH1 ð3þ jUjÞE þ jUjH1 ð3jUj þ 2ÞE þ jUjH1 ð2jUj þ 3ÞE þ jUjH1

Enc jDjðET þ jSjH1 þ ð3jSj þ 1ÞEÞ jDjðET þ jSjH1 þ ð3jSj þ 1ÞEÞ jDjðET þ jSjH1 þ ð2jSj þ 1ÞEÞ jDjðET þ jSjH1 þ ð2jF j þ 2jSj þ 1ÞEÞ
TokenGen ð3þ jUjÞE ð3þ jUjÞE 2E ð4þ 2jUjÞE
Search

1þjD0 j
2 ðð1þ 2j�jÞP þ j�jET Þ ð1þ 2j�jÞP þ j�jET

1þjD0 j
2 ðð1þ 2jSjÞP þ j�jET Þ 1þjD0 j

2 ðð3þ 2jSjÞP þ j�jET Þ
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is also a generally existing tradeoff between security and
efficiency for searchable encryption. Our goal is to minimize
the leakages. Typically, this is captured via the standard
security model of a real-world experiment RealExp versus a
ideal-world experiment IdeaExp. The security model is for-
malized by a group of leakage function L ¼ ðLSetup;LUpdate;
LSearchÞ, which specifies the upper limit of information that a
dynamic searchable encryption scheme can reveal to adver-
sary when running algorithm Setup and protocols Update

and Search, correspondingly. We describe IdeaExp and
RealExp experiments as follows.

� RealExpAðkÞ: A PPT adversary A chooses a set of data
files DB, the experiments first runs algorithm
Setupðk;?Þ and returns ST to A. Then, A performs
search and update queries for polynomially-
bounded times and receives a series of transcripts
generated from Search and Update protocols. A
observes these results and outputs a bit b 2 f0; 1g.

� IdeaExpA;SðkÞ: A PPT adversary A chooses a set of
data files DB, there exists a simulator S that runs the
leakage function LSetup and returns SðLSetupðk;?ÞÞ to
A. Then, A performs search and update queries
for polynomially-bounded times and receives a
series of transcripts generated from the simulator
SðLSearchðwÞÞ and SðLUpdateðind; wÞÞ. A observes these
results and outputs a bit b 2 f0; 1g.

We say a searchable encryption is L-adaptively-secure
searchable encryption if for any PPT adversary A, there
exists a PPT simulator S such that:

���Pr RealExpAðkÞ ¼ 1ð Þ � Pr IdeaExpA;SðkÞ ¼ 1
� ���� � neglðkÞ;

where k is a security parameter and neglðkÞ is a negligible
function in k.

Theorem 3. Given the pseudo-random function F , when model-
ing H3 and H4 as a random oracles, if q-parallel BDHE
assumption holds, our proposed ABKS-NICEST is a dynamic
L-adaptively-secure searchable encryption scheme.

Refer to Appendix C to find the complete proof.
Forward Privacy: Forward privacy claims that all search

queries that have been issued before cannot be used to gain
the newly added data files that are being updated. This
property guarantees a update query cannot leak any key-
word information in the newly added data, radically resists
the file injection attack. Our proposed ABKS-NICEST
achieves forward security since in Update protocol (Algo-
rithm 2) we designedly introduce the pseudo-random value
Rwith secret keyK0. WithoutK0, the server cannot generate
up-to-date Rcntþ1 and Tcntþ1 from pervious counters 1; . . .; cnt
(K0 has been never given to the server). As a result, the
newly updated data files cannot be searched using pervious
search queries.

8 EXPERIMENTAL EVALUATION

We experimentally evaluate ABKS-NICE and ABKS-NIC-
EST in a real data set Enron Email Dataset.1 As a compari-
son, we also implement the similar work ABKS-HD [13]
and scheme [14] that the authors use inverted index con-
struction to evaluate performance on real data set. All pro-
grammes are run at Java platform with JPBC2 library and a
Windows 7 with 3.30 GHZ Inter Core i7-11370H CPU,
16 GB memory. Our implementation uses the symmetric
bilinear map Type A over a 160-bit elliptic curve group.

8.1 Efficiency for Key and Token Generation

In this section, we evaluate the efficiencies of algorithms
KeyGen and TokenGen with varying number of data user’s
attributes. Fig. 8 shows a performance comparison among
ABKS-NICE, ABKS-NICEST, ABKS-HD and Scheme [14].
We can observe that the time cost of all of the four schemes
increases with the increasing number of attributes. ABKS-
NICE and ABKS-NICEST have approximate computational
cost to generate a private key, while ABKS-HD and
Scheme [14] need slightly more time. For example, when
setting jUj ¼ 20, ABKS-NICE, ABKS-NICEST, ABKS-HD,
and Scheme [14] spend about 0.6 s, 0.601 s, 0.7 s, and 0.768 s
on the private key generation, respectively. These results

Fig. 8. Time cost of key generation.

Fig. 9. Time cost of token generation.

Fig. 10. Access policy used in our evaluation.

1. Enron dataset. http://nlp.cs.aueb.gr/software
2. http://gas.dia.unisa.it/projects/jpbc/index.html
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are also in accordance with the theoretical evaluation in
Table 3.

Fig. 9 shows the time cost of encrypting a search key-
word when varying the number of data user’s attributes.
The experimental results show that Scheme [14] requires
expending least cost to generate search trapdoor, and is
moreover not affected by the number of attributes, while
ABKS-NICE ABKS-NICEST, and ABKS-HD grow linearly.
These experimental results conformwith the theoretical anal-
ysis for the TokenGen algorithm in Table 3. For example, Uj ¼
20, ABKS-NICE, ABKS-NICEST, ABKS-HD, and Scheme [14]
consume about 0.193 s, 0.189 s, 0.451 s, and 0.018 s,
respectively.

8.2 Evaluation for Secure Index Construction

We extract 600 index keywords from 4000 data files in
Enron Email Dataset. In practice, different index keywords
should be specified personalized access policies to indicate
their search permissions. However, a variety of structures
of access policy raise the difficulty for our evaluations, espe-
cially for the search performance evaluations. Therefore, in
our experiments, we use for all keywords unified access pol-
icy structure as “a1 AND a2 AND... al,” where a denotes an
attribute and l ¼ 20. Its corresponding access tree (used in
ABKS-HD and Scheme [14]) and LSSS matrix (used in
ABKS-NICE and ABKS-NICEST) are shown in Fig. 10.

Fig. 11a shows the time cost of encrypting index key-
words when varying the size of index keywords with fixed
number of data files ðjF j ¼ 4000Þ. Our experimental results
show that the time cost of constructing secure index of all of
the four schemes linearly increases with the number of
index keywords. ABKS-HD needs much more time over-
head than other three schemes, and ABKS-NICE and ABKS-
NICEST have approximate computational overhead and are
more than that of Scheme [14]. This is because ABKS-
HD includes 2jDjjSj þ 2jF jjSj exponentiations, and ABKS-
NICE and ABKS-NICEST include 3jDjjSj, but 2jDjjSj in
Scheme [14]. Compared to ABKS-NICE, ABKS-NICEST
needs a little more time due to a number of light-weight
computations such as XOR and hash operations. The second
group experiment is to vary the number of data files and fix
the size of index keywords ðjDj ¼ 500Þ. Fig. 11b demon-
strates that ABKS-NICE, ABKS-NICEST, and Scheme [14]

are not affected by the size of data files, but the time cost in
ABKS-HD linearly grows. The results show that secure
index construction is an extremely expensive process.

Figs. 11a and 11b demonstrate the one-time cost on index
construction over a static data set. However, in the real-
world application, for ABKS-NICEST scheme, the every-time
cost required to expend on index keyword encryption will
far less the above experimental results, as ABKS-NICEST is
dynamic. Practically, the index keywords are encrypted in
batches in the different update time point (File Update Win-
dow, FUW). Fig. 11c shows a group of experimental results
for the different file update windows. In the current FUW,
only these index keywords that have not appeared in the
previous FUW need to be encrypted (See Algorithm 2, lines
2-5). Generally speaking, in the first update (FUW-1), the
time cost of index construction achieves maximum, as all
keywords appear for the first time. In the subsequent FUW,
many keywords have been encrypted in the previous FUW,
the time cost is drastically reduced.

8.3 Evaluation for Data Search

For ease of evaluation and comparison, we set j�j to be iden-
tical to jSj and let any search query have the search permis-
sions of all index keywords, i.e., set j�j ¼ jSj ¼ jUj ¼ 20.
This is equivalent to a simulation that a super data user con-
ducts data searching.

Fig. 12a demonstrates when varying the size of index key-
words and fixing the number of data files, the time cost distri-
butions of the search algorithms in ABKS-NICE, ABKS-
NICEST, ABKS-HD, and Scheme [14]. In this evaluation, we
perform 6 groups experiments with an incremental size of
index keyword set. we repeat to perform 30 times search in
each experiment, and choose query keywords from the cur-
rently incremental index keywords. For example, in the first
group, the 30 query keywords are randomly chosen from
range [0,100] (i.e., set fw0; . . .; w100g), and second group is
[101,200], and so on. The intention of choosing query key-
words in this way is to observe the impact of the size of index
keywords set on search efficiency. We can see that the time
cost of ABKS-NICE, ABKS-HD, and Scheme [14] emerge an
explicitly linear increase with the size of the index keyword
set, while ABKS-NICEST is not affected by the number of
index keywords. Fig. 12b shows that, when varying the size of

Fig. 11. Time cost of secure index construction. (a) For different number of index keywords with fixed number of data files (jF j ¼ 4000) and attributes
in the access policy (jSj ¼ 20). (b) For different number of data files with fixed number of keywords (jDj ¼ 500) and attributes in the access policy
(jSj ¼ 20). (c) For different file update windows with fixed number of attributes in the access policy (jSj ¼ 20), where # denotes the number of newly
extracted keywords in current FUW.
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data files and fixing the number of keywords, the time cost
distributions of the search algorithms in ABKS-NICE, ABKS-
NICEST, ABKS-HD, and Scheme [14]. In order to focus on the
impact the size of data file set on search efficiency, we select
query keywords from range [200,400]. This can effectively cir-
cumvent possible linear distribution of experimental results
due to linearly choosing query keywords, which has been
evaluated in Fig. 12a.

The remarkable conclusion is that, for ABKS-NICEST, the
sizes of both data file set and index keyword set have very little
influence on the search overhead;more importantly, the search
time near to 0.06 s is extremely efficient, while in ABKS-NICE,
ABKS-HD, and Scheme [14] the search complexities are too
high to be accepted in practice. For example, in the worst-case,
running a search needs to spend about 160 s in ABKS-NICE,
ABKS-HD, and Scheme [14]. Practical search efficiency is cru-
cial for the availability of a real-world search system.

9 CONCLUSION

In this paper, we investigate the attribute-based keyword
search over encrypted cloud data. First, we construct an
ABKS scheme supporting numeric attribute comparison
policy, namely ABKS-NICE. Similar to the existing schemes,
ABKS-NICE is static and with an impractical search com-
plexity. Based on ABKS-NICE and our proposed encrypted
XOR chain, we design the first truly practical and dynamic

ABKS scheme, ABKS-NICEST. By the theoretical and exper-
imental performance evaluations, ABKS-NICEST is most
efficient ABKS scheme with dynamic data update ability as
far as we know. Also, we provide formal security proofs for
ABKS-NICE and ABKS-NICEST. As our future work, we
will research practical and dynamic multi-keyword ABKS
scheme, ABMKS-NICEST.
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