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of tasks to achieve the load balancing between the CPU and the GPU of the heterogeneous systems. We discuss
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experimental results show that our input-aware slice-wise SpTTM can achieve an average speedup of 1.310x
compared to ParTI! library on a CPU-GPU heterogeneous system.
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1 INTRODUCTION

Sparse Tensor-Times-Matrix (SpTTM) is an indispensable core computation in various
practical application scenarios of tensor analysis, e.g., healthcare analytics, signal processing, neu-
roscience, and machine learning [1, 16, 19, 20]. SpTTM is also a momentous computing bottleneck
in numerous tensor algorithms, such as tensor decomposition [23, 30]. Therefore, it is urgent and
crucial to design an efficient method for SpTTM algorithm. An efficient SpTTM algorithm can ac-
celerate the common tensor decomposition algorithms, such as Tucker decomposition [17, 18, 39].

Different sparse tensors have different non-zero element distributions and sparsity structures in
practical applications, which affect the performance of SpTTM. Figure 1 illustrates the performance
of SpTTM using different sparse formats for two 3-order tensor datasets. It reveals that the optimal
sparse formats are different for different tensors, and the optimal sparse formats are different for
different orders of the same tensor. Therefore, identifying the sparse structures of the non-zero
element distributions for different data sets becomes the key issue in improving the computing ef-
ficiency of different tensor data sets. Finding appropriate computation formats for different tensors
can effectively improve the performance of tensor computation. Nonetheless, most current works
directly and artificially select the storage formats for tensors, which may result in the storage
formats are not suitable for tensors and affecting the performance of tensor computation.

The rapid development of artificial intelligence has opened up new ideas for the format se-
lection of sparse tensors. Although there are additional costs associated with adopting machine
learning and deep learning approaches, these overheads can be amortized by multiple iterations of
SpTTM. The traditional machine learning method, e.g., support vector machines (SVM), selects
the sparse format of the tensor according to its statistical characteristics [6, 35]. Utilizing the deep
learning methods, such as Convolution Neural Networks (CNN), to select the sparse format
of a tensor, requires firstly compressing the tensor into a fixed size matrix [43, 54]. The above
methods all lead to the loss of some sparsely distributed features of the tensor, and the loss would
become larger with the increase of the size of the tensor.

In recent years, certain computing tasks using the graphics processing unit (GPU) to acceler-
ate research have become popular, e.g., using GPUs to accelerate computing tasks [2, 9, 31]. SpTTM
is a computing task that can be accelerated using GPUs. Heterogeneous systems usually contain
two or more interconnected processors, and each processor has a different computational speed. In
heterogeneous computing systems equipped with both CPUs and GPUs, previous tensor compu-
tation libraries generally use only CPUs or GPUs, which will result in some computing resources
being the idle and inadequate performance of machine hardware.

To solve these problems, in this paper, we

e describe SpTTM on CPU-GPU heterogeneous systems and give a parallel execution strategy
for SpTTM in different sparse formats.

e design the task mapping strategy for load balancing by analyzing the peak computer power
to estimate the theoretical amount of tasks for each of CPU and GPU.

e construct the matrix sparse format selection model SPT-GCN to select the appropriate sparse
format for tensor execution of SpTTM using the graph convolution network method.

e perform extensive experiments using real datasets, and for choosing a sparse format for the
tensor, SPT-GCN achieves an average accuracy of 0.851 on the CPU and 0.901 on the GPU.
And our input-aware slice-wise SpTTM can achieve an average speedup of 1.310x compared
to ParTI! library [22] on a CPU-GPU heterogeneous system.

The rest of the paper is organized as follows. Section 2 reviews the related work on optimiza-
tion for tensor computing and sparse format selection. Section 3 presents the method of SpTTM
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Fig. 1. SpTTM performance for different formats of tensors.

with the definition of various sparse tensor formats and introduces the CPU-GPU heterogeneous
programming. Section 4 introduces the overall workflow of our slice-wise SpTTM and heteroge-
neous parallel pattern. Section 5 presents the task mapping strategy for load balancing between
CPU and GPU. Section 6 introduces SPT-GCN, a graph neural network model for tensor selec-
tion in the best sparse format. Section 7 presents our experimental results and findings. Finally,
Section 8 concludes the paper.

2 RELATED WORK

The development of deep learning brings new challenges to the study of high-performance tensor
computation. In this section, we outline the research work related to (1) optimization for tensor
computing and (2) sparse format selection.

2.1 Optimization for Tensor Computing

Designing efficient tensor computing is worth exploring as tensors are widely used. Li et al. [23]
constructed a way to optimize SpTTM on multicore and multicore architectures. Ma et al. [30]
designed an optimized way to compute SpTTM on GPU based on the characteristics of GPU. Liu
et al. [27] implemented a unified optimization method for sparse tensor operations on GPUs by
exploiting the fact that sparse tensor operations share similar computation patterns. Li et al. [21]
demonstrated an adaptive dense TTM approach that can select a heuristic empirical model for
the optimal configuration of the inputs to the TTM. Pawlowski et al. [37] suggested a new data
structure in which the tensor is blocked and the blocks are stored in an order determined by
Morton-ordered. Kaya and Ucar [17] contributed an efficient parallelization method for Tucker
decomposition and provided intuitively shared memory parallelism for TTM and TRSVD steps.
Bassoy [5] achieved a high-performance algorithm design for mode-q tensor-vector multiplica-
tion using an efficient implementation of matrix-vector multiplication (GEMV). Smith and
Karypis [40] proposed the compressed sparse fiber (CSF) and designed a method to tile over the
sparse tensor to avoid locking during parallel computation. More, the latest tensor computation
optimization studies are Matricized Tensor Times Khatri-Rao Product (MTTKRP) [4, 24, 29],
Tensor-Times-Vector (TTV) [3, 10, 51], Tensor Contraction (TC) [11, 28, 42], and so on.

2.2 Sparse Format Selection

The design and selection of sparse formats is a classical research direction in the field of high-
performance parallel algorithms, and the wide application of deep learning brings new opportuni-
ties. Nisa et al. [34] developed a new storage-efficient representation for tensors called HB-CSF that
enables high-performance, load-balanced execution of MTTKRP on GPUs and implemented sparse
MTTKRP using the new sparse tensor representation. Nisa et al. [33] presented a mixed-mode
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tensor representation that partitions the tensor’s non-zero elements into disjoint sections, each of
which is compressed to create fibers along a different mode. Xie et al. [50] developed a deep learn-
ing model for SpGEMM (Sparse matrix-matrix multiplication) called MatNet for automati-
cally determining the optimal format and algorithm for arbitrary sparse matrices. Sun et al. [43, 44]
designed SpTES for MTTKRP, a framework for automatically predicting the optimal storage for-
mat for the input sparse tensor. Zhao et al. [54] systematically explored the prospects and special
challenges of deep learning for sparse matrix format selection for SpMV (Sparse matrix-vector
multiplication). Tan et al. [45] developed an automatic tuning system (SMAT) that provided
programmers with a uniform interface to compressed sparse row (CSR) sparse matrix formats
by implicitly selecting the best format and fastest implementation of any input sparse matrix at
runtime; SMAT uses machine learning models and a relocatable backend library to quickly predict
the best combination. Benatia et al. [6] used a multiclass SVM classifier to select the best format
for each input matrix on the GPU. Li et al. [26] proposed a flexible modal Tucker decomposition
algorithm that implemented the switching of factor matrix and core tensor solvers, and used a
machine learning adaptive solver selector to automatically handle changes in input data and hard-
ware. Niu et al. [36] exploited the two-dimensional spatial structure of sparse matrices to optimize
SpMV on GPU and devised a selection method to find the best format and SpMV implementation
for each block. Sedaghati et al. [38] investigated the interrelationship between GPU architecture,
sparse matrix representation, and sparse datasets and established a decision model using machine
learning to automatically select the optimal sparse matrix representation on a given target system
based on the characteristics of the sparse matrix. Dai et al. [12] proposed a data-aware GPU-based
heuristic kernel, DA-SpMM, and implemented an input dynamic adaptive optimization code.

3 PRELIMINARIES

This section will introduce the knowledge of tensor computation with the example of SpTTM,
including the background knowledge of the tensor operation, sparse format, the calculation pro-
cess of SpTTM, and the CPU-GPU hybrid parallel programming. Table 1 shows the definitions of
symbols used in this paper.

3.1 Tensor

A tensor can be seen as a multidimensional array. Each of its dimensions is called a mode, and
the order of it is the number of dimensions, a.k.a. ways or modes. A vector as a first-order tensor,
is denoted as boldface lowercase letter, e.g., x, and a matrix as a second-order tensor, is denoted
by boldface capital letter, e.g., X. A tensor of order three or higher is called higher order tensor,
is denoted as bold capital calligraphic letter, e.g., X. We use Xjji to represent the element of the
third-order tensor X position (i, j, k).

Unfolding, a.k.a. matricization or flattening, reorders the elements of a tensor and converts this
tensor to a matrix. For example, a third-order tensor X € RIXJXK can be converted to a matrix
Xq € R™JK  or a matrix Xp) € RIXIK or a matrix X@a) € REXIT

Given a tensor, we can get many sub-tensors which may be matrices and vectors. To be concrete,
for a third-order tensor X € RI*/*K, by fixing the indicators of mode J and mode K, a vector can
be obtained, called a fiber, symbolized as V,j. = X(:, j, k). By fixing the indicator of mode K in the
third-order tensor, a matrix can be obtained, which is called a slice, symbolized as X..,x = X(:,:, k).

3.2 Sparse Tensor-Times-Matrix

Tensor-Times-Matrix (TTM) in mode n, also called the n-mode (matrix) product, is the product
of a tensor X € RIX>xInXXIN with a matrix U € RF*» in mode n, denoted by Y = X x,, U. This
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Table 1. Table of Symbols
Symbol Definition
x A vector.
X, U,Y A matrix.
X, Y A third-order or higher-order tensor.
Xk The frontal slices of the third-order tensor X.
Vijk The model-1 fiber of the third-order tensor X.
X1 The model-1 unfolding of the third-order tensor X.
Num¢, Numgy  The number of cores in CPU or GPU.
F, Fy The main frequency of CPU or GPU.
FMA., FMA; The number of floating point operations of CPU or GPU.
P, Py Peak computer power of CPU or GPU.
Qc, Qg Amount of computing tasks assigned to CPU or GPU.
M Amount of data to be computed or amount of accessed memory.
M., My Amount of accessed memory for tasks assigned to CPU or GPU.
JTi The coefficient between computing tasks and accessed memory.
teps tgp Calculation time on CPU or GPU.
tems tgm Memory accessing time on CPU or GPU.
tr The time to copy data from the CPU to the GPU.
B The bandwidth of the data from the CPU to the GPU.
A The percentage of peak computing in actual calculations.
G A graph.
A An adjacency matrix.
u,v A node of the graph G.
e An edge of the graph G.
d Features of the nodes.
R,C,V The set of nodes.
E The set of edges.
N(v) The neighborhood of node v.
f() The feature vector of node v.
o Activation function.
W, W, Parameter matrices.
resultsinan Iy X - -+ X I,_1 X R X I41 X - -+ X Iy tensor, and its operation is defined as
In
Yirocinrripnin = Z Kiyipsininer i X Uriy - 1)

in=1

When X is sparse and U is dense, the operation is called SpTTM. Since there are already many

mature commercial libraries implementing high-performance matrix computation, such as MKL
library [46] and CUSPARSE library [49], the common approach in practical applications is that the
sparse tensor is first divided into multiple slices, and then each slice calls the matrix computation
interface in the commercial libraries.

As an example, let the 1-mode unfoldings of the tensor X € R3***Z be

1 4 7 10|13 16 19 22
Xqp=|2 5 8 11|14 17 20 23], (2)
3 6 9 12|15 18 21 24
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Fig. 2. Different sparse formats.

where X(;) € R**® is the result of tensor X € R*** 1-mode unfolding. And the frontal slices of
X € RV pe

1 4 7 10 13 16 19 22
Xa=12 5 8 11|, X,=|14 17 20 23| (3)
3 6 9 12 15 18 21 24

The 1-mode product of the tensor X € R¥>*? with the matrix U € R>® can be equated to
the matrix U7 € R>3 multiplied by two frontal slices X.x € R3**, respectively, or the matrix
UT € R multiplied by four lateral slices X;. € R¥?, respectively.

3.3 Sparse Format

If the matrix has few zero elements, using dense formats and optimization methods such as chunk-
ing and merging access can effectively improve the parallel computation efficiency. Nevertheless,
if the matrix has numerous zero elements, the dense format causes memory waste for storing zero
values and loss of computer power for multiplying zero values, so sparse matrices need to use a
suitable sparse format to help solve these problems.

The exploration of sparse formats for matrices has a long history of research, and thus many
sparse formats have been proposed. Except for the dense format, we consider four popular formats
COO, CSR, ELL, and HYB, as shown in Figure 2.

(1) COO (coordinate format) directly stores the index and value of non-zero elements and uses
a list of (row, column, value) tuples to store the matrix.

(2) CSR (compressed sparse row format) uses row compression technology to be widely used. It
implements parallel computing by dividing data by rows.

(3) ELL (ELLPACK) uses a list of (data, index) tuples to store matrices. Data arrays store the non-
zero elements of each row. The integer array index stores the column index of each non-zero
element.

(4) HYB (Hybrid ELL/COO) uses a hybrid ELL and COO format to classify dense and sparse
rows according to a threshold K, and uses ELL format for dense rows and COO format for
sparse rows.

3.4 CPU-GPU Hybrid Parallel Programming

With the mushroom growth of multi-core technology, the number of cores in CPU has been in-
creasing. CPU with 8 cores, 32 cores or even higher, enter the domain of general computing, which
greatly improves the parallel computing power of CPU [47]. Although the FLOPS of GPU is much
higher than CPU, it does not have process control power in CUDA, which is controlled by CPU [25].
Utilizing CPU and GPU to build a heterogeneous programming environment can effectively make
up for the shortcomings of CPU and GPU. In this model, the data is transferred from CPU to
GPU via PCle bus, and then the CPU schedules the calculation process of GPU by calling kernel
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Fig. 3. The workflow of the input-aware slice-wise SpTTM.

functions. Using OpenMP to realize parallel processes on CPU, which splits one thread to control
the GPU and other threads are used to share the workload between the remaining CPU cores. The
data need is divided into two parts and allocated to CPU and GPU. Then, two groups of threads in
OpenMP are created, where one thread controls the GPU and other threads take on the workload
on CPU.

4 INPUT-AWARE SLICE-WISE SPTTM ON CPU-GPU

To efficiently utilize the computational power of CPU-GPU heterogeneous systems to enhance the
performance of SpTTM, we design and implement input-aware slice-wise SpTTM. In the rest of
this section, we describe its overall workflow and the heterogeneous parallel computing pattern.

4.1 Overall Workflow

In this subsection, we introduce the details of our proposed input-aware slice-wise SpTTM. The
overall workflow consists of seven steps, as illustrated in Figure 3.

— Step 1: Input Tensor. The input data is organized into tensor.

— Step 2: Expand. The tensor is expanded into a series of slices by mode I.

— Step 3: Task Mapping. SpTTM computational tasks are load-balancedly mapped on het-
erogeneous devices.

— Step 4: Format Selection. SPT-GCN is used to select the appropriate sparse format for the
tensor on the CPU and GPU.

— Step 5: Format Conversion. The tensor is converted to the format selected by SPT-GCN.

— Step 6: Multiplication. The input-aware slice-wise SpTTM is executed on a CPU-GPU
heterogeneous system.

— Step 7: Result Tensor. The results on CPU and GPU are reorganized into tensor by modal I.

4.2 CPU-GPU Heterogeneous Parallel Computing Pattern

In this subsection, we outline the computing flow of the input-aware slice-wise SpTTM and de-
scribe the parallel implementation of SpTTM with different sparse formats.

4.2.1  Parallel SpTTM Algorithm. In the CPU-GPU heterogeneous parallel method, the most
common general model is to invoke the calculation process of GPU by calling the kernel function.
In this case, CPU waits until the kernel finishes, which means that the parallelism is lying idle.
For increasing CPU utilization, we employ OpenMP to combine with CUDA in our heterogeneous
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parallel model. One thread in CPU is assigned to control the GPU, and others execute programs
in parallel. As shown in Figure 4, the tensor initially is split into two slices set by task mapping
which will be detailed in Section 5. The larger one is allocated to the GPU because of the greater
parallelism, and another set is executed in parallel at the CPU. Then, two groups of threads are
created on the CPU, one of which controls the kernel function in the CUDA threads Grid of the
GPU, while the rest of the threads take on the CPU parallel workload. Each of the two systems,
CPU and GPU, selects its own most appropriate storage format based by SPT-GCN and we
describe in detail how each sparse format is parallelized in SpTTM on the CPU and GPU in
Section 4.2.2. When these calculations are completed, the result slices are all gathered to the CPU.

The implementation for SpMV uses OpenMP to achieve parallelism on a CPU-GPU hetero-
geneous computing system, as shown in Algorithm 1. The execution process on CPU-GPU for
slice-wise SpT'TM includes four steps.

(1) The sparse tensor is split into two slice sets: Scpy_x and Sgpu x-

(2) SPT-GCN is utilized to select the optimal formats, Fcpy and Fgpy, for each of Scpy x and
Sepu_x- Fepu and Fgpy must belong to COO, CSR, ELL, HYB. After determining the optimal
format, two slice sets are converted.

(3) The Sgpu_x is stored by Fgpy format and is executed by SpTTM_GPU_Fgpy with CUDA to
obtain Sgpy y. The Scpy_x is stored by Fepy format and is executed by SpTTM_CPU_Fepy
with OpenMP to obtain Scpy y.

(4) Sgpu_y and Scpy y are gathered and merged into the result tensor Y.

4.2.2  Detail Parallel Format Implementation on CPU-GPU. The parallel execution method of
slice-wise SpTTM computation is different for different sparse formats, and we design the parallel
execution for the four selected sparse formats as follows in support to heterogeneous invocation.
Each format is designed with the appropriate amount of threads and the proper thread execution
manner.

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 9. Publication date: June 2023.
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ALGORITHM 1: The process of Slice-wise SpTTM on CPU-GPU heterogeneous computing
system.

Input:
A tensor X;
A matrix U;
Mode J;
Output:
A tensor V;
1: Divide X into two slices set Scpy_x and Sgpy_x by task mapping strategy;
2: Select one optimal format, Fepy and Fgpy, for each of Scpy_x and Sgpy_x by SPT-GCN and
convert these slices;
3: # pragma omp parallel

4: {

5. # pragma omp sections nowait

6:

7: // Build the parallel sections for GPU

8: # pragma omp section

9:
10: Scpu_y < Call the Fgpy kernel function SpTTM_GPU_Fgpy (Scru_x);
11 }
12: // Build the parallel sections for CPU
13: # pragma omp section
14:

15: Scpu_y « Call the Fepy kernel function SpTTM_CPU_Fepy (Scpu_x);
16: }

17: }

18: }

19: Y «Gather and Merge Sgpy v and Scpy y;
20: return Y;

For COO. For slices stored in COO format. Due to the independence of elements in COO, parallel
multiplication operations can be performed directly between elements. Then a segmented reduc-
tion is delivered to the final accumulation of intermediate products. For the parallel approach on
the CPU, non-zero elements are assigned to threads in a segmented manner performing element
multiplication. Each thread executes a segmented reduction to sum the intermediate products. For
GPU, successive threads in one warp obtain adjacent elements and eventually perform interleaved
reduction to get the final result.

For CSR. For slices stored in CSR format, all the non-zero elements are compressed by a contin-
uous way. We naturally associate this with parallel operations in row units. Each row of the input
slice is independent with others, which is assigned to a thread in CPU. Each thread independently
performs vector-matrix multiplication to obtain one row of the final result slice. For GPU, we al-
locate one warp for each row to achieve better coalesced memory access and store the data in the
order of the main columns. This memory layout makes sure that the rows of one slice are separate
and the intermediate products are not mixed up. The rows in a slice are repeated over and over
again whose times are the number of columns of the input matrix. As such, shared memory for
less latency is suitable to store the non-zero elements in reused rows in the input tensor which
reduces the total number of global memory access by row_num X (column_num — 1).
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For ELL. For slices stored in ELL format, elements are stored continuously and the original matrix
is compressed to the left. All non-zero elements are packaged into two matrix arrays of the same
size facilitating the distribution of rows which store the value and column index of each non-zero
element. Each row of the slice in ELL format has the same number of elements by zero filling.
The number of rows in a slice with ELL format is the same as that of the slice but the number of
columns depends on the maximum non-zero element of all rows in the slice. For OpenMP in CPU,
each thread is assigned to a row in the resulting slice to access these two arrays at the same time
to gain the value and column index. The parallel method significantly tasks a row as the execution
unit which avoids the write-read conflicts among threads. In GPU, each row of the input matrix is
accessed by a warp instead of accessing the input slice which magnifies the coalesced access. In
that fashion, reusability was built into each non-zero element by a warp and threads within the
same warp access slices consecutively.

For HYB. For slices stored in HYB format, the whole slice is divided into two parts, dense and
sparse, by a threshold, which employs two sparse formats, ELL and COO. To cut down the addi-
tional memory for padding, all the rows that stand out much more than others are clipped sepa-
rately to ELL and COO formats. The denser part is stored in the ELL format and the remaining
elements are in the COO format. By the way, the threshold is often max (4096, row_number/3).
The structure of HYB calculations is almost identical to ELL, except for detaching some threads to
perform COO operations.

4.2.3  Key Problems. For input-aware slice-wise SpTTM on CPU-GPU, there are two key prob-
lems. The first problem is how to design a load-balanced mapping strategy due to the different
arithmetic intensities of CPU and GPU. The second problem is how to choose the appropriate
sparse format for the tensor due to the different sparse structures of the tensor. In the next two
sections, we will describe in detail how we solve these two problems.

5 LOAD BALANCE FOR TASK MAPPING ON CPU-GPU

The efficient execution of an application on a heterogeneous system requires the cooperation of
multiple specialized devices. In a heterogeneous system equipped with both CPU and GPU, if the
program is only executed on the CPU or GPU, it is a waste of computing resources. Efficient SpTTM
calculation requires the CPU and GPU to calculate together.

In the input-aware slice-wise SpTTM algorithm, SpTTM is divided into multiple calculation
tasks of matrix multiplication. How to design a task mapping scheme so that multiple tasks are
efficiently loaded by different devices is the primary problem that needs to be solved. When design-
ing a task mapping scheme, the load balancing of computing tasks on different devices needs to
consider the difference in the amount of calculation between tasks, the different computer power
of devices in heterogeneous systems, the difference in memory accessed amount, and the differ-
ent costs of moving data between devices. Therefore, we can give an evaluation method for load
balancing task mapping schemes.

Given a heterogeneous system, the peak computer power (the number of FMA instructions per
second) of the CPU is P., which is denoted by

P. = Num, x F, x FMA,, (4)

where Num, is the number of cores on the CPU, F, is the main frequency of CPU, and FMA is the
number of floating point operations (multiplication and addition) performed by CPU in a single
cycle.

The peak computer power of the GPU is Py, which can be denoted as

Py = Numy X Fy X FMA,, (5)

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 9. Publication date: June 2023.



A Heterogeneous Parallel Computing Approach Optimizing SpTTM 9:11

where Num, is the number of CUDA Cores on the GPU, F, is the main frequency of GPU and
FMA is the number of floating point operations (multiplication and addition) performed by GPU
in a single cycle.

Assuming that the amount of data to be computed is equal to the total amount of accessed
memory, denoted as M, the amount of accessed main memory allocated to the CPU is M, and the
amount of accessed global memory allocated to the GPU is M,, then

M =M, +M,. (6)

The number of tasks allocated to the CPU is Q., and the number of tasks allocated to the GPU
is Qy. It is reasonable to assume a linear relationship between the number of tasks and the amount
of data to be computed. Given the coefficient y, then

Oc = uMc, Qg = HMg~ (7)

The calculation times on the CPU and GPU are denoted as t., and t,,, and the percentage of
peak computing in actual calculations is A, then

0. . 9

tep = S = . 8
Paps P Tap, ®
The memory accessing time on the CPU and GPU are denoted as tcp, and t4p,, then
M. My
tem = B_c, tgm = B_g’ (9)

where B, is the bandwidth of the main memory in CPU and B, is the bandwidth of the global
memory in GPU. The bandwidth of the data from the CPU to the GPU is B. Especially, the time to
copy data from the CPU to the GPU is recorded as t,, then

t= —2. (10)

The time for the result data from GPU to CPU is not considered because the outgoing data is small
compared to ¢,. Inspired by Yu et al. [53], we divided the execution time into computation time
and memory access time. The load balancing strategy needs to make the execution time on the
CPU equivalent to the execution time on the GPU, so it can be expressed as

tep +tem = tgp + tgm + L. (11)
Substituting Equations (8), (9), (10) into (11),
M M, M
Qe C=Q9+—g+—g, (12)
AP, " B. AP, B, B
then combining Equations (6), (7), and (12) to get the number of tasks allocated to the CPU and the
number of tasks allocated to the GPU. Equation (7) shows that Q and M have a linear relationship,
so we use Mg as an example to illustrate the assignment relationship between CPU and GPU.
Equation (12) is deformed to
H(M - My) . M-M,; M,
AP. B. AP,

M, M,

T — (13)
By B

then M, is solved,

P,B,B(uB, + AP,)
M, =
PyByB(uB, + AP,) + PcB(uB,B + APyB + AP,B,)

(14)
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Fig. 5. A diagram of converting a tensor into a bipartite graph.

Further, according to Equations (6), (7), and (14), we can finally obtain the relationship between
the number of tasks and the amount of data,

pPyByB(uB. + AP.)
PyByB(uB. + AP;) + P.B.(uByB + APy4B + AP, Bg)

Qg = pMg = (15)

{iP B (1ByB + APyB + APy By)
PyByB(iB, + AP.) + P.B.(1ByB + APyB + AP,By)

Qe = j(M ~ M,) = (16)

In the input-aware slice-wise SpTTM algorithm, the tasks calculated by CPU and GPU are
closely related to the non-zero element of each slice. We first count the non-zero elements of
each slice and assume that the total number of non-zero elements is equal to the total amount of
access memory M. Secondly, we sort these slices from large to small according to the counting
result. Thirdly, distributing slices to GPU and CPU alternately from large to small to ensure that
their task volume meets the Q. and Q, above. Finally, a load-balanced task mapping scheme is
obtained by the above process.

6 FORMAT SELECTION

In this section, first, a bipartite graph representation is given for describing the sparse structure of
the tensor. Second, basic concepts of graph neural networks are introduced, and third, we describe
the network structure and hyperparameter settings of SPT-GCN, a model for sparse tensor format
selection for SpTTM.

6.1 Graph Representation

Considering the complexity of the tensor high-dimensional space, we perform tensor lowering,
that is, use a mapping technique to reduce the tensor into a matrix, which we call the mapping
matrix. The mapping matrix is the projection of all slices of the tensor, so the shape of the mapping
matrix is as same as the shape of a slice. For each element in the mapping matrix, it is the number
of non-zero elements that exist at the corresponding positions of all slices of the tensor, as shown
in Figure 5. By tensor lowering, we compress the sparse information of the tensor onto a mapping
matrix. Considering bipartite graphs as a standard model for studying the division of rows and
columns of matrices [15, 41, 48], we further represent the mapping matrix as an entitled bipartite
graph.

As shown in Figure 5, the bipartite graph converted from a tensor is a weighted undirected
graph. The graph contains two vertex sets, representing the rows and columns of the matrix, and
the non-zero elements of the matrix are represented as the weights of the edges connecting the two
sets of vertices. We use graph G = (R, C, E, W) to represent matrix X. If matrix X has a non-zero
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element 3 in the 2nd row and 3rd column, there must be an edge e, 3 = (r2,c3, Wy 3) in graph G
from node r; in the vertex set R to node c; in the vertex set C, where wy 3 is 3, the value of the
non-zero element.

6.2 Graph Convolution Network

Notations. In this paper, we use G = (V, E) to denote a graph, where V = {vy,...,v,} is the set
of nodes and E is the set of edges. Let v; € V represent a node in the graph, thene; ; = (v;,v;) € E
is represented as an edge from node i to j. We define the neighborhood of node v as N(v) =
{u € V|(v,u) € E}. Then the adjacency matrix of the graph is represented by A € R™", and if
e;j € E, Ajj = 1, otherwise A;; = 0. If each node of the graph has d features, then the attribute
vector of the node v; is denoted as f;,,, and the attribute matrix of the graph is represented as
F e R™4,

A basic GCN model is composed of a set of neural network layers. Each layer gathers local
neighborhood information around each node and then transfers the gathered information to the
next layer [8]. Assuming that the center node is v, the feature vector is denoted as f (v), and the
set of neighbor nodes is denoted as N (v), so we calculate the new feature of the center node v in
the ¢-th layer,

fOR) = f ) WP+ Y @) W, (17)

ueN(v)

where W; and W, are parameter matrices, and o is the activation function. We replace the above
equation with a permutation invariant, differentiable function and compute the new identity

fO @) as

FO@) = faerge (FC00), figg? (F7 @), (18)
where u € N (v) is a neighbor node of v, fa(g“;zr) is the operation of merging the neighborhood

features of node v, and f,ilVZ;;e denotes the operation of aggregating the current features of node

v and its neighborhood features [14].
Therefore, the vector representation fgen(G) of the entire graph can be obtained by summing
the vector representations of all nodes,

foen@ = Y 7 @), (19)

veV(G)

where T > 0 denotes the last layer of the graph neural network [52].

6.3 SPT-GCN

As shown in Figure 6, SPT-GCN combines a GCN and a multilayer perceptron (MLP) to predict
the optimal storage format for the tensor [7]. The input of SPT-GCN is a bipartite graph converted
from a tensor. Specifically, an input node of GraphConv represents a row or a column of the map-
ping matrix. To reflect the spatial distribution of tensor sparse nonzero elements, the following five
attributes are considered as characteristics of the node: the total number of nonzero elements in
that row/column, the maximum value, the minimum value, the mean value, and the variance
of the column/row index of all nonzero elements in that row/column.

Considering that higher-order structures play an important role in the representation of ma-
trix graphs, we choose k-dimensional Graph Neural Networks [32] to aggregate high-dimensional
neighborhood information. For each layer ¢t > 0, the computing process of the new features can
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be expressed as
fOR) = fr W+ 3 Fww |, (20)

ueN UNg
where Np denotes the node set of local neighborhoods for node v and Ng denotes the node set
of global neighborhoods for node v. In k-dimensional Graph Neural Networks, the local neighbor-
hood means all neighboring nodes in the k-th dimension, and the global neighborhood refers to
all neighboring nodes except the local neighborhood [32].

Next, we present the working process of the SPT-GCN model in two stages.

Graph convolution is Stage 1, where we obtain knowledge from graph data. First, do a
graph convolution operation on the input graph to get the first-order graph convolution result.
Second, perform another graph convolution operation on the first-order graph convolution result
to obtain the second-order graph convolution result. Each graph convolution operation includes
three operators GraphConv, ReLU, and Readout. GraphConv is a graph convolution operation,
used to aggregate information from neighboring nodes. ReLU is a pooling operation that aims
to reduce the size of parameters and produce smaller representations by downsampling nodes,
thus the problems that overfitting, substitution invariance, and computing complexity need to be
avoided. The Readout operation is mainly used to generate graph-level representations based on
node representations.

Multilayer perceptron is Stage 2, the purpose of this stage is to choose the suitable sparse for-
mat for the pair of matrices. The output of Stage 1 is connected using a multilayer neural network,
and finally a softmax layer is connected. The output of this stage is the probability of achieving
optimal performance for each tensor format, and the tensor format with the highest probability is
predicted to be the most suitable for a given tensor.

The larger the k of the k-dimensional Graph Neural Network, the wider the perceptual field
of the nodes. However, when k > 1, due to the neighboring nodes, it will propagate features to
each other many times, and it will generate redundancy. And as k increases, there will be more
redundant entries, which is disadvantageous to the final prediction results. Therefore, SPT-GCN
uses a 2-dimensional graph neural network to aggregate the 2-hop neighbor information of nodes
after several trials. A k-dimensional graph neural network has two graph convolution processes.
After the first graph convolution, we output the result as a vector of length 128. After the first
graph convolution, we output the result as a vector of length 128. The second graph convolution
is performed on the result of the first graph convolution, and the output is again a vector of length
128. Splicing the two vectors gives the final output of the k-dimensional graph neural network,
which is a vector of length 256.
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Table 2. Experimental Platforms Configuration

Intel(R) Xeon(R) NVIDIA V100

Parameters Gold 6248 CPU GPU
Microarchitecture Cascade Lake Volta
Frequency 2.50 GHz 1.455 GHz
#Physical cores 20 5120
Last-level cache 275M 16 M
Memory size 132 G 32G
Memory bandwidth 17.6 GB/s 900 GB/s
Compiler gee 5.5.0 nvcee 10.1

The input of MLP contains a feature vector (Extralnfo) besides splicing the vector output from
the two GCNs. Extralnfo is a vector of length 9, which records some overall information about
the tensor: The number of modes of the tensor, the overall sparsity of the tensor, the maximum
number of dimensions of the tensor, and the minimum number of dimensions of the tensor. Thus,
the input layer of the MLP has 521 = 512 + 4 neurons, and the number of neurons in the two hidden
layers is set to 128 and 32. Finally, the number of neurons in the output layer of the MLP is set to
the number of categories of the matrix.

Hyperparameter Settings. In addition, when training the model, we try to set the batch size
to [1, 2, 4, 8, 16, 32] and the learning rate to [0.001, 0.0005, 0.0001, 0.00001, 0.000001]. After several
attempts, we use the parameter combination set that can achieve better training results, with batch
size set to 4 and learning rate set to 0.00001. To speed up the operation and improve data stability,
we use a combination of LogSoftmax and NLLLoss for our loss function.

7 EXPERIMENTATION

In this section, we perform a number of experiments to evaluate the performance of the input-
aware slice-wise SpTTM, and SPT-GCN prediction accuracy and the effectiveness of load balancing
scheme. All performance comparison experiments perform single-precision floating-point values,
and the results are averaged after 10 runs.

7.1 Platforms and Datasets

7.1.1  Hardware and Software Systems. Our tensor computation performance comparison exper-
iments are conducted on a heterogeneous system equipped with both Intel(R) Xeon(R) Gold 6248
CPU and NVIDIA V100 GPU. The full hardware configuration is shown in Table 2. Moreover, our
design SPT-GCN implemented using Python 3, PyTorch 1.4, and PyTorch Geometric (PyG) 1.6 [13].

7.1.2  Datasets. To better train SPT-GCN, we prepared more tensors as the training set. We
generated 4,426 third-order tensors based on 2,016 matrices selected from the SuiteSparse Matrix
Collection.! The number of non-zero elements ranged from 42 to 2,652,858. For SpTTM, we evalu-
ated sparse tensor storage formats, including COO, CSR, ELL, and HYB. The y-label of each tensor
in the training set was the format with the lowest average time overhead for 10 iterations.

The datasets used in the experiments are publicly available and we chose to use the following
datasets from five different application domains. Besides the training dataset, the datasets used for
our tests are Uber Pickups, Hetrec2011 Lastfm 2k, Chicago Crime, and NeurIPS Publications. These
are publicly available and collected in FROSTT? for real-world applications.

Thttp://sparse.tamu.edu/.
Zfrostt.io/tensors/
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Table 3. Details of the Tensor Datasets

Tensor Dataset Description I J K Non-zero Elements
Uber Pickups (Time, Latitude, Longitude) 4,392 1,140 1,717 3,309,490
Hetrec2011-lastfm-2k (User, Artist, ListeningCount) 2,100 18,744 12,647 186,479
Chicago Crime (Time, Area , Type) 148,464 77 32 5,330,673
NeurIPS Publications (PaperID, Author, Word) 42,194 2,862 14,036 3,101,609

Table 3 is a summary of these datasets.

7.1.3  Baseline Methods. The most used methods to recognize sparse matrix structures by
machines are SVM [6] and CNN [54]. Thus, we choose CNN and SVM as our proposed SPT-GCN
comparison methods. The SVM method uses the statistical information of the matrix as the fea-
tures of the matrix and classifies the matrix according to the features of the statistical information.
The CNN method first forms the matrix into a histogram or dense graph form, and then uses Con-
volution neural networks for feature extraction and classification. In our experiments, the CNN
method uses the source code provided by the authors to compare the experimental results, while
the SVM and the native GCN are implemented based on algorithmic ideas to compare the experi-
mental results.

We compare our method with two state-of-the-art tensor libraries, ParTI! and SPLATT,? to eval-
uate the performance of input-aware slice-wise SpTTM. To distinguish between ParTI! library
implementations on CPU and GPU, the parallel implementation of ParTI! library on CPU multi-
core is noted as ParTI!-OMP and on GPU architecture is noted as ParTI!-GPU. We perform SpTTM
calculations on five tensor data sets in the test set, and compare the performance of our proposed
input-aware slice-wise SpT'TM method with SPLATT, ParTI!-OMP and ParTI!-GPU.

In particular, we propose the input-aware slice-wise SpTTM method on the CPU-GPU het-
erogeneous system, and we name the input-aware slice-wise SpTTM using the SVM method as
AdaptSVM, the one using the CNN method as AdaptCNN, and the one using the SPT-GCN method
as AdaptSPT-GCN.

More, to demonstrate the performance benefits of heterogeneous computing more concretely,
we compare CPUSPT-GCN, an approach that uses SPT-GCN only on the CPU, and GPUSPT-GCN,
an approach that uses SPT-GCN only on the GPU.

7.2 Performance

7.2.1  Experiment Setting. To evaluate the performance of input-aware slice-wise SpT'TM, we
recorded the time overhead of executing SpTTM on different tensor datasets. In practical ap-
plications such as tensor decomposition, SpTTM usually needs to be executed on all modes of
the tensor. Therefore, the experiment is repeated 10 times for each tensor dataset, and the aver-
age of the sum of the time overheads of executing SpTTM once for each mode is recorded and
presented.

7.2.2  Time Overhead. The experiments are executed on the Intel(R) Xeon(R) Gold 6248 CPU and
NVIDIA TITAN RTX GPU heterogeneous system, and the results are shown in Figures 7(a), (b), (c),
(d). Comparing AdaptSPT-GCN and AdaptCNN, and AdaptSVM, it can be seen that SPT-GCN has
a better acceleration effect than CNN and SVM for optimizing the performance of SpTTM compu-
tation. Figure 8 specifically shows the prediction accuracy and performance of different methods,
where SVM (GPU-62.77% and CPU-63.76%) in the legend indicates that the prediction accuracy
of SVM is 62.77% on GPU and 63.76% on CPU, and the representation of CNN and SPT-GCN is

Shttps://github.com/ShadenSmith/splatt/.
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Fig. 7. SpTTM performance of different methods.
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Fig. 8. SpTTM performance of different methods with various prediction accuracy.

similar. Observing the results, it can be further argued that for the sparse format selection model
of tensor, the higher the prediction accuracy, the more significant the performance improvement
of SpTTM.

For the implementation library on the CPU, we measure the computing time for its execution
of SpTTM. For the implementation library on GPU, we measure the computation time to execute
SpTTM and the transfer time between CPU and GPU. Figure 9 shows the results of our measured
time comparison for format conversion between our implementation and the SPLATT and ParTI!
libraries. As can be seen, the time for format conversion is a heavy overhead for all the imple-
mented libraries. Fortunately, SpTTM has iterated dozens or even hundreds of times in tensor
decomposition applications, and the time overhead of format conversion can be evenly spread by
these iterations.

Comparing AdaptSPT-GCN with CPUSPT-GCN, and GPUSPT-GCN, it can be seen that the het-
erogeneous computing approach has better performance improvement compared to using only

CPU or GPU. Specifically, the CPU-GPU heterogeneous method improves performance by 45.98%
over the CPU method and 49.62% over the GPU method.
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Fig. 10. Comparison of the time overhead before and after performing load balancing.

More, comparing AdaptSPT-GCN with SPLATT, ParTI!-OMP, and ParTI!-GPU, our proposed
AdaptSPT-GCN method achieves SPLATT of 1.504%, ParTI!-OMP of 2.636x and ParTI!-GPU accel-
eration of 1.310x%.

7.3 Load Balance

7.3.1  Experiment Setting. To demonstrate the effectiveness of our designed load balancing
scheme, we compare the time overhead before and after load balancing. The task allocation scheme
without load balancing is a random allocation of slices on the CPU and GPU, noted as Before. And
the scheme after load balancing is denoted as After.

7.3.2  Time Overhead. Figure 10 shows the time overhead on the CPU and the GPU before and
after executing the load balancing scheme on the four tensor datasets. It can be seen that without
load balancing, that is, before executing the load balancing scheme, there is a large difference be-
tween the time overhead on CPU and GPU. Since the time overhead of heterogeneous computation
depends on the maximum value of time overhead on CPU and GPU, the large difference in time
overhead on CPU and GPU slows down the overall performance. In contrast, after implementing
the load balancing scheme, the difference in time overhead on CPU and GPU is relatively small.
Specifically, the average performance improvement after load balancing is 34.91% relative to the
before. Thus, it can be seen that our scheme enables input-aware slice-wise SpT'TM load balancing
on CPU-GPU.

7.4 Prediction Accuracy of Format Selection

7.4.1  Experiment Setting. Cross-validation is a common evaluation method in statistical learn-
ing. Therefore, we use 5-fold cross-validation to separate the validation data from the training
data. The top 20% of the dataset is randomly removed to form a validation set and the rest is used
for training. This process was then repeated five times, each time selecting a different subset of
the dataset as the validation set. To evaluate the accuracy of SPT-GCN predictions, we measure
the average prediction accuracy. We denote the number of tensors with the same category as y-
label obtained by SPT-GCN on the validation set as m and the total number of all tensors in the
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Fig. 11. The training process of SPT-GCN.

Table 4. The Proportion of Tensors of Different Sizes of the Train Dataset

The number of non-zeros of the tensor 0-100 100-1,000 1,000-10,000 10,000-100,000 >100,000
The number of tensors 252 1360 1304 1130 380
Proportion 5.69% 30.73% 29.46% 25.53% 8.59%

validation set as n, then the accuracy rate is expressed as **, and the average accuracy of 5-fold

cross-validation is denoted as
S
=1
acc = M (21)

F
where the value of F is 5, and m¢ and ny denote the number of tensors with the same cate-
gory as y-label and the total number of all tensors in the validation set obtained in each 5-fold
cross-validation.

7.4.2  Prediction Accuracy. Figures 11(a) and (b) show the training process of SPT-GCN. The loss
indicates the loss value of SPT-GCN, which gradually decreases with the increase in train times.
And the loss value eventually stabilizes, which means the SPT-GCN is converged. The train_acc
and val_acc indicate the prediction accuracy of SPT-GCN on the training and validation sets, which
is incrementally stabilized. On the CPU, the accuracy of the training set stabilizes to 0.878 and the
accuracy of the validation set stabilizes to 0.851. On the GPU, the accuracy of the training set
stabilizes to 0.924, and the accuracy of the validation set stabilizes to 0.901. Therefore, it can be
seen that SPT-GCN can choose a suitable sparse format for the tensor, whether on CPU or GPU.

To deeply analyze the difference between our method and other methods, we divide the whole
dataset into five different sub-datasets according to the number of non-zero elements and analyze
the results on the sub-datasets.

The statistical results of different sub-datasets are shown in Table 4. It can be seen that 85.72% of
the tensors in the training dataset we used have a number of non-zero elements in the interval from
100 to 100,000, while only 5.69% is less than 100 and only 8.59% is greater than 100,000. Figures 12(a)
and (b) give the experimental comparison results of the prediction accuracy of SPT-GCN with
other machine learning methods. It can be seen that SPT-GCN outperforms other methods both
on CPU and GPU, and the advantage becomes more obvious as the size of tensor non-zero elements
increases. The reason is that for large matrices, CNN loses too much structural information in the
process of scaling the matrix into a fixed-size matrix. Similarly, SVM generates large errors when
classifying in large-scale matrices using only the overall features of the matrix. In contrast, the use
of SPT-GCN is not affected by the size of the matrix in terms of accuracy.
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Fig. 12. Accuracy of optimal sparse format prediction.
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7.4.3  Overhead Analysis. We also discuss the time overhead of using a deep learning selection
method compared to an iterative search approach. For selection approaches, we still use three
selection methods, SVM, CNN, and SPT-GCN. For traversal approaches, we choose the brute force
traversal method and the greedy traversal method. The brute force method is the most common
traversal method, in which all the methods are run through and the method with the shortest
running time is selected as the best method. The greedy traversal method is based on brute-force
traversal, which takes the time of the fastest method among the currently known methods as the
upper limit, and does not continue to compute as long as the running time of subsequent methods
exceeds this limit. Thus, the time overhead of the greedy traversal method is lower than that of
the brute-force traversal method.

Figure 13 shows the time overhead of various methods to identify the best format of the matrix,
the higher the time overhead of the method and the redder the background color. Since the values
of the different methods vary widely, we use a logarithmic scale to describe the time overhead, e.g.,
—1 shows the time overhead at the 10~ s level.

The experimental results show that the time overhead required by the traversal method is at
least one order level higher than that of the recognition method in most cases. CNN is 10725 level
of overhead and SPT-GCN is 1073s level of overhead, numerically; SPT-GCN has a lower time
overhead than CNN, which means SPT-GCN is faster than CNN. SVM is 10~4s level of overhead; it
is faster than SPT-GCN, but it has lower prediction accuracy. Overall, the time overhead required
by our proposed SPT-GCN method is only one order of magnitude larger than that of SVM because
SVM only uses the statistical features of the matrix and the computing effort is small. And SPT-
GCN is about 1 level less than CNN because the time overhead of convolution computation is
larger than that of graph convolution.

8 CONCLUSION

This paper introduces a method to develop heterogeneous parallel slice-wise SpT'TM on a hybrid
CPU-GPU system. Our SpTTM employs a parallel strategy in various sparse formats and designs
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the task mapping scheme to facilitate the computer power of both CPU and GPU. The theoretical
analyses exploit the peak performance in different processors. Then, we describe the tensor non-
zero element distribution by a graph structure, and design a graph neural network model SPT-
GCN, which is able to select a suitable sparse format for the tensor and verify the effectiveness
of SPT-GCN through experiments. To sum up, the input-aware slice-wise SpTTM on a CPU-GPU
heterogeneous system is implemented to improve the overall performance of SpTTM through task
partitioning and parallel optimization. Finally, we experimentally verify that our proposed method
has a better speedup ratio compared with the ParTI! library and SPLATT library. In future work, we
will further extend the optimization method to more tensor computing operators such as MTTKRP
to significantly improve the performance of tensor applications.
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