
Future Generation Computer Systems 105 (2020) 916–931

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy management for multiple real-time workflows on
cyber–physical cloud systems
Guoqi Xie a,b,*, Gang Zeng c, Junqiang Jiang a, Chunnian Fan d, Renfa Li a,b, Keqin Li a,e
a College of Computer Science and Electronic Engineering, Hunan University, China
b Key Laboratory for Embedded and Network Computing of Hunan Province, China
c Graduate School of Engineering, Nagoya University, Japan
d Nanjing University of Information Science and Technology, China
e Department of Computer Science, State University of New York, New Paltz, NY, 12651, USA

h i g h l i g h t s

• Maximizing the number of workflows that are completed within their deadlines by proposing a deadline-driven processor merging for multiple
workflows (DPMMW) algorithm.
• Minimizing the energy consumption of the workflows that are completed within their deadlines by proposing a global energy saving for multiple

workflows (GESMW) algorithm.
• Experimental results validate that the combined DPMMW&GESMW algorithm can reduce deadline miss ratio (DMR) and save satisfactory energy over

the existing methods.

a r t i c l e i n f o

Article history:
Received 28 November 2016
Received in revised form 15 May 2017
Accepted 22 May 2017
Available online 26 May 2017

Keywords:
Cyber–physical cloud systems (CPCS)
Deadline miss ratio (DMR)
Global energy saving (GES)
Multiple workflows
Real-time constraint

a b s t r a c t

Cyber–physical cloud systems (CPCS) are extensions of cyber–physical systems (CPS) that expand the
cyber-part and distribute it on-device and in-cloud. CPCS are considered large-scale heterogeneous
distributed cloud computing systems that support execution of multiple workflows. This study aims to
reduce the energy consumption of multiple real-time workflows on CPCS and it contains two objectives:
(1) maximizing the number of workflows that are completed within their deadlines; (2) minimizing
the energy consumption of the workflows that are completed within their deadlines. The former is
solved by proposing a deadline-driven processor merging for multiple workflows (DPMMW) algorithm,
whereas the latter is solved by proposing a global energy saving for multiple workflows (GESMW)
algorithm to minimize the total energy consumption. Experimental results validate that the combined
DPMMW&GESMW algorithm can reduce deadline miss ratio (DMR) and save as much as possible energy
over existing methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

Cyber–physical systems (CPS), which were first coined at the
National Science Foundation (NSF) in the United States (US) in
2006, are engineered systems that are built from, anddependupon,
the seamless integration of computational algorithms and physical

* Corresponding author at: College of Computer Science and Electronic Engineer-
ing, Hunan University, China.

E-mail addresses: xgqman@hnu.edu.cn (G. Xie), sogo@ertl.jp (G. Zeng),
jjq@hnu.edu.cn (J. Jiang), fcn@nuist.edu.cn (C. Fan), lirenfa@hnu.edu.cn (R. Li),
lik@newpaltz.edu (K. Li).

components [1]. Advances in CPS will enable capability, adaptabil-
ity, scalability, resiliency, safety, security, and usability that will
further enhance the existing simple embedded systems [1]. Con-
siderable progress has been made in developing CPS technology
over the past five years in many sectors, such as vehicular CPS
(VCPS) [2], automotive CPS (ACPS) [3], medical CPS (MCPS) [4], and
cyber–physical social systems (CPSS) [5,6], among others.

The following are the twokey parts integrated in balance of CPS:
(1) the physical part, including sensors and actuator constellations,
and interacts with the physical environments, such as lighting,
temperature, water, and fertilizers; (2) the cyber part, including
the computation and communication resources, and manages and
enhances the hardware capabilities and its interaction with the

http://dx.doi.org/10.1016/j.future.2017.05.033
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.05.033
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.033&domain=pdf
mailto:xgqman@hnu.edu.cn
mailto:sogo@ertl.jp
mailto:jjq@hnu.edu.cn
mailto:fcn@nuist.edu.cn
mailto:lirenfa@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.future.2017.05.033

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 917

cyber-world [7]. The rapid advances in computational power cou-
pled with the prevalence of the cloud and its services benefits,
enables us to expand the cyber part and distribute it on-device
and in-cloud [7,8]. That is, a new generation of CPS called cyber–
physical cloud systems (CPCS) or cloud-based CPS emerge [7,8].
Integrating CPS into a cloud computing infrastructure forms CPCS
that improves interaction among cyber–physical devices and also
enables large-scale data storage, analysis, and service [7,8]. CPCS is
an extension of cloud data centers by including the physical part
into the infrastructure.

Given the continuous replacement of old and slow machines
with new and fast ones, CPCS are believed to become hetero-
geneous. In X as a service (XaaS) clouds, resources as services
(e.g., infrastructure, platform, and software) are sold to workflows,
such as scientific and big data analysis workflows [9–13]. As het-
erogeneous systems continue to be scaled up, workflows with
precedence-constrained tasks, such as fast Fourier transform and
Gaussian elimination [14–16]. A task graph is aworkflowmodel for
the description of distributed end-to-end computations in CPCS.
Given that a workflow is released by receiving collected data from
the sensor and is completed by sending the performing action to
the actuator in CPCS, the task graph is restricted to be directed
and acyclic, and is then represented by a directed acyclic graph
(DAG) [14–16]. Such a workflow is called DAG-based workflow.
Furthermore, CPCS are large-scale systems that accommodate the
execution of multiple workflows, which represent multiple DAGs
in heterogeneous distributed systems [17–23]. Therefore, CPCS are
considered as large-scale heterogeneous distributed cloud com-
puting systems.

1.2. Motivations

Energy sustainability is an important part of energy provi-
sion and management policies because it has a direct environ-
mental impact. The terms ‘‘sustainability’’ and ‘‘energy’’ elicited
considerable concern in NSF 16-549 [1]. Therefore, CPCS are ex-
pected to play a major role in the development of next-generation
smart energy systems and data centers. Innovative computational
methodologies such as green and energy efficient CPCS design have
become critical to enable the sustainable development of such
systems. These technologies can be used to tackle the reduction
of energy induced from the large scale data center computing
infrastructures, and the improvement of computational efficiency
in smart energy systems.

In addition to energy management, emergency response is
an important real-time constraint in CPCS. For example, a CPCS
workflow is released by receiving collected data from the sensor
and is then completed by sending the performed action to the
actuator. Many such workflows should be performed in individual
deadlines. Cloud service providers and users are the two types
of roles with conflicting requirements in CPCS. Minimizing the
total energy consumption of a workflow is one of the most im-
portant concerns for cloud service providers; whereas, satisfying
the real-time constraint of a workflow is one of the most im-
portant quality of service (QoS) requirements for users [21]. If
the workflow cannot be finished in a given deadline, then the
service-level agreement (SLA) is violated by resource providers and
the workflow does not function correctly. However, CPCS cannot
always satisfy the deadlines of all workflows. To the best of our
knowledge, recent studies have beenmerely interested in reducing
the energy consumption and stratifying real-time constraints for
a single workflow in heterogeneous cloud environments [15,16],
and no related works have been reported on multiple real-time
workflows.

1.3. Our contributions

This study aims to reduce the energy consumption of multi-
ple real-time workflows on CPCS and it contains two objectives:
(1) maximizing the number of workflows that are completed
within their deadlines; (2) minimizing the energy consumption
of the workflows that are completed within their deadlines. The
contributions of this study are summarized as follows.

(1) The first objective is solved by using a deadline-driven
processor merging for multiple workflows (DPMMW) algorithm.
This algorithm iteratively merges processors for each workflow
using the well-studied heterogeneous earliest finish time (HEFT)
algorithm until its deadlines cannot be met without involving
energy saving, such that DPMMWcan satisfy the deadlines ofmore
workflows than the existing method.

(2) The second objective is solved by using a global energy sav-
ing formultipleworkflows (GESMW)algorithm. This algorithmcan
reclaim slack times of all processors for each task by moving them
to other processors using a global approach, such that GESMW is
more energy-efficient than the existingmethod that reclaims slack
times on the fixed processor for each task.

(3) We conduct experiments on various real workflows. Ex-
perimental results validate that the combined DPMMW&GESMW
algorithm can reduce deadline miss ratio (DMR) and save as much
as possible energy over the existing methods.

The rest of this paper is organized as follows. Section 2 reviews
the related literature. Section 3 constructs a series of models for
CPCS. Section 4 analyzes existing algorithms and thenproposesDP-
MMW and GESMW algorithms. Section 5 validates the combined
DPMMW&GESMW algorithm. Section 6 concludes this study.

2. Related works

The popular energy consumption optimization technique,
namely, dynamic voltage and frequency scaling (DVFS), achieves
energy-efficient optimization by simultaneously scaling down the
supply voltage and frequency of a processor [24–30]. Given that
this study focuses on energy management and real-time con-
straint of DAG-based workflows on CPCS, this section first reviews
the related research as follows: (1) energy management for CPS;
(2) energy management for single DAG-based workflow; and
(3) resource management for multiple DAG-based workflows.

(1) Energy management for CPS. In [31], the authors studied
energy-efficient thermal-aware task scheduling for homogeneous
high-performance computing data centers using a CPS approach.
In [32,33], the authors presented a CPS approach to energy man-
agement in data centers based on DVFS. In [34], the authors dis-
cussed the research directions for energy-sustainable CPS. In [35],
the authors discussed scheduling co-design of periodic tasks for
CPS reliability and energy. Furthermore, cyber–physical energy
systems (CPES) are defined as an independent term and are stud-
ied recently. In [36], the authors studied efficient utilization of
renewable energy sources of gridable vehicles in CPES. In [37], the
authors studied the simulation of CPES on challenges, tools, and
methods. In [38], the authors focused on smart buildings using a
CPES approach. However, these studies do not involve end-to-end
computations for a CPCS workflow.

(2) Energy management for single workflow. The authors
in [39] considered energy-aware duplication scheduling algo-
rithms for a workflow on homogeneous systems, and the authors
in [40] presented energy-conscious scheduling to implement joint
minimization of energy consumption and execution time of a
workflow on heterogeneous multiprocessor systems. However,
these works fail to consider the real-time constraint of the work-
flow. Some studies solved the problem of energy consumption op-
timization of a real-time workflow using precedence-constrained

918 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

Fig. 1. Realization of CPS to CPCS [7].

sequential [28] and precedence-constrained parallel tasks [29,30].
However, these tasks are focused mostly on homogeneous mul-
tiprocessor systems with shared memory. The authors in [15]
studied the problem of minimizing energy consumption of a real-
time workflow on heterogeneous multiprocessor systems using
energy-efficient scheduling (EES) algorithmby recycling slack time
for each task on its fixed assigned processor. The authors in [16]
solved the same problem using the DVFS-enabled energy-efficient
workflow task scheduling (DEWTS). The DEWTS introduces a fea-
ture that can turn off relatively inefficient processors to reduce
the static energy consumption and to realize EES-based slack time
reclamation [15]. However, EES and DEWTS are merely interested
in reducing the energy consumption for a single workflow.

(3) Resourcemanagement formultipleworkflows. Two types
exist in multiple DAG-based workflows, including static and dy-
namic scheduling. All workflows are released simultaneously in
static scheduling [17,18,41–43], whereas all workflows may be re-
leased at different time instants in dynamic scheduling [18,19,21].
The main objective of multiple DAGs-based workflows schedul-
ing merely reduces the overall schedule length of the system or
individual schedule lengths of workflows. The authors in [20]
considered cost optimization of multiple DAGs-based workflows
using fairness while reducing the DMR of the system. In [21–23],
we studied the problem of reducing the overall schedule length
while significantly reducing the DMR of the system under different
situations. However, to the best of our knowledge, no related
works were reported on energy management for multiple real-
time workflows.

3. Models

Table 1 lists important notations and their definitions used in
this study.

3.1. CPCS architecture

Fig. 1 shows the realization of CPS to CPCS [7]. We can see
that the cyber part was divided into two sub cyber parts: cyber
part on-device and cyber part in-cloud. That is, CPCS now operate
with three key parts constituting and forming their interaction in
physical and cyber world.

Fig. 2 provides the architecture of CPCS based on the description
of [1,5,7,8]. CPCS contain three parts as follows:

(1) The physical part consists of sensors and actuator constel-
lations, and interacts with the physical environments, such as
lighting, temperature, water, and fertilizers.

(2) The cyber part in-cloud provides the XaaS to workflows.
(3) The cyber part on-device contains heterogeneous processors

that execute the workflows.
A workflow processing in CPCS can be described as follows:
(1) A user in physical environments submits the workflow into

the cyber part, and then sensors are responsible for converting the
forms of workflow from continuous data to discrete data.

(2) The cloud receives converteddata fromsensors andprovides
workflow execution service. The cloud determines the workflow
schedule with the forms of task mapping to processors.

(3) The heterogeneous processors execute the workflow based
on the given schedule of the cloud.

(4) The heterogeneous processors finish the workflow execu-
tion and respond emergently to the cloud.

(5) The cloud sends the performing commands to actuators.
(6) The actuators convert the forms of workflow from discrete

to continuous data, and actuate this data to physical environments.
Physical part and cyber part on-device are responsible for con-

version and execution, and the decision on energy management
and meeting real-time constraints of workflows should depend on
the efficient cloud service in cyber part in cloud.

3.2. Workflow model

We let U={u1, u2, . . . , u|U |} represent a set of heterogeneous
processors, where |U | represents the size of set U . This study uses
|X | to denote the size of any set X . Multiple workflows in CPCS
and is denoted as S={G1,G2, . . . ,G|S|}. Similar to most previous
works [17,18,22,23,41–43], this study considers static scheduling
and does not involve dynamic scheduling because the former is a
special case of dynamic scheduling and is also a common practice.
Furthermore, static scheduling is more effective than dynamic
scheduling in design phase because the former can generate pre-
dictable results [22].

A workflow running on processors is represented by a DAG
Gm=(N , W , E, C) [14–16]. Gm represents the mth workflows in
systems.

(1) N represents a set of nodes in Gm, and each node ni ∈ N
represents a task with different execution time values on different
processors. In addition, task executions of a given workflow are
assumed to be non-preemptive which is possible in many sys-
tems [16]. W is a N × U matrix, where wi,k denotes the execution
time of ni running on uk with the maximum frequency [44–46].
pred(ni) represents the set of the immediate predecessor tasks of
ni. succ(ni) represents the set of the immediate successor tasks of
ni. The task that has no predecessor task is denoted as nentry; the
task that has no successor task is denoted as nexit.

(2) E is a set of communication edges, and each edge ei,j rep-
resents the communication message from ni to nj. Accordingly,
ci,j ∈ C represents the communication time of ei,j if ni and nj are not
assigned to the same processor. When tasks ni and nj are allocated
to the same processor, ci,j becomes zero because we assume that
the intra-processor communication cost can be ignored [16].

(3) In distinguishing the ambiguities among different work-
flows,weuseGm.ni to express the task ni ofGm, and other attributes
use the same expression. Let LB(Gm) represent the lower bound of
the workflow, and is the minimum schedule length of workflow
Gm when all tasks are executed on the processors with the maxi-
mum frequencies by using a well-studied DAG-based scheduling
algorithm (e.g., HEFT [44–46]). D(Gm) represents the deadline of
workflow G and should be larger than or equal to LB(G). SL(G)
represents the generated schedule length of Gm.

Fig. 3 shows an example with three workflows of G1, G2, and
G3. Table 2 shows the execution time values of tasks in G1, G2, and
G3 of Fig. 3. The example shows ten, six, and five tasks for G1, G2,
and G3, respectively. This example assumes that three processors
U = {u1, u2, u3} exist. Although the example is simple, it involves
three processors and three workflows. Hence, this example can
reflect the characteristics of multiple DAGs-based workflows on
CPCS. The weight of 18 of the edge between tasks G1.n1 and G1.n2
in Fig. 3(a) represents the communication time G1.c1,2 = 18 when
G1.n1 and G1.n2 are not assigned in the same processor. Theweight
of 14 of G1.n1 and u1 in Table 2(a) represents the execution time
denoted by G1.w1,1 = 14. For simplicity, all units of all parameters
are ignored in the example.

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 919

Table 1
Important notations in this study.

Notation Definition

|X | Size of the set X
Gm.ni Task ni of the workflow Gm
Gm.ci,j Communication time between the tasks ni and nj of the workflow Gm
Gm.wi,k Execution time of the task ni on the processor uk of the workflow Gm
ranku(Gm.ni) Upward rank value of the task Gm.ni
LB(Gm) Lower bound of the workflow Gm
D(Gm) Deadline of the workflow Gm
SL(Gm) Final schedule length of the workflow Gm
L(Gm) Laxity of the workflow Gm
PT (Gm) Priority of the workflow Gm
E(Gm.ni, uk, fk,h) Energy consumption of the task Gm.ni on the processor uk with the

frequency fk,h
E(Gm) Final Energy consumption of the workflow Gm
E(S) Final Energy consumption of CPCS S
DMR(S) Deadline miss ratio of CPCS S
schedulable(S) Schedulable number of the workflows in CPCS S
AFT (Gm.ni) Actual finish time of the task Gm.ni

Fig. 2. Architecture of CPCS.

(a) G1 . (b) G2 . (c) G3 .

Fig. 3. Example of three workflows on CPCS.

3.3. Power and energy models

Considering the linear relationship between voltage and fre-
quency, DVFS decreases the voltage and frequency to save energy.

Similar to [44–46], we use the term frequency change to represent
the process of changing the voltage and frequency simultaneously.
Considering a DVFS-capable system, we also adopt the system-
level power model that is widely used in [44–46], in which the

920 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

Table 2
Execution time matrixes of the workflows in Fig. 3.

(a) Execution time matrix of G1

Tasks G1.n1 G1.n2 G1.n3 G1.n4 G1.n5 G1.n6 G1.n7 G1.n8 G1.n9 G1.n10

u1 14 13 11 13 12 13 7 5 18 21
u2 16 19 13 8 13 16 15 11 12 7
u3 9 18 19 17 10 9 11 14 20 6

ranku 109 78 81 81 70 64 43 7360 45 15

(b) Execution time matrix of G2

Tasks G2.n1 G2.n2 G2.n3 G2.n4 G2.n5 G2.n6

u1 12 9 7 13 18 15
u2 18 15 12 15 10 10
u3 9 11 16 18 20 8

ranku 76 57 55 33 33 11

(c) Execution time matrix of G3

Tasks G3.n1 G3.n2 G3.n3 G3.n4 G3.n5

u1 4 9 18 21 7
u2 5 10 17 15 6
u3 6 11 16 19 5

ranku 62 30 41 34 6

power consumption at frequency f is given by

P(f) = Ps + h(Pind + Pd) = Ps + h(Pind + Ceff m),

where Ps represents the static power that can only be removed
by powering off the whole system. Pind represents frequency-
independent dynamic power that can be removed by putting the
system into the sleep state. Pd represents frequency-dependent dy-
namic power depending on frequencies. h represents system states
and indicates whether dynamic powers are currently consumed in
the system. When the system is active, h = 1; otherwise, h = 0.
Cef represents effective switching capacitance andm represents the
dynamic power exponent that is not less than 2. Both Cef andm are
processor-dependent constants.

In this study, we assume that the system is always turned-on
because turning on/off a system causes an excessive overhead. In
other words, Ps is always consumed and not manageable. Sim-
ilar to [44–46], this study also concentrates on dynamic power
(e.g., Pind and Pd) and ignore the Ps in the calculation. Less Pd does
not result in less energy consumption because of the Pind. That is,
a minimum energy-efficient frequency fee exists [44–46] and it is
denoted as

fee = m

√
Pind

(m− 1)Cef
. (1)

Assuming the frequency of a processor varies from a minimum
available frequency fmin to themaximum frequency fmax, the lowest
frequency to execute a task is flow = max(fmin, fee). Therefore,
any actual effective frequency fh should belong to the scope of
flow ⩽ fh ⩽ fmax.

Considering that the number of processors is |U | in the system
and these processors are completely heterogeneous, each proces-
sor should have individual power parameters. Here, we define
frequency-independent dynamic power set

{P1,ind, P2,ind, . . . , P|U |,ind},

frequency-dependent dynamic power set

{P1,d, P2,d, . . . , P|U |,d},

effective switching capacitance set

{C1,ef, C2,ef, . . . , C|U |,ef},

dynamic power exponent set

{m1,m2, . . . ,m|U |},

Table 3
Power parameters of processors (u1 , u2 , and u3).

uk Pk,ind Ck,ef mk fk,ee fk,max

u1 0.03 0.2 2.3 0.39 1.0
u2 0.12 0.3 2.7 0.59 1.0
u3 0.01 1.4 2.3 0.1 1.0

minimum energy-efficient frequency set

{f1,ee, f2,ee, . . . , f|U |,ee},

and actual effective frequency set⎧⎪⎨⎪⎩
{f1,low, f1,α, f1,β , . . . , f1,max},

{f2,low, f2,α, f2,β , . . . , f2,max},

...,

{f|U |,low, f|U |,α, f|U |,β , . . . , f|U |,max}

⎫⎪⎬⎪⎭ .

We let E(Gm.ni, uk, fk,h) represent the processor energy con-
sumption of the task Gm.ni on the processor uk with frequency fk,h.
This set is calculated by

E(Gm.ni, uk, fk,h) =
(
Pk,ind + Ck,ef × fk,hmk

)
× Gm.wi,k ×

fk,max

fk,h
. (2)

The energy consumption of the workflow Gm is calculated by

E(Gm) =
Gm.|N|∑
i=1

E
(
Gm.ni, upr(m,i), fpr(m,i),hz(m,i)

)
,

whereupr(m,i) and fpr(m,i),hz(m,i) represent the assignedprocessor and
frequency of Gm.ni, respectively. In this study, the overheads of the
frequency transitions are ignored because of the negligible amount
of time (e.g., 10–150 µs [16,40]).

Table 3 shows the power parameters for all the processors of the
examples, where themaximum frequency fk,max for each processor
is 1 and the frequency precision is set as 0.01. For simplicity, all the
units of all parameters are ignored in the example. The minimum
energy-efficient frequency fk,ee can be obtained for each processor
using Eq. (1).

3.4. Lower bound and deadline

HEFT is a well-studied precedence-constrained task scheduling
algorithm for reducing schedule length, which is based on the
DAG model and with low complexity and high performance in

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 921

heterogeneous systems [14]. There are two phases to implement
HEFT.

First, HEFT uses the upward rank value (ranku) of a task given by
Eq. (3) as the common task priority standard, where the tasks are
arranged according to the decreasing order of ranku. Table 2 shows
the upward rank values of all tasks shown in Fig. 3 using Eq. (3):

ranku(Gm.ni) = Gm.wi +maxGm.nj∈succ(Gm.ni){Gm.ci,j
+ ranku(Gm.nj)}, (3)

where Gm.wi represents the average execution time of task Gm.ni
with the maximum frequencies and is calculated by

Gm.wi =

(
|U |∑
k=1

Gm.wi,k

)
/|U |.

Second, the attributes EST (Gm.ni, uk, fk,max) and EFT (Gm.ni, uk,
fk,max) represent the earliest start time (EST) and earliest finish time
(EFT), respectively, of task Gm.ni on processor uk with maximum
frequency fk,max. EFT (Gm.ni, uk, fk,max) is considered the task assign-
ment criterion in HEFT because it can satisfy the local optimal of
each task. The preceding attributes are calculated by⎧⎨⎩EST (Gm.ni, uk, fk,max) = max

{
avail[k],maxGm.nx∈pred(Gm.ni)

×{AFT (Gm.nx)+ Gm.c ′x,i} }
EST (Gm.nentry, uk, fk,max) = 0

(4)

and

EFT (Gm.ni, uk, fk,max) = EST (Gm.ni, uk, fk,max)+ Gm.wi,k. (5)

avail[k] is the earliest available time that processor uk is ready for
task execution, and AFT (Gm.nx) represents the actual finish time
(AFT) of task Gm.nx. Gm.c ′x,i represents the actual communication
time between Gm.nx and Gm.ni. If Gm.nx and Gm.ni are assigned
to the same processor, then Gm.c ′x,i = 0; otherwise, Gm.c ′x,i =
Gm.cx,i. ni is assigned to the processor with the minimum EFT by
using the insertion-based scheduling strategy. ni is inserted into
the slack with the minimum EFT. The insertion-based strategy is
explained as follows: if Gm.ni can be inserted into one of the slacks
of processors, then it is inserted into the slack with the minimum
EFT. EFT is different from AFT because the former is the value
before task assignment, whereas the latter is the value after task
assignment.

Lower bound refers to theminimum schedule length of a work-
flow when all cores are monopolized by the workflow using a
standard single DAG-based workflow scheduling algorithm. HEFT
is a well-studied algorithm with low complexity and high perfor-
mance that can be selected as the standard algorithm to assess the
workflow. HEFT is used as the standard algorithm to explain the
proposed algorithms. Other algorithms can also be easily selected
and used for a simple replacement. The lower bound of the work-
flow Gm is the AFT of Gm.nexit, namely,

SL(Gm) = AFT (Gm.nexit) (6)

where Gm.nexit represents the exit task of Gm. The user specifies a
deadline for each workflow based on the value of the lower bound
after it is obtained.

Fig. 4 shows the Gantt chart of the workflow G1 (Fig. 3(a)) using
the HEFT algorithm. The lower bound is obtained as LB(G1) = 80,
and the deadline is set to D(G1) = 100. The arrows in Fig. 4
represent the generated communication between tasks.

Table 4 lists the properties for each workflow in Fig. 3. The
task priority of each workflow can be obtained according to the
descending order of ranku(Gm.ni). Then, the lower bounds of the
three workflows are as follows: LB(G1) = 80, LB(G2) = 59, and
LB(G3) = 46, respectively. The deadline of the workflow is speci-
fied under the condition D(Gm) > LB(Gm). Finally, the deadlines of
the three workflows are D(G1) = 100, D(G2) = 99, and D(G2) =
106, respectively.

3.5. Problem description

Cloud service providers face the multiple workflow requests,
and they need tomake asmany as possible DAGs completedwithin
their deadlines [20]. We assume that CPCS service providers face
themultipleworkflow requests S={G1,G2, . . . ,G|S|} andwill be ex-
ecuted in heterogeneous multi-processor set U={u1, u2, . . . , u|U |}.
The first objective is to maximizing the number of workflows that
are completed within their deadlines, namely, to minimize the
DMR of CPCS:

DMS(S) =
|S| − schedulable(S)

|S|
, (7)

where schedulable(S) represents the number of workflows that
satisfy their individual deadlines; then, the second objective is
to minimize the energy consumption of the workflows that are
completed within their deadlines:

E(S) =
|S|∑

m=1,SL(Gm)≤D(Gm)

E(Gm)

=

|S|∑
m=1,SL(Gm)≤D(Gm)

(Gm.|N|∑
i=1

E(Gm.ni, upr(m,i), fpr(m,i),hz(m,i))

)
, (8)

for ∀m : 1 ⩽ m ⩽ |S|, ∀i : 1 ⩽ i ⩽ G.|N|, upr(m,i) ∈ U .
If a workflow misses its deadline, this workflow has not been

able to function correctly. In [20], the workflows that exceed their
individual deadlines are abandoned timely to maximize through-
put. In this study, we also merely calculate the energy consump-
tions of workflows that satisfy individual deadlines because a
workflow missing its deadline is meaningless.

4. Proposed energy management algorithms

4.1. Existing DEWTS for single real-time workflow

The state-of-the-art DEWTS algorithm [16] is proposed by
merging several processors together to schedule single workflow
and to minimize its energy consumption while still satisfying its
real-time constraint. The core objective of DEWTS is to gradually
turn off partial processors with low utilization and reassign the
tasks on these turned-off processors to the turned-on processors
until the schedule length exceeds the deadline. Following the pro-
cessor turned-off standards of DEWTS, the processor with a small
number of tasks should be turned off (if two processors have the
same number of tasks, then the processor with low energy con-
sumption is then turned off. The workflow G1 of Fig. 3 is illustrated
to explain the entire process of the DEWTS algorithm.

(1) DEWTS first invokes the HEFT algorithm for all the turned-
on processors (u1, u2, and u3), and the result is similar to that in
Fig. 4. Schedule length SL(G) = 80 is obtained, and the deadline of
the workflow is satisfied.

(2) Considering that the processor u1 has the minimum task
number in Fig. 4, this processor should be turned off in advance.
Next, DEWTS continues to invoke the HEFT algorithm for the left
turned-on processors (u2 and u3), and SL(G) = 98 is obtained
(Fig. 5). In this case, the deadline of theworkflow remains satisfied.

(3) Considering that the processor u2 has the minimum task
number in Fig. 5, it should be turned off. DEWTS continues to
invoke the HEFT algorithm for the left processor u3. The deadline
cannot be satisfied in this case, and the final processor merging is
that in Fig. 5.

(4) Considering that the merging of the processors stops at
Fig. 5, DEWTS invokes the EES algorithm [15] to save energy while
satisfying the deadline of the workflow on u2 and u3 (Fig. 6) by
introducing the concept of latest finish time (LFT). The main idea

922 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

Fig. 4. Scheduling Gantt chart of the G1 using the HEFT algorithm.

Table 4
Properties of tasks and workflows in Fig. 3.

Workflow G1 G2 G3

Task priority G1.n1,G1.n3,G1.n4,

G1.n2,G1.n5,G1.n6 ,
G1.n9,G1.n7,G1.n8,G1.n10

G2.n1,G2.n2,G2.n3,

G2.n4,G2.n5,G2.n6

G3.n1,G3.n3,G3.n4,

G3.n2,G3.n5

LB(Gm) 80 59 46
D(Gm) 100 99 106
L(Gm) 20 40 60
PT (Gm) 1 2 3

of the EES algorithm is that the AFT (Gm.ni) obtained by the HEFT
algorithm can be extended to LFT (Gm.ni) to reclaim slacks between
two adjacent tasks in the same processor. The tasks are operated
in descending order of AFT (Gm.ni) before using EES. LFT (Gm.ni) is
calculated by⎧⎨⎩LFT (Gm.ni) = min

{
minGm.nj∈succ(Gm.ni)

× {AST (Gm.nj)− Gm.c ′i,j}, AST (Gm.ndn(i))
}

LFT (Gm.nexit) = D(Gm)
(9)

where Gm.ndn(i) represents the downward neighbor (DN) task of
Gm.ni on the same processor. For example, we have G1.ndn(9) =

G1.n10 and G1.ndn(5) = G1.n9 (Fig. 6). Therefore, the LFT extension
of Gm.ni is restricted by its downward neighbor. For example, the
AFT of G1.n10, as denoted with shadow, has been extended to 100
and G1.n9, denoted with shadow, has been extended to 91 while
satisfying the real-time constraint (Fig. 6).

4.2. Reusable DEWTS for multiple real-time workflows

We find that DEWTS is reusable for multiple real-time work-
flows because the turned off processors can be turned on again
to schedule the remaining workflows with the same process as
Section 4.1. As mentioned in Section 3.3, considering the excessive
overhead for turning on the processor, we assume processors will
not be turned off but enter the sleep mode such that they can be
waked up immediately when needed in this study.

If we let processors not be turned-off but be in sleepmode, then
these processors can be woken up when needed. Such approach is
called reusable DEWTS. However, we first should determine the
workflow priority to schedule each workflowwhen using reusable
DEWTS.

The following are the two workflow priority standards studied
in existing literature: earliest deadline first (EDF) [47] and least
laxity first (LLT) [48]. EDF means that the less the deadline value,
the higher the priority, whereas LLT means that the less the laxity
value, the higher the priority. The laxity represents the value of the
deadlineminus the lower bound of the workflow, and is calculated
by

L(Gm) = D(Gm)− LB(Gm). (10)

Table 4 shows the laxity of each workflow, namely, L(G1) = 20,
L(G2) = 40, and L(G3) = 60. According to the summary in [20], the

priorities of workflows are based on LLT, namely, the less the laxity
value, the higher the priority. When two workflows have the same
LLT, then the priorities of workflows are based on EDF, namely, the
less the deadline value, the higher the priority. The sameworkflow
prioritizing standard is also used in this study. Each priority is
denoted with a positive integer and the value of 1 represents
the highest priority. Therefore, the priorities of workflows in the
example are PT (G1) = 1, PT (G2) = 2, and PT (G3) = 3, respectively.

Considering that priorities of workflows have been determined,
then G2 is scheduled by reusable DEWTS on all processors (all the
processors in sleep mode are turned on). Finally, G2 can satisfy its
deadline of 99 and the AFT of G.2.n.6, as denoted with shadow, has
been extended to 99 (Fig. 7).

Finally, G3 is also scheduled using reusable DEWTS on all pro-
cessors. However, when assigning G3.n4, its AFT is 115; that is, G3
misses its deadline of 106 using reusable DEWTS (Fig. 8). Therefore,
G3 cannot be scheduled and should be removed.

4.3. Minimizing DMR for multiple real-time workflows

The limitation for reusable DEWTS to schedule multiple real-
time workflows is that DEWTS cannot minimize DMR because
high-priority workflows tend to occupy more processor execution
time to save energy using DVFS, and cause low-priority workflows
has less processor execution time to satisfy their deadlines. For
example, G1 and G2 consume more processor execution time by
extending the AFTs of some tasks to save energy consumption,
such that G3 cannot satisfy its deadline when assigning G3.n4
(Fig. 8). Considering that the first objective is to make as many
as workflows completed within their deadlines, we should solve
this objective without energy saving, such that more workflows
can satisfy their deadlines. On the preceding analysis, the deadline-
driven processor merging for multiple workflows (DPMMW) al-
gorithm is presented to minimize the DMR of CPCS. The detailed
algorithm of DPMMW is described in Algorithm 1.

The core idea of DPMMW is that all the workflows are assigned
their individual priorities based on laxities anddeadlines; DPMMW
iteratively merges processors for each workflow using HEFT until
the deadline of the workflow cannot be satisfied. The main steps
are explained as follows:

(1) In Lines 1–4, DPMMW obtains the lower bound LB(Gm) and
the laxity L(Gm) for each workflow.

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 923

Fig. 5. HEFT-generated scheduling of G1 (yellow colors) on u2 and u3 when u1 is turned off. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. EES-generated scheduling of G1 (yellow colors) on u2 and u3 when u1 is turned off. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. Reusable DEWTS-generated scheduling of G1 (yellow colors) and G2 (blue colors). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. Reusable DEWTS-generated scheduling of G1 (yellow colors) and G2 (blue colors), and G3 (green colors). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(2) In Line 5, DPMMW orders workflows in a list
workflow_priority_list in ascending order of L(Gm) (if two work-
flows have the same laxity, then the workflows are in ascending
order of D(Gm)).

(3) In Lines 7–26, DPMMW iteratively merges processors for
each workflow using HEFT until the deadline of the workflow can-
not be satisfied. In particular, all the processors should be waked
up before the workflow is scheduled in Line 9. Next, DPMMW
let the processor with the minimum number of tasks go to sleep
mode in the iterative process based on HEFT in Line 16. When two
processors have the same number of tasks, then the processors
with lower energy utilization will enter sleep mode.

(4) In Line 27, DPMMW calculates the final DMR(S) of CPCS.

The time complexity of the DPMMW algorithm is analyzed as
follows. All the workflows can be done in O(|S|) time (Line 7).
Invoking theHEFT algorithm should be done inO(|N|2max×|U |) time
(Line 11), where |N|max is equal to |N|max = max{G1.|N|,G2.|N|,
. . .,G|S|.|N|}. Traversing all processors to select one can be done in
O(|U |) time (Line 16). Therefore, the complexity of the DPMMW
algorithm is O(|S| × |N|2max × |U |

2). Considering that the state-of-
the-art DEWTS algorithm entails O(|N|2max×|U |

2), reusable DEWTS
is also O(|S|×|N|2max×|U |

2). Therefore, DPMMWhas the same time
complexity with reusable DEWTS.

Figs. 5 and 9–10 show the Gantt charts in scheduling the moti-
vating example using the DPMMW algorithm.

924 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

Algorithm 1 The DPMMW Algorithm
Input: U = {u1, u2, ..., u|U |}, S = {G1,G2, ...,G|S|}
Output: DMR(S) and related values
1: for (m← 1; m ≤ |S|; m++) do
2: Obtain the lower bound LB(Gm) using the HEFT algorithm;
3: Obtain the laxity L(Gm) using Eq. (10);
4: end for
5: Orderworkflows in a listworkflow_priority_list according to ascending order of L(Gm)

(if two workflows have the same laxity, then the workflows are ordered according to
ascending order of D(Gm));

6: schedulable(S)← 0;
7: while (workflow_priority_list is not null) do
8: Gm ← workflow_priority_list.out();
9: Wake up all the processors;
10: while (true) do
11: Attempt to invoke the HEFT algorithm on all active processors to obtain the

schedule length SL(Gm);
12: if (SL(Gm) ≤ D(Gm)) then
13: Mark Gm as schedulable;
14: schedulable(S)++;
15: Keep the previous HEFT-generated scheduling results;
16: Let the processor (excluding the processors that has been scheduled by

previous workflows) with the minimum number of tasks go to the sleep
mode (if two processors have the same number of tasks, then the processors
with lower energy utilization will go to the sleep mode);

17: if (no processors can go to the sleep mode) then
18: Discard the previous HEFT-generated scheduling of Gm;
19: break;
20: end if
21: else
22: Discard the previous HEFT-generated scheduling of Gm;
23: break;
24: end if
25: end while
26: end while
27: Calculate DMR(S) using Eq. (7);
28: return;

(1) G1 is scheduled first because it has the highest priority.
In this case, the results using DPMMW are equivalent to that
using processor merging-based HEFT (Fig. 5 of Section 4.2, where
SL(G1) = 98, which is less than D(G1) = 100).

(2) Next, G2 has the second highest priority, and it is scheduled
after G1 is finished. The results using DPMMW are shown in Fig. 9,
where SL(G2) = 62, which is less than D(G2) = 99.

(3) Finally,G3 has the lowest priority, and it is scheduled afterG2
is finished. The results using DPMMW are shown in Fig. 10, where
SL(G3) = 91, which is less than D(G2) = 106.

As can be seen, DEWTS can only satisfy the deadlines of two
workflows (Fig. 8), whereas DPMMW can satisfy the deadlines of
all three workflows (Fig. 10).

4.4. Minimizing energy consumption for multiple real-time work-
flows

After the first objective has been solved by using DPMMW
(Algorithm 1), the second objective is to minimize the energy con-
sumption of the workflows that completed within their deadlines
using DVFS. This objective is then solved by reusing EES to save
energy consumption. Because the original EES is merely for single
workflow, we extend it and propose EES for multiple workflows
(EESMW) algorithm. Similar to EES, all the tasks are operated in
descending order of LFT (Gm.ni) of Eq. (9) using EESMW.

Considering that more workflows have been scheduled using
DPMMW than those using reusable DEWTS in solving the first
objective, the energy consumption saving using the EESMW may
be less than those of using reusable DEWTS (Fig. 7) to solve
the second objective. For example, as shown in Fig. 11, many
tasks (denoted with shadows) have extended individual AFTs to
LFTs (calculated by Eq. (9)) in the same processors by invoking
the DPMMW&EESMW algorithm. However, the generated energy
consumption using DPMMW&EESMW reaches 155.8397, which is
larger than 145.8193 using reusable DEWTS.

Based on the results of Fig. 11, reclaiming slack times on the
same processor for each task using EESMW is not energy-efficient
for CPCS with multiple workflows. Using the EESMW algorithm
has a major limitation. That is, only a small part of tasks near
the exit task can be extended to save energy using DVFS on the
same processor (e.g., G1.n10, G3.n5, G3.n4, G1.n9, G2.n6, G2.n5, G1.n5,
and G3.n2 in Fig. 11). In other words, EESMW is a typical local
approach, and more tasks could be optimized by moving them
to other processors using a global approach. In the following, the
global approach is presented in detail.

In [15,16], the LFT is defined (Eq. (9)) on the same processor to
minimize dynamic energy consumption. However, the task may
be moved to another processor and generates less energy con-
sumption without violating the precedence constraints of all the
workflows tasks. Therefore, each task should have individual LFTs
ondifferent processors.Meanwhile, the task can only be inserted to
the processor slacks because such task cannot change the ASTs and
AFTs of other tasks. Therefore, slackk,m,i represents the maximum
slack on the processor uk, in which Gm.ni can be inserted into and
calculate the LFTs of each task on the slacks of different processors:

LFT (Gm.ni, slackk,m,i) = min
{
minGm.nj∈succ(Gm.ni)

×
{
AST (Gm.nj)− Gm.c ′i,j

}
, FT (slackk,m,i)

}
, (11)

where FT (slackk,m,i) represents the finish time of the slack slackk,m,i.
In contrast to Eq. (9), the downward neighbor task of ni on the same
processor is replaced by FT (slackk,m,i) in Eq. (11). The following two
important points should be noted:

(1) All the tasks are operated according to a descending order
of AFT (Gm.ni) obtained using DPMMW. Therefore, the task order
for energy consumption is G1.n10, G3.n5, G3.n4, G1.n8, G1.n9, G1.n7,
G3.n3, G2.n6, G1.n6, G2.n5, G1.n2, G2.n4, G1.n5, G2.n3, G1.n3, G1.n4,
G2.n2, G3.n2, G1.n1 , and G2.n1, G3.n1.

(2) Some processors may have not such slacks for several tasks.
For example, the task G1.n10 cannot be inserted into the slacks of
u1 and u3 (Fig. 10) because of the strict limitation of the precedence
constraints with its predecessors, and the assignments of other
tasks cannot be changed. Finally, G1.n10 extends its LFT from 98
to 100 in u2.

The second optimized task G3.n5 can be inserted on all proces-
sors without violating precedence constraints with its predeces-
sors. In the following, G3.n5 is taken to explain the details of the
global energy consumption optimization process:

(1) The LFTs of G3.n5 on all slacks can be obtained as{LFT (G3.n5, slack1,3,5) = 106
LFT (G3.n5, slack2,3,5) = 106
LFT (G3.n5, slack3,3,5) = 106.

(2) To calculate the possible generated energy consumption in
the slackk,m,i, the EST of Gm.ni on the slackk,m,i should be obtained
as follows:

EST (Gm.ni, slackk,m,i) = max
(
ST (slackk,m,i),maxnx∈pred(Gm.ni)

×
{
AFT (Gm.nx)+ (Gm.c ′x,i)

})
, (12)

where ST (slackk,m,i) represents the start time of the slack slackk,m,i.
The ESTs of G3.n5 on the slacks can be obtained as{EST (G3.n5, slack1,3,5) = 84
EST (G3.n5, slack2,3,5) = 100
EST (G3.n5, slack3,3,5) = 94.

(3) Next, themaximum execution time (MET) for ni on the slack
slackk,m,i is

MET (Gm.ni, slackk,m,i) = LFT (Gm.ni, slackk,m,i)
− EST (Gm.ni, slackk,m,i). (13)

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 925

Fig. 9. DPMMW-generated scheduling of G1 (yellow colors) and G2 (blue colors). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 10. DPMMW-generated scheduling of G1 (yellow colors), and G2 (blue colors), and G3 (green colors). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 11. DPMMW&EESMW-generated scheduling of G1 (yellow colors), and G2 (blue colors), and G3 (green colors). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Therefore, the METs of G3.n5 on all slacks are{MET (G3.n5, slack1,3,5) = 22
MET (G3.n5, slack2,3,5) = 16
MET (G3.n5, slack3,3,5) = 12.

(4) Considering that each processor has the lowest frequency
(fk,low), the upper bound execution time (UBET) of ni on the slack
slackk,m,i is calculated by

UBET (Gm.ni, slackk,m,i) =
fk,max

fk,low
× Gm.wi,k. (14)

Therefore, the UBET of G3.n5 on all slacks are{UBET (G3.n5, slack1,3,5) = 1/0.39× 7 = 17.95
UBET (G3.n5, slack2,3,5) = 1/0.59× 6 = 10.17
UBET (G3.n5, slack3,3,5) = 1/0.1× 5 = 50.

(5) Next, the energy-efficientMET ofGm.ni on the slack slackk,m,i
is calculated by

METee(Gm.ni, slackk,m,i)
= min

{
MET (Gm.ni, slackk,m,i),UBET (Gm.ni, slackk,m,i)

}
. (15)

Therefore, the energy-efficient MET of G3.n5 on all slacks are{METee(G3.n5, slack1,3,5) = min{22, 17.95} = 17.95
METee(G3.n5, slack2,3,5) = min{6, 10.17} = 6
METee(G3.n5, slack3,3,5) = min{12, 50} = 12.

(6) Similarly, the minimum energy-effective frequency of ni on
the slack slackk,m,i is expressed as

fee(Gm.ni, slackk,m,i) =
Gm, wi,k

METee(Gm.ni, slackk,m,i)
× fk,max. (16)

Therefore, we have{fee(G3.n5, slack1,3,5) = 7/17.95× 1 = 0.39
fee(G3.n5, slack2,3,5) = 6/6× 1 = 1
fee(G3.n5, slack3,3,5) = 5/12× 1 = 0.42.

(7) Next, the energy-efficient energy consumption for each
slack is obtained, which is calculated by

Eee(Gm.ni, slackk,m,i) =
(
Pk,ind + Ck,ef × fee(Gm.ni, slackk,m,i)mk

)
×Gm, wi,k ×

fk,max

fee(Gm.ni, slackk,m,i)
. (17)

For example, we have{Eee(G3.n5, slack1,3,5) = 0.9502
Eee(G3.n5, slack2,3,5) = 2.52
Eee(G3.n5, slack3,3,5) = 2.4045.

(8) We select the minimum Eee(Gm.ni, slackk,m,i) of 0.9502 on
the slack slack1,3,5 with frequency 0.39.

(9) Finally, the task Gm.ni is reassigned to the selected slack and
updates the actual AFT and AST of ni as follows:

AFT (Gm.ni) = LFT (Gm.ni, slackk,m,i), (18)

926 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

and

AST (Gm.ni) = LFT (Gm.ni, slackk,m,i)−METee(Gm.ni, slackk,m,i). (19)

On the preceding analysis, the GESMW algorithm is presented
to minimize the energy consumption of CPCS. The detailed algo-
rithm of GESMW is described in Algorithm 2.

Algorithm 2 The GESMW Algorithm
Input: U = {u1, u2, ..., u|U |}, S = {G1,G2, ...,G|S|}, and values generated by DPMMW
Output: E(S) and related values
1: Sort the tasks of all workfows in a list upward_task_list by descending order of

AFT (Gm.ni) values obtained by DPMMW;
2: while (upward_task_list is not null) do
3: Gm.ni ← workflow_priority_list.out();
4: for (each uk ∈ U) do
5: Calculate LFT (Gm, ni, slackk,m,i) using Eq. (11);
6: Calculate EST (Gm, ni, slackk,m,i) using Eq. (12);
7: Calculate UBET (Gm, ni, slackk,m,i) using Eq. (14);
8: Calculate METee(Gm, ni, slackk,m,i) using Eq. (15);
9: Calculate fee(Gm, ni, slackk,m,i) using Eq. (16);
10: Calculate Eee(Gm, ni, slackk,m,i) using Eq. (17);
11: end for
12: Assign Gm.ni to the slackk,m,iwith the minimum Eee(Gm, ni, slackk,m,i);
13: upr(m,i)← uk;
14: fpr(m,i),hz(m,i)← fee(Gm, ni, slackk,m,i);
15: E(Gm, ni, upr(m,i), fpr(m,i),hz(m,i))← Eee(Gm, ni, slackk,m,i)
16: Update AFT (Gm.ni) using Eq. (18);
17: Update AST (Gm.ni) using Eq. (19);
18: end while
19: Calculate E(S) using Eq. (8);
20: return;

Compared with EESMW, the core idea of the GESMW algorithm
is to reassign tasks to any processor with minimum energy con-
sumption while satisfying deadline and precedence constraints.
That is, the scope of reassignment is global but not local, which
can lead to lower energy consumption than EESMW. The details of
GESMW are explained as follows:

(1) In Line 1, GESMW sorts the tasks of all workflows in a
list upward_task_list by descending order of AFT (Gm.ni) values
obtained using DPMMW.

(2) In Lines 2–18, global task reassignment is implemented
based on the analysis in Section 4.4.

(3) In Line 19, the new E(S) is calculated.
The time complexity of the GESMW algorithm is analyzed as

follows. All the tasks should be scheduled, which can be done in
O(|S| × |N|max) time (Line 2). Traversing all processors for calcula-
tion can be done in O(|U |) time (Line 4). Therefore, the complexity
of the GESMWalgorithm is O(|S|×|N|max×|U |). GESMWhas lower
time complexity thanDPMMW, andDPMMWwill occupy themost
of the execution time when combined DPMMW&GESMW is used.

Fig. 12–14 show the Gantt charts of scheduling the motivating
example using the combined DPMMW&GESMW algorithm.

(1) The tasks G1.n10 and G3.n5 extend individual AFTs to LFTs
on fixed processors as denoted with shadows in Fig. 12. Without
moving such tasks to other processors, they consume the min-
imum energy. When reassigning G1.n8, it is moved from u3 to
u2 because Eee

(
G1.n8, slack2,1,8

)
= 3.6144, which is less than

Eee
(
G1.n8, slack3,1,8

)
= 19.74. Furthermore, G1.n8 cannot be in-

serted into the slack of u1.
(2) Considering that G1.n8 has been reassigned to u3 from u2, a

larger slack exists in u3. The following G1.n7 can extend its AFT to
74 on u3 with minimum energy consumption of 7.7575 (Fig. 13).
Furthermore, G2.n6 is moved from u2 to u3 with minimum energy
consumption of 2.7963.

(3) Considering that G2.n6 has been reassigned to u2 from u3, a
larger slack exists in u2, the following G2.n5 can extend its AFT to
62 on u2 with minimum energy consumption of 3.2573 (Fig. 14).
Furthermore, G1.n5 also extends AFT to 45.05 on u2 withminimum
energy consumption of 4.3227. G3.n2 is also optimized in u1.

Finally, the total energy consumption of three workflows is
131.9356, which is less than that using EESMW. A significant
improvement of GESMW algorithm exists by implementing global
task reassignment that can make predecessor tasks consume less
energy and produce a butterfly effect. For example,movingG1.n8 is
useful for G1.n7, and moving G2.n6 is useful for G2.n5 and G1.n5. In
contrast, the EESMW algorithm cannot generate the above effect.

4.5. Summary of algorithms

Table 5 shows the results of the motivating example using
reusable DEWTS, DPMMW&EESMW, and DPMMW&GESMW al-
gorithms. In Table 5, the following can be observed: (1) DP-
MMW&EESMW and DPMMW&GESMW generate equal DMR 0,
which is less than 0.33 generated by reusable DEWTS; (2) DP-
MMW&GESMW has the lowest energy consumption followed by
reusable DEWTS and DPMMW&EESMW; and (3) all the algorithms
have the time complexity of O (|S| × |N|2max × |U |

2).

5. Experiments

5.1. Experimental metrics and workflows

The algorithms compared in the experiments are the reusable
DEWTS, DPMMW&EESMW, and DPMMW&GESMW in this study.
Note that reusable DEWTS is the extension of DEWTS [16] and
EESMW is the extension of EES [15], whereas DPMMW&GESMW
is proposed entirely in this paper. The execution parameter values
are as follows [49]: 10 h ⩽ wi,k ⩽ 100 h, 10 h ⩽ ci,j ⩽ 100 h. The
power parameters are as follows [45,46]: 0.1 ⩽ Pk,s ⩽ 0.5, 0.03
⩽ Pk,ind ⩽ 0.07, 0.8 ⩽ Ck,ef ⩽ 1.2, 2.5 ⩽ mk ⩽ 3.0, and fk,max=1 GHz.
All frequencies are discrete, while the precision is 0.01 GHz. All
workflows are executed on simulated CPCSwith 64 heterogeneous
processors by creating 64 objects using Java; the source code of the
experiments is provided as the supplementary material.

In order to verify the effectiveness and validity of the proposed
algorithms, we use five types of workflows, namely, linear alge-
bra [28], Gaussian elimination [14], diamond graph [28], complete
binary tree [28], and fast Fourier transform [14] to compare the
results of all the algorithms. Fig. 15(a)–(e) show the examples of
linear algebra with the size ρ = 5 and the total number of tasks
|N| = ρ(ρ + 1)/2, the Gaussian elimination with the size ρ = 5
and the total number of tasks |N| = ρ2

+ρ−2
2 , the diamond graph

with the size ρ = 4 and the total number of tasks |N| = ρ2, the
complete binary tree with the size ρ = 5 and the total number of
tasks |N| = 2ρ

−1, the fast Fourier transformwith the size ρ=4 and
the total number of tasks |N| = (2×ρ−1)+ρ×log 2

ρ , respectively.
Multiple entry tasks exist in the linear algebra workflow. We add
a virtual entry task and all the actual entry tasks are set as the
immediate successor tasks of the virtual entry task to adopt the
workflow model of this study. Multiple exit tasks also exist in
the complete binary tree and fast Fourier transform workflows. A
virtual exit task should be added and all the actual exit tasks should
be set as the immediate predecessor tasks of the virtual exit task.

The results for each experiment are actual values by executing
one application. The reason is that experimental resultswith differ-
ent applications in the same scale show approximate equal values.

5.2. Small-scale CPCS with multiple workflows

Experiment 1. This experiment is conducted to compare the
DMR and energy consumption values of small-scale CPCS with
multiple workflows for varying numbers of tasks. A small-scale
CPCS means that the number of tasks for each workflow is roughly
50. In this experiment, the numbers of tasks for linear algebra,
Gaussian elimination, diamond graph, complete binary tree, and

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 927

Fig. 12. DPMMW&GESMW-generated scheduling of G1 (yellow colors). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. DPMMW&GESMW-generated scheduling of G1 (yellow colors) and G2 (blue colors). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. DPMMW&GESMW-generated scheduling of G1 (yellow colors) , G2 (blue colors) and G3 (green colors). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(a) Linear algebra. (b) Gaussian elimination. (c) Diamond graph. (d) Complete binary treet. (e) Fast Fourier trans-
form.

Fig. 15. Five different types of workflows.

Table 5
Results of the motivating example using reusable DEWTS, DPMMW&EESMW, and DPMMW&GESMW.

Reusable DEWTS DPMMW&EESMW DPMMW&GESMW

DMR(S) 0.33 0 0
E(S) 145.8193 155.8397 131.9356
Time complexity O(|S| × |N|2max × |U |

2) O(|S| × |N|2max × |U |
2) O(|S| × |N|2max × |U |

2)

928 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

Fig. 16. DMRs of small-scale CPCS for varying numbers of tasks.

Fig. 17. Energy consumptions (unit: GWh) of small-scale CPCS for varying numbers
of tasks.

fast Fourier transform are 55, 54, 49, 63, and 40, respectively.D(Gm)
is limited to the scope of LB(Gm) = 2 ×LB(Gm). The number of
workflows in CPCS is changed from 10 to 50 with 10 increments.

The DMR and energy consumptions are shown in Figs. 16 and
17, respectively, and the following points are summarized:

(1) DPMMW&EESMW and DPMMW&GESMW can always ob-
tain equal DMRs of 0 in all the cases in Fig. 16. That is, all workflows
can satisfy their individual deadlines in small-scale CPCS.

(2) DPMMW&EESMW and DPMMW&GESMW can always gen-
erate lower or equal DMR than (to) reusable DEWTS in all the
cases in Fig. 16. When the workflow numbers reach or exceed 30,
reusable DEWTS generates high DMRs of 0.15–0.3. Such results
validate that reusable DEWTS occupies additional processor ex-
ecution time to save energy using DVFS and cause low-priority
workflows to hardly satisfy their deadlines.

(3) The energy consumptions generated by DPMMW&GESMW
and reusable DEWTS are intersectant in Fig. 17. When the work-
flow number is less than or equal to 30, DPMMW&GESMW is
superior than reusable DEWTS because they have the same DMRs
0 and the former uses the global task reassignment, which is better
than the local task assignment used by the latter.

(4) When the workflow number is 40, DPMMW&GESMW gen-
erates lower DMR and less energy consumption than reusable
DEWTS (Fig. 17). The result indicates that DPMMW&GESMW does
not necessarily lead to less energy consumption than reusable
DEWTS. The reason is still that the global approach is better than
the local one.

(5) When the workflow number is 50, DPMMW&GESMW gen-
erates higher energy consumption than reusable DEWTS (Fig. 17),

Fig. 18. DMRs of large-scale CPCS for varying numbers of tasks.

Fig. 19. Energy consumptions (unit: GWh) of large-scale CPCS for varying numbers
of tasks.

because more workflows satisfy individual deadlines and are
scheduled using DPMMW&GESMW than using reusable DEWTS
in CPCS. However, the energy consumption generated by DP-
MMW&GESMW remains as low as possible, and it can always
generate less or equal energy consumption thanDPMMW&EESMW
in Fig. 17. When the workflow number is 10, DPMMW&GESMW is
superior to DPMMW&EESMW by 69.85%.

(6) If DPMMW&EESMW has lower DMR than reusable DEWTS,
then reusable DEWTS will have less energy consumption than
DPMMW&EESMW.

5.3. Large-scale CPCS with multiple workflows

Experiment 2. Considering that CPCS are usually large-scale
systems, we are interested in comparing the DMR and energy con-
sumption values of large-scale CPCS with multiple workflows for
varying numbers of tasks. Large-scale CPCS mean that the number
of tasks for each workflow is roughly 1000. In this experiment, the
numbers of tasks for linear algebra, Gaussian elimination, diamond
graph, complete binary tree, and fast Fourier transform are 1081,
1080, 1089, 1023, 1152, respectively. We still limit D(Gm) to the
scope of LB(Gm) = 2 ×LB(Gm). The number of workflows in CPCS
is still changed from 10 to 50 with 10 increments. Figs. 18 and
19 shows the DMRs and energy consumptions of large-scale CPCS,
respectively. In overall, Experiment 2 illustrates the approximate
equal regular pattern as Experiment 1. The main differences are as
follows:

(1) The DMR values are more larger in large-scale CPS (Fig. 18)
than those in small-scale CPS (Fig. 16).

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 929

Fig. 20. DMRs of mixed-scale CPCS for varying numbers of tasks.

Fig. 21. Energy consumptions (unit: GWh) ofmixed-scale CPCS for varying numbers
of tasks.

(2) DPMMW&GESMW always consumes less energy than
reusable DEWTS when the latter generates higher DMRs than
DPMMW&GESMW (Fig. 19). As a large-scale workflow with 1000
tasks will consume roughly 20 times more energy consump-
tion than a large-scale workflow with 50 tasks, lower DMRs for
DPMMW&GESMW will have more large-scale workflows to be
schedule, such that larger energy consumptions are caused. Even
though, global DPMMW&GESMW is always better than local DP-
MMW&EESMW and the energy consumptions generated by DP-
MMW&GESMWare still very as low as possible under lower DMRs.

5.4. Mixed-scale CPCS with multiple workflows

Experiment 3. CPCS aremixed-scale systems inwhich different
scale workflows will be scheduled together. For such reason, the
experiment is conducted to compare the DMR and energy con-
sumption values of mixed-scale CPCS with multiple workflows
for varying numbers of tasks. In mixed-scale CPCS, the numbers
of tasks for linear algebra, Gaussian elimination, diamond graph,
complete binary tree, and fast Fourier transform belong to the
scopes of 55-1081, 54-1080, 49-1089, 63-1023, 40-1152, respec-
tively. D(Gm) is limited to the scope of LB(Gm) = 2×LB(Gm) and the
number of workflows in CPCS is still changed from 10 to 50 with
10 increments.

Figs. 20 and 21 show the DMRs and energy consumptions of
mixed-scale CPCS, respectively. The results show the regular pat-
tern as Experiment 1 and Experiment 2. DMRs and energy con-
sumptions of mixed-scale CPCS are between those of small-scale
and large-scale CPCs. DPMMW&GESMW generate low DMR and

less energy consumption than reusableDEWTSwhen theworkflow
number is 30. That is, the change in mixed-scale CPCS tends to
be small-scale CPCS rather than large-scale CPCS. Therefore, the
proposed DPMMW&GESMW algorithm combined with the results
of five different types of real workflows is effective in reducing
DMR and increasing energy savings for different scale CPCS.

5.5. Summary of experiments

In summary, the reusable DEWTS, DPMMW&EESMW, and DP-
MMW&GESMW algorithms are compared as follows:

(1) DPMMW&EESMW and DPMMW&GESMW can always gen-
erate lower or equal DMR than (to) reusable DEWTS. That is, unlike
reusable DEWTS, DPMMW does not occupy additional processor
execution time to save energy using DVFS and low-priority work-
flows has the opportunity to satisfy their deadlines.

(2) DPMMW&GESMW can always generate less or equal energy
consumption than (to) DPMMW&EESMW.Unlike EESMW,GESMW
does not save energy for tasks merely on fixed processors, but it
reassigns tasks to other processor slacks with minimum energy
consumptions.

(3) Although reusable DEWTS is not efficient than DP-
MMW&GESMW in reducing DMR, the former does not necessarily
lead to less energy consumption than the latter. That is, reusable
DEWTS uses the local energy consumption on the fixed processor
for each task, whereas DPMMW&GESMW uses the global energy
consumption on all possible processors for each task.

6. Conclusions

In this study, we presented DPMMW&GESMW, an effective
energy management algorithm for multiple real-time workflows
on CPCS. First, DPMMW&GESMW implement lower DMRs than
the state-of-the-art algorithm. Second, DPMMW&GESMW can
keep as much as possible energy saving with lower DMRs. DP-
MMW&GESMW could also generate lower DMR and less energy
consumption than the state-of-the-art algorithm in some cases.
In summary, the proposed DPMMW&GESMW algorithm is effec-
tive in reducing DMR and energy saving for different scales of
CPCS. Considering that CPS dynamically interacts with the physical
world and dynamics is the inherent property of CPS, the energy
management of dynamic multiple real-time workflows on CPCS in
response to changes in the physical environments will be studied
in our future work.

Acknowledgments

The authors would like to express their gratitude to the
anonymous reviewers for their constructive comments which
have helped to improve the quality of the paper. This work
was partially supported by the National Key Research and De-
velopment Plan of China under Grant No. 2016YFB0200405, the
National Natural Science Foundation of China with Grant Nos.
61672217, 61432005, 61379115, 61402170, 61370097, 61502162
and 61502405, the CERNET Innovation Project under Grant No.
NGII20161003, and the China Postdoctoral Science Foundation
under Grant No. 2016M592422.

Supplemental material

The web page http://esnl.hnu.edu.cn/index.php/fgcs/ publishes
the experimental codes of the paper.

http://esnl.hnu.edu.cn/index.php/fgcs/

930 G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931

References

[1] NSF, Cyber-physical systems (cps), program solicitation nsf 16-549, 2016,
pp. 1–21. Website. https://www.nsf.gov/pubs/2016/nsf16549/nsf16549.htm.

[2] J. Li, Z. Ning, B. Jedari, F. Xia, I. Lee, A. Tolba, Geo-social distance-based
data dissemination for socially aware networking, IEEE Access 4 (2016)
1444–1453.

[3] G. Xie, G. Zeng, Z. Li, R. Li, K. Li, Adaptive dynamic scheduling on multi-
functional mixed-criticality automotive cyber-physical systems, IEEE Trans.
Veh. Technol. (2017) 1–1.

[4] R. Mitchell, R. Chen, Behavior rule specification-based intrusion detection for
safety critical medical cyber physical systems, IEEE Trans. Dependable Secure
Comput. 12 (1) (2015) 16–30.

[5] H. Ning, H. Liu, J. Ma, L.T. Yang, R. Huang, Cybermatics: Cyber–physical–social–
thinking hyperspace based science and technology, Future Gener. Comput.
Syst. 56 (2016) 504–522.

[6] J. Zeng, L.T. Yang, M. Lin, H. Ning, J. Ma, A survey: Cyber-physical-social
systems and their system-level design methodology, Future Gener. Comput.
Syst. (2016).

[7] S. Karnouskos, A.W. Colombo, T. Bangemann, Trends and challenges for cloud-
based industrial cyber-physical systems, in: Industrial Cloud-Based Cyber-
Physical Systems, Springer, 2014, pp. 231–240.

[8] N.H. Ab Rahman, W.B. Glisson, Y. Yang, K.-K.R. Choo, Forensic-by-design
framework for cyber-physical cloud systems, IEEE Cloud Comput. 3 (1) (2016)
50–59.

[9] Z. Cai, X. Li, J.N. Gupta, Heuristics for provisioning services to workflows in
XaaS Clouds, IEEE Trans. Serv. Comput. 9 (2) (2016) 250–263.

[10] Y. Kong,M. Zhang, D. Ye, A belief propagation-basedmethod for task allocation
in open and dynamic cloud environments, Knowl.-Based Syst. 115 (2017)
123–132. http://dx.doi.org/10.1016/j.knosys.2016.10.016.

[11] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, N. Linge, A speculative approach to spatial-
temporal efficiency with multi-objective optimization in a heterogeneous
cloud environment, Secur. Commun. Netw. 9 (17) (2016) 4002–4012. http:
//dx.doi.org/10.1002/sec.1582.

[12] F. Zhangjie, S. Xingming, L. Qi, Z. Lu, S. Jiangang, Achieving efficient cloud
search services: multi-keyword ranked search over encrypted cloud data
supporting parallel computing, IEICE Trans. Commun. 98 (1) (Jan. 2015)
190–200.

[13] Z. Fu, F. Huang, X. Sun, A. Vasilakos, C.-N. Yang, Enabling semantic search
based on conceptual graphs over encrypted outsourced data, IEEE Trans. Serv.
Comput. (2016) 1–1.

[14] H. Topcuoglu, S. Hariri, M.-y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst.
13 (3) (2002) 260–274.

[15] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, X. Huang, Enhanced energy-efficient
scheduling for parallel applications in cloud, in: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
Ccgrid 2012, IEEE Computer Society, 2012, pp. 781–786.

[16] Z. Tang, L. Qi, Z. Cheng, K. Li, S.U. Khan, K. Li, An energy-efficient task scheduling
algorithm in DVFS-enabled cloud environment, J. Grid Comput. 14 (1) (2016)
55–74.

[17] Z. Yu, W. Shi, A planner-guided scheduling strategy for multiple work-
flow applications, in: 2008 International Conference on Parallel Processing-
Workshops, IEEE, 2008, pp. 1–8.

[18] C.-C. Hsu, K.-C. Huang, F.-J. Wang, Online scheduling of workflow applications
in grid environments, Future Gener. Comput. Syst. 27 (6) (2011) 860–870.

[19] H. Arabnejad, J. Barbosa, Fairness resource sharing for dynamic workflow
scheduling on heterogeneous systems, in: 2012 IEEE 10th International Sym-
posium on Parallel and Distributed Processing with Applications, IEEE, 2012,
pp. 633–639.

[20] W. Wang, Q. Wu, Y. Tan, F. Wu, Maximize throughput scheduling and cost-
fairness optimization for multiple DAGs with deadline constraint, in: Inter-
national Conference on Algorithms and Architectures for Parallel Processing,
Springer, 2015, pp. 621–634.

[21] G. Xie, L. Liu, L. Yang, R. Li, Scheduling trade-off of dynamic multiple parallel
workflows on heterogeneous distributed computing systems, Concurrency
Comput.-Pract. Exp. 29 (8) (2017) 1–18. http://dx.doi.org/10.1002/cpe.3782.

[22] G. Xie, G. Zeng, L. Liu, R. Li, K. Li, High performance real-time scheduling of
multiple mixed-criticality functions in heterogeneous distributed embedded
systems, J. Syst. Archit. 70 (2016) 3–14.

[23] G. Xie, G. Zeng, L. Liu, R. Li, K. Li, Mixed real-time scheduling of multiple DAGs-
based applications on heterogeneous multi-core processors, Microprocess.
Microsyst. 47 (2016) 93–103.

[24] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, J. Wu, Towards energy-efficient schedul-
ing for real-time tasks under uncertain cloud computing environment, J. Syst.
Softw. 99 (2) (2015) 20C35.

[25] X. Zhu, C. He, K. Li, X. Qin, Adaptive energy-efficient scheduling for real-
time tasks on DVS-enabled heterogeneous clusters, J. Parallel Distrib. Comput.
72 (6) (2012) 751–763.

[26] G. Zeng, Y. Matsubara, H. Tomiyama, H. Takada, Energy-aware task migration
for multiprocessor real-time systems, Future Gener. Comput. Syst. 56 (2016)
220–228.

[27] K. Li, Performance analysis of power-aware task scheduling algorithms on
multiprocessor computers with dynamic voltage and speed, IEEE Trans. Paral-
lel Distrib. Syst. 19 (11) (2008) 1484–1497.

[28] K. Li, Scheduling precedence constrained tasks with reduced processor energy
onmultiprocessor computers, IEEE Trans. Comput. 61 (12) (2012) 1668–1681.

[29] K. Li, Power and performancemanagement for parallel computations in clouds
and data centers, J. Comput. System Sci. 82 (2) (2016) 174–190.

[30] K. Li, Energy and time constrained task scheduling onmultiprocessor comput-
ers with discrete speed levels, J. Parallel Distrib. Comput. 95 (2016) 15–28.

[31] Q. Tang, S.K.S. Gupta, G. Varsamopoulos, Energy-efficient thermal-aware task
scheduling for homogeneous high-performance computing data centers: A
cyber-physical approach, IEEE Trans. Parallel Distrib. Syst. 19 (11) (2008)
1458–1472.

[32] L. Parolini, N. Tolia, B. Sinopoli, B.H. Krogh, A cyber-physical systems approach
to energy management in data centers, in: Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, ACM, 2010, pp. 168–177.

[33] L. Parolini, B. Sinopoli, B.H. Krogh, Z.Wang, A cyber–physical systems approach
to data center modeling and control for energy efficiency, Proc. IEEE 100 (1)
(2012) 254–268.

[34] S.K. Gupta, T. Mukherjee, G. Varsamopoulos, A. Banerjee, Research directions
in energy-sustainable cyber–physical systems, Sustainable Comput.: Inform.
Syst. 1 (1) (2011) 57–74.

[35] M. Lin, Y. Pan, L.T. Yang, M. Guo, N. Zheng, Scheduling co-design for reliability
and energy in cyber-physical systems, IEEE Trans. Emerg. Top. Comput. 1 (2)
(2013) 353–365.

[36] A.Y. Saber, G.K. Venayagamoorthy, Efficient utilization of renewable energy
sources by gridable vehicles in cyber-physical energy systems, IEEE Syst. J. 4 (3)
(2010) 285–294.

[37] P. Palensky, E. Widl, A. Elsheikh, Simulating cyber-physical energy systems:
challenges, tools and methods, IEEE Trans. Syst. Man Cybern.: Syst. 44 (3)
(2014) 318–326.

[38] J. Kleissl, Y. Agarwal, Cyber-physical energy systems: focus on smart build-
ings, in: Proceedings of the 47th Design Automation Conference, ACM, 2010,
pp. 749–754.

[39] Z. Zong, A. Manzanares, X. Ruan, X. Qin, EAD and PEBD: two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous clusters,
IEEE Trans. Comput. 60 (3) (2011) 360–374.

[40] Y.C. Lee, A.Y. Zomaya, Energy conscious scheduling for distributed computing
systems under different operating conditions, IEEE Trans. Parallel Distrib. Syst.
22 (8) (2011) 1374–1381.

[41] U. Hönig, W. Schiffmann, A meta-algorithm for scheduling multiple DAGs in
homogeneous systemenvironments, in: Proceedings of the Eighteenth IASTED
International Conference on Parallel and Distributed Computing and Systems,
PDCS06, 2006.

[42] H. Zhao, R. Sakellariou, Scheduling multiple DAGs onto heterogeneous sys-
tems, in: Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium, IEEE, 2006, p. 14.

[43] L.F. Bittencourt, E.R. Madeira, Towards the scheduling of multiple workflows
on computational grids, J. Grid. Comput. 8 (3) (2010) 419–441.

[44] D. Zhu, H. Aydin, Reliability-aware energy management for periodic real-time
tasks, IEEE Trans. Comput. 58 (10) (2009) 1382–1397.

[45] B. Zhao, H. Aydin, D. Zhu, On maximizing reliability of real-time embedded
applications under hard energy constraint, IEEE Trans. Ind. Inf. 6 (3) (2010)
316–328.

[46] B. Zhao, H. Aydin, D. Zhu, Shared recovery for energy efficiency and reliability
enhancements in real-time applications with precedence constraints, ACM
Trans. Des. Autom. Electron. Syst. 18 (2) (2013) 23.

[47] T.P. Baker, An analysis of EDF schedulability on a multiprocessor, IEEE Trans.
Parallel Distrib. Syst. 16 (8) (2005) 760–768.

[48] G.L. Stavrinides, H.D. Karatza, Scheduling real-time DAGs in heterogeneous
clusters by combining imprecise computations and bin packing techniques for
the exploitation of schedule holes, Future Gener. Comput. Syst. 28 (7) (2012)
977–988.

[49] M.W. Convolbo, J. Chou, Cost-aware DAG scheduling algorithms for minimiz-
ing execution cost on cloud resources, J. Supercomput. 72 (3) (2016) 985–1012.

Guoqi Xie received his Ph.D. degree in computer science
and engineering from Hunan University, China, in 2014.
He was a Postdoctoral Researcher at Nagoya University,
Japan, from 2014 to 2015. Since 2015 he is working as a
Postdoctoral Researcher at Hunan University, China. He
has received the best paper award from ISPA 2016. His
major interests include embedded and real-time systems,
parallel and distributed systems, software engineering
and methodology. He is a member of IEEE, ACM, and CCF.

https://www.nsf.gov/pubs/2016/nsf16549/nsf16549.htm
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb2
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb2
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb2
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb2
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb2
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb3
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb3
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb3
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb3
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb3
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb4
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb4
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb4
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb4
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb4
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb5
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb5
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb5
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb5
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb5
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb6
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb6
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb6
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb6
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb6
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb7
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb7
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb7
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb7
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb7
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb8
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb8
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb8
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb8
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb8
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb9
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb9
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb9
http://dx.doi.org/10.1016/j.knosys.2016.10.016
http://dx.doi.org/10.1002/sec.1582
http://dx.doi.org/10.1002/sec.1582
http://dx.doi.org/10.1002/sec.1582
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb12
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb13
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb13
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb13
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb13
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb13
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb14
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb14
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb14
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb14
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb14
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb15
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb16
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb16
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb16
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb16
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb16
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb17
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb17
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb17
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb17
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb17
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb18
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb18
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb18
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb19
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb20
http://dx.doi.org/10.1002/cpe.3782
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb22
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb22
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb22
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb22
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb22
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb23
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb23
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb23
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb23
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb23
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb24
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb24
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb24
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb24
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb24
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb25
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb25
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb25
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb25
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb25
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb26
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb26
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb26
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb26
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb26
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb27
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb27
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb27
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb27
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb27
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb28
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb28
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb28
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb29
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb29
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb29
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb30
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb30
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb30
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb31
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb32
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb32
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb32
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb32
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb32
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb33
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb33
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb33
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb33
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb33
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb34
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb34
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb34
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb34
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb34
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb35
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb35
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb35
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb35
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb35
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb36
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb36
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb36
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb36
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb36
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb37
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb37
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb37
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb37
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb37
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb38
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb38
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb38
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb38
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb38
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb39
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb39
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb39
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb39
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb39
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb40
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb40
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb40
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb40
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb40
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb41
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb42
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb42
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb42
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb42
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb42
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb43
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb43
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb43
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb44
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb44
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb44
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb45
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb45
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb45
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb45
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb45
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb46
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb46
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb46
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb46
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb46
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb47
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb47
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb47
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb48
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb49
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb49
http://refhub.elsevier.com/S0167-739X(17)31066-X/sb49

G. Xie, G. Zeng, J. Jiang et al. / Future Generation Computer Systems 105 (2020) 916–931 931

GangZeng is anAssociate Professor at theGraduate School
of Engineering, Nagoya University. He received his Ph.D.
degree in Information Science from Chiba University in
2006. From 2006 to 2010, he was a Researcher, and then
Assistant Professor at the Center for Embedded Comput-
ing Systems (NCES), the Graduate School of Information
Science, Nagoya University. His research interests mainly
include power-aware computing and real-time embedded
system design. He is a member of IEEE and IPSJ.

Junqiang Jiang is currently working toward the Ph.D.
degree at Hunan University, China. His research inter-
ests include scheduling in parallel and distributed sys-
tems scheduling, real-time scheduling and energy-aware
scheduling.

Chunnian Fan received her Ph.D. degree in computer
science from Nanjing University in 2011. Her research
interests include parallel and distributed system, pattern
recognition and image processing.

Renfa Li is a Professor of computer science and electronic
engineering, and the Dean of College of Computer Science
and Electronic Engineering, Hunan University, China. He
is the Director of the Key Laboratory for Embedded and
Network Computing of Hunan Province, China. His ma-
jor interests include computer architectures, embedded
computing systems, cyber–physical systems, and Internet
of things. He is a member of the council of CCF, a senior
member of IEEE, and a senior member of ACM.

Keqin Li is a SUNY Distinguished Professor of computer
science. His current research interests include parallel
computing and high-performance computing, distributed
computing, energy-efficient computing and communica-
tion, heterogeneous computing systems, cloud comput-
ing, big data computing, CPU–GPU hybrid and cooper-
ative computing, multicore computing, storage and file
systems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile com-
puting, service computing, Internet of things and cyber–
physical systems. He has published over 475 journal ar-

ticles, book chapters, and refereed conference papers, and has received several
best paper awards. He is currently or has served on the editorial boards of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, IEEE Transactions on Services Computing,
Journal of Parallel and Distributed Computing. He is an IEEE Fellow.

	Energy management for multiple real-time workflows on cyber–physical cloud systems
	Introduction
	Background
	Motivations
	Our contributions

	Related works
	Models
	CPCS architecture
	Workflow model
	Power and energy models
	Lower bound and deadline
	Problem description

	Proposed energy management algorithms
	Existing DEWTS for single real-time workflow
	Reusable DEWTS for multiple real-time workflows
	Minimizing DMR for multiple real-time workflows
	Minimizing energy consumption for multiple real-time workflows
	Summary of algorithms

	Experiments
	Experimental metrics and workflows
	Small-scale CPCS with multiple workflows
	Large-scale CPCS with multiple workflows
	Mixed-scale CPCS with multiple workflows
	Summary of experiments

	Conclusions
	Acknowledgments
	References

