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SUMMARY

An optimized parallel algorithm is proposed to solve the problem occurred in the process of complicated
backward substitution of cyclic reduction during solving tridiagonal linear systems. Adopting a hybrid par-
allel model, this algorithm combines the cyclic reduction method and the partition method. This hybrid
algorithm has simple backward substitution on parallel computers comparing with the cyclic reduction
method. In this paper, the operation count and execution time are obtained to evaluate and make compar-
ison for these methods. On the basis of results of these measured parameters, the hybrid algorithm using
the hybrid approach with a multi-threading implementation achieves better efficiency than the other parallel
methods, that is, the cyclic reduction and the partition methods. In particular, the approach involved in this
paper has the least scalar operation count and the shortest execution time on a multi-core computer when the
size of equations meets some dimension threshold. The hybrid parallel algorithm improves the performance
of the cyclic reduction and partition methods by 19.2% and 13.2%, respectively. In addition, by comparing
the single-iteration and multi-iteration hybrid parallel algorithms, it is found that increasing iteration steps
of the cyclic reduction method does not affect the performance of the hybrid parallel algorithm very much.
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1. INTRODUCTION

1.1. Background

A tridiagonal system of linear equations is represented by the form Ax D d , with possibly tridi-
agonal coefficient matrix A, a column vector of multiple lines x, and multiple right-hand sides d .
Solving a tridiagonal system of linear equations is an integral and important part of many engi-
neering applications and programs for scientific computation [1]. The applications of tridiagonal
solvers include cubic spline approximations, alternating direction implicit method, and real-time or
interactive applications in computer graphics, video games, animation films [2], and so on. With
the recent development and availability of various parallel, vector, and super computers, sequen-
tial algorithms based on divide-and-conquer approaches were subsequently proposed, and these
formed the foundations of a large number of researches on parallel tridiagonal solvers. Fast solvers
become especially critical to running time performance for tridiagonal system. A better under-
standing of the performance is propelled by the need for scalable and fast parallel solvers of the
tridiagonal equations.
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In the past, several direct and iterative methods have been proposed for this problem. The iter-
ative methods [3, 4] are mainly Jacobi’s method, Gauss-Seidel, and successive overrelaxation.
The direct methods include Thomas algorithm [5] and several parallel methods. Although the
Thomas algorithm is the fastest algorithm on a serial computer, it is not directly and completely
parallelizable because each step of this algorithm depends on the preceding one [6]. The present
paper will describe several parallel tridiagonal solvers and present a new hybrid parallel algorithm
for the tridiagonal systems.

1.2. Related research

The KLU (Clark Kent LU) algorithm, one method in existing numerical libraries, was proposed
by Ekanathan Palamadai [7]. KLU is a sparse high-performance linear solver that employs hybrid
ordering mechanisms and elegant factorization and solve algorithms. It achieves high quality fill-in
rate and beats many existing solvers in run time, when used for matrices arising in circuit simulation.
But KLU is a fast serial algorithm.

Research into parallelization strategies of tridiagonal solvers continues to be an active area of
exploration. The Thomas algorithm, a specific Gaussian elimination method, is one of the first algo-
rithms considered for tridiagonal linear system. This algorithm can be completed in two distinct
steps, forward elimination and backward substitution. The first step consists of ‘removing the coef-
ficients under the diagonal, and then this leaves the new system with the coefficient matrix of two
diagonals. The second step is to exploit backward sweep eliminating for the new system in order to
calculate the solution.

Part of the Thomas algorithm can also be parallelized. T.M. Edison and G. Erlebacher [8]
transformed a sequential Thomas algorithm into the parallel, chained, load-balanced algorithm.
Lambiotte and Voigt [3] presented the cyclic reduction method on the CDC STAR-100 computer.
The cyclic reduction method implemented on GPU [9] is also one divide-and-conquer algorithm
[10, 11]. In this approach, all the odd-indexed unknowns are eliminated while the even-indexed ones
are left. Then, we can get half of the previous system of equations but with the same tridiagonal
structure [12]. Finally, the odd-indexed unknowns in the reduced tridiagonal systems are recursively
eliminated until only a minimal number of equations that can be directly solved are reached. The
results of this trivial system are then recursively back-substituted to realize the full solution of the
tridiagonal systems [13].

Stone first reported the recursive doubling method [14, 15]. In this algorithm, an LU [16] decom-
position of the tridiagonal matrix A is carried out so that Ax D LUx D L´ D y where Ux D ´.
This algorithm consists of two primary steps. In a forward sweep, the system L´ D y is solved
followed by a backward sweep solving Ux D ´ [13]. Parallel extensions of the recurrence rela-
tionships that are used in the forward and backward sweeps of the recursive doubling algorithm use
the recursive doubling form, in which each recursion relationship is expressed in the light of two
functions that are each half as complex [6]. In addition, Zhang et al. [2] reported the parallel cyclic
reduction and hybrid algorithms containing hybrid parallel cyclic reduction and hybrid recursive
doubling algorithms.

The parallel partition method, another example of a divide-and-conquer algorithm, was first
developed by Wang [1]. With this algorithm, the tridiagonal matrix A is first partitioned into a
suitable number of sub-matrices. Then we do eliminations simultaneously for each of the sub-
matrices until the coefficient matrix A is diagonalized [10]. Rozloznik et al. [17] presented
a symmetric tridiagonalization algorithm. This algorithm effectively exploits high-performance
level-3 Basic Linear Algebra Subprograms routines and could be as efficient as symmetric
block-diagonalization.

Besides tridiagonal solvers, block tridiagonal solvers based on cyclic reduction and parallel cyclic
reduction are particularly amenable to efficient and scalable parallelization [13, 18]. The recursive
doubling method is developed for parallel computers and supercomputers such as the Illiac IV [19]
consisting of multi-processors. The cyclic reduction method, the partition method, and other parallel
algorithms can also be implemented efficiently on parallel computers. Among these methods, the
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cyclic reduction method is previously found to be the most effective on a vector computer [20],
and the partition method is unlikely to be more efficient than the cyclic reduction unless the size of
tridiagonal systems is much larger than the partition size and the thread count.

1.3. Contribution

In this work, we present a new parallel algorithm of solving the tridiagonal linear systems. We
combine the cyclic reduction method and the partition method and propose a new hybrid method as
the hybrid parallel algorithm. This new method simplifies the backward substitution of the cyclic
reduction method, so it can realize better performance than other related algorithms. The detailed
realization of this algorithm can be partitioned to three steps.

Step 1: The tridiagonal system of equations is reduced to half size of the previous one by one or
more iterations of the cyclic reduction method.

Step 2: We can then solve the half one with the partition method until each even-indexed
unknown is worked out.

Step 3: The third step is backward substitution that is to plug the resolved parameters into the
primitive tridiagonal system of equations to work out the other unknowns by Thomas
algorithm.

To further research the performance of this hybrid parallel algorithm, several added iterations
of the cyclic reduction algorithm are performed in contrast to the single-iteration hybrid parallel
algorithm. By computing the operation counts, the vector operation counts and scalar operation
counts, we compare these parallel algorithms in this paper. Note that there is different efficiency
for each method with different operating condition. On the multi-threading implementation [21]
involved in this paper, the hybrid algorithm achieves better efficiency than the other parallel methods
and has the least scalar operation count and the shortest execution time on a multi-core computer
when the size of an equation meets some dimension threshold.

1.4. Paper organization

The rest of the paper is organized as follows. Section 2 discusses three different algorithms for
tridiagonal solvers, that is, Thomas algorithm, the cyclic reduction, and partition methods. Section 3
presents the new hybrid parallel algorithm based on iterations of the cyclic reduction method. In
Section 4, we compare these three parallel algorithms by contrasting the operation counts; followed
by Section 5 in which the real experimental results are presented for the solver executed on a parallel
machine with multi-core nodes. We conclude and predict the future work in Section 6.

2. THREE TRIDIAGONAL SOLVERS

A tridiagonal system of n linear equations of the form Ax D d is described in Eq. (1):

Ax �

0
BBBBBB@

a1 b1
c2 a2 b2
c3 a3 b3
: : :

: : :
: : :

cn�1 an�1 bn�1
cn an

1
CCCCCCA

0
BBBBBB@

x1
x2
x3
:::

xn�1
xn

1
CCCCCCA
D d; (1)

where A is a tridiagonal coefficient matrix and d is a column vectors with n lines.
For solving such a system of equations, except some iterative methods such as Jacobi’s method,

Gauss-Seidel, and successive overrelaxation, we mainly consider Thomas algorithm and other par-
allel algorithms. Although the iterative methods are general algorithms for serial computers, they are
inappropriate for parallel computers. These iterative methods usually cost more time and become
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less efficient. Especially, the successive overrelaxation method relates to choose a relaxation fac-
tor determining the performance of this method, but it is difficult to select a good one. While using
parallel algorithms, we can receive efficient results on a multi-core computers [23–25]. Next, we
discuss several direct parallel methods to solve the tridiagonal linear system.

2.1. Thomas algorithm

The Thomas algorithm is a classic algorithm to solve the tridiagonal system and is a simplified form
of Gaussian elimination in the tridiagonal system of equations case [26]. The tridiagonal system can
be written as

cixi�1 C aixi C bixiC1 D di ; i D 1; 2; : : : ; n;

where c1 D 0 and bn D 0. This algorithm consists of two phases [1], forward elimination for
eliminating the coefficient ci and backward-substitution elimination for producing the solution. In
the first step, we eliminate the lower diagonal by

b
0

1 D
b1

a1
; a1 D 1; b

0

i D
bi

ai � b
0

i�1ci
; ai D 1; i D 2; 3; : : : ; n � 1;

d
0

1 D
d1

a1
; d
0

i D
di � d

0

i�1ci

ai � b
0

i�1ci
; i D 2; 3; : : : ; n:

The second step is aimed at solving all unknowns from last to first by the following:

xn D d
0

n=an; xi D d
0

i � d
0

i xiC1:

The algorithm is simple and easy to comprehend but inherently serial and takes O.n/ computa-
tion steps, because the subsequent calculation depends on the result of the immediately preceding
calculation. Furthermore, this algorithm can be unstable when the denominator ai � d

0

i�1ci is zero
or numerically zero. So we must consider other conditions or methods attached to this algorithm. In
the following subsections, we present two parallel algorithms for this tridiagonal system, the cyclic
reduction and partition methods. The two algorithms can take fewer steps and accommodate more
efficient implementation on parallel computers.

2.2. Cyclic reduction

The cyclic reduction algorithm was proposed by Roger Hockney [27] and is one of the first imple-
mented algorithms on Graphic Processing Unit. Cyclic reduction is a divide-and-conquer algorithm
and mainly has two phases, forward reduction and backward substitution. After a forward reduction,
all the odd-indexed unknowns are eliminated while the even-indexed ones are left. Then, we can get
half the size of the previous system of equations but with the same tridiagonal structure. The odd-
indexed unknowns in the reduced system of equations are then recursively eliminated until a system
of two unknowns is reached. The two equations can be directly solved. For backward substitution,
we plug the previously solved values into the sub-matrix from last to first and obtain the solution of
the rest unknowns in the equations.

Same as the Thomas algorithm, we consider a tridiagonal linear system Ax D d . This tridiagonal
system can be written in the form cixi�1 C aixi C bixiC1 D di .i D 1; 2; : : : ; n/, defining x0 D
xnC1 D 0, c1 D bn D 0. We present three consecutive equations of the system as follows:

0
@
c2i�1 a2i�1 b2i�1

c2i a2i b2i
c2iC1 a2iC1 b2iC1

1
A x D

0
@
d2i�1
d2i
d2iC1

1
A ; (2)

where x D .x2i�2; x2i�1; x2i ; x2iC1; x2iC2/
T . We eliminate x2i�1 and x2iC1 by multiplying

.2i � 1/th equation with c2i .a2i�1/�1, .2i C 1/th equation with �b2i .a2iC1/�1 and add these to

.2i/th equation. After that, we obtain the result of the .2i/th equation:
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�
c
0

2i 0 a
0

2i 0 b
0

2i

�
x D d

0

2i : (3)

After eliminating all odd-indexed unknowns x2i�1 for each i from 1 to n=2, the result is a new
tridiagonal system of linear equations in Eq. (4):

A1X1 �

0
BBBB@

a2 b2
c4 a4 b4
: : :

: : :
: : :

cn�2 an�2 bn�2
cn an

1
CCCCA

0
BBBB@

x2
x4
:::

xn�2
xn

1
CCCCA
D D1: (4)

For the sake of simplicity, we diagrammatize the solving process of this tridiagonal system.
Figure 1 shows the communication pattern of the algorithm. This figure can be partitioned into two
portions. The upper half portion of the algorithm is forward reduction, and the lower half portion is
backward substitution. We describe the cyclic reduction with several steps as follows.

1. Every three adjacent equations, the middle equation of which is .2i/th equality, are regarded
as a group. So the system can be separated into n=2 groups as shown in (2).

2. Repeat the operations of Step 1 until system (4) reduces to a minimal system containing only
two equations. Solve the minimal equations from Step 2 by Thomas elimination.

3. From the bottom-up, put the two resolved parameters back into the previous system to solve
other unknowns.

Based on the description of the cyclic reduction algorithm, the cyclic reduction procedure is
presented in Algorithm 1. In this approach, the forward reduction can be executed more easily
than backward substitution. We use a simple and direct method, Thomas algorithm, to solve the

Figure 1. The solving process of the cyclic reduction for the tridiagonal system containing equations labeled
Eq.1 to Eq.n. The segments in the boxes represent equations with unknowns, and the segments in the circles

represent equations with the resolved variables.
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Algorithm 1 : Cyclic Reduction Algorithm
Input:

A tridiagonal matrix A and a right-hand column
Output:

The solution of the tridiagonal systems and running time
Begin

1: Initialize the variables x0; xnC1  0; c1; bn  0

2: for i D 1 to .n=2 � 1/ simultaneously do
3: e2i�1  c2i=a2i�1, e2iC1  b2i=a2iC1, c2i  .�c2i�1 �e2i�1/, b2i  .�b2iC1 �e2iC1/,

a2i  .a2i � b2i�1 � e2i�1 � c2iC1 � e2iC1/, d2i  .d2i � d2i�1 � e2i�1 � d2iC1 � e2iC1/
4: end for
5: if i D n=2 then
6: e2i�1  c2i=a2i�1, c2i  .�c2i�1 � e2i�1/, a2i  .a2i � b2i�1 � e2i�1/,

d2i  .d2i � d2i�1 � e2i�1/
7: end if
8: Repeat the operations for the equations obtained in above step with cyclic reduction until the

system reaches a system of two unknowns
9: Solve the two-unknown system

10: Backward substitution solves the rest two unknowns
11: Backward substitution solves the rest four unknowns
12: Following on, until work out all the rest unknowns
13: Return the solution X
End

unknowns in the process of backward substitution. On a parallel computer with multi-processors, the
Thomas algorithm requires O.n/ steps while the cyclic reduction algorithm only requires O.logn/
steps for the whole solving process.

2.3. Partition algorithm

The partition method was first proposed by Wang [1]. This algorithm is based on divide-and-conquer
and is different from other parallel methods because it solves the tridiagonal system by block matri-
ces. A tridiagonal system is first partitioned into block tridiagonal form, after which elimination
can proceed simultaneously on all sub-matrices by elementary row transformations until finally the
coefficients matrix A is diagonalized. The partition method roughly consists of three phases. We
eliminate the coefficients under the main diagonal of main blocks, followed by the coefficients above
the diagonal of main blocks. Then we eliminate the fill-ins created in the aforementioned process of
elimination until the matrix A is diagonalized. During the process of elimination, we have included
the right-hand-side computation (the process of computation for the right-side of the equations)
along with the elimination.

The partition procedure is presented in Algorithm 2 in detail. There are mainly two critical issues
with this technique that need to be mentioned. First, this algorithm is a parallel procedure, so there
are different execution results when choosing diverse parallel patterns. Second, the selection of the
partition size p is crucial to the operating efficiency. The partition method requires O.

p
n/ steps

on a parallel computer with n processors. We describe the four functions involved in the partition
algorithm as follows.

ELIMC: It eliminates the elements cs under the diagonal of main diagonal blocks from top to
bottom and produces the new data set element values. During the elimination, it creates the nonzero
elements fs called ‘fill-ins’ in the (ik)th columns. In ELIMC(ik C j ), the subscripts of the matrix
elements can be represented as the form of ik C j .

ELIMB: It eliminates the elements bs above the diagonal of main diagonal blocks from the
bottom-up and also produces the new data set element values. During the process of elimination, it
also creates the nonzero elements gs in the (ik)th columns. ELIMB(ik C j � 1) and ELIMB(ik)
represent the elimination way with the elements of different subscripts.
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ELIMF: It eliminates the elements fs under the diagonal of the new matrix from top to bottom.
In ELIMF(ik C j ), the parallel operations occur within the blocks.

ELIMG: It eliminates the elements gs above the diagonal of the new matrix from the bottom-up.
Each block also performs the parallel operations solely in ELIMG(ik C j � 1).

Algorithm 2 : Partition Method Algorithm
Input:

A tridiagonal matrix A and a right-hand column
Output:

The solution of the tridiagonal systems and running time
Begin

1: Partition the matrix A into a p � p block tridiagonal form and each block is a k � k tridiagonal
matrix

2: Initialize d0, gi (i D 0 to p), fi (i D 1 to k) and fikC1(i D 0 to p � 1) simultaneously
3: for j D 2 to k do
4: for each i D 0 to p � 1 simultaneously do
5: ELIMC(ik C j ), and produce the new data set element values fs
6: end for
7: end for
8: for j D k � 1 to 2 do
9: for each i D 0 to p � 1 do

10: ELIMB(ik C j � 1), and produce the new data set element values gs
11: end for
12: end for
13: for each i D 1 to p � 1 simultaneously do
14: ELIMB(ik), and produce the new data set element values gk; g2k; : : : ; gn�k
15: end for
16: for i D 1 to p � 1 do
17: for each j D 1 to k simultaneously do
18: ELIMF(ik C j )
19: end for
20: end for
21: for i D p � 1 to 0 do
22: for each j D 1 to k simultaneously do
23: ELIMG(ik C j � 1)
24: end for
25: end for
26: for each i D 1 to n do
27: xi D di=ai
28: end for
29: Return the solution X
End

3. A HYBRID PARALLEL ALGORITHM

We will use the cyclic reduction and partition methods as basic building blocks and propose a hybrid
parallel algorithm, because the cyclic reduction has complicated backward substitution. The hybrid
parallel algorithm actually contains two algorithms. We first use the cyclic reduction to reduce the
tridiagonal system to a new tridiagonal systems. Next, we solve the reduced tridiagonal systems
with the partition method. For the remaining systems, we finally solve these equations with Thomas
algorithm. Figure 2 presents the execution process of the hybrid parallel algorithm and the associa-
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Figure 2. The three steps of the hybrid parallel algorithm.

Figure 3. Tridiagonal coefficient matrix A1 after elimination with the cyclic reduction method.

tion of three steps. The hybrid parallel algorithm overcomes the complicated backward substitution
and makes the parallelism easier and more efficient. The following two sections will present the
hybrid parallel algorithm-based iterations in detail.

3.1. Single-iteration hybrid parallel algorithm

In the forward reduction of the cyclic reduction algorithm, one iteration or multiple iterations can
be chosen to execute. For one iteration of the cyclic reduction, the hybrid parallel algorithm can be
outlined as follows.

1. Halve the system by the cyclic reduction method. As the description of the cyclic reduction,
the system can be separated into n=2 groups as shown in (2). A new .2i/th equation can
be obtained; by that, we eliminate the unknown x2i�1 of .2i/th equality using .2i � 1/th
and .2i/th equations, and the unknown x2iC1 of .2i/th equality using .2i C 1/th and .2i/th
equations as shown in (3). After eliminating the odd-indexed elements with the cyclic reduc-
tion method, it leaves us a new system with n=2 equations only containing the unknowns
whose subscripts are even as shown in (4).

2. Solve the new half system left in Step 1 by partition algorithm. As described in partition
algorithm, partition the matrixA1 into a p�p block tridiagonal form and each block is a k�k
matrix as shown in Figure 3. The right column D1 is synchronously divided into p blocks,
and each has k rows.

3. Eliminate the elements under the diagonal of main diagonal blocks. First eliminate
c4; ckC4; : : : ; cn�kC4 simultaneously, then eliminate c6; ckC6; : : :, cn�kC6 simultaneously,
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and finally eliminate ck; c2k; : : : ; cn simultaneously. The matrix is now upper triangular except
for (ik)th .i D 1; 2; : : : ; p � 1/ columns that create the ‘fill-ins’ fs .

4. Eliminate the elements above the diagonal of main diagonal blocks. First eliminate
bk�4; b2k�4; : : : ; bn�4 simultaneously, then bk�6; b2k�6; : : : ; bn�6 simultaneously, and finally
b2; bkC2; : : : ; bn�kC2 followed by bk; b2k; : : : ; bn�k simultaneously. It leaves us with a
diagonal matrix except for (ik)th .i D 1; 2; : : : ; p � 1/ columns that create the gs .

5. Eliminate the elements under the diagonal of the new matrix. The coefficient matrix can
then be triangulated by the elimination of fkC2; : : : ; f2k�2; f2k simultaneously, followed by
f2kC2; : : : ; f3k�2; f3k , and finally fn�kC2; : : : ; fn�2; fn simultaneously. This process cre-
ates no ‘fill-ins’. Then, we eliminate the elements under the diagonal in the new matrix.
The coefficient matrix can be diagonalized by the elimination of gn�2; : : : ; gn�kC2; gn�k
simultaneously and so on, followed by g2k�2; : : : ; gkC2; gk , and finally gk�2; : : : ; g4; g2
simultaneously. This process creates no ‘fill-ins’.

6. Solve the even-indexed unknowns easily. The last step leaves us with a diagonal matrix, in
which the main diagonal elements are nonzero and others are zeroes. In Figure 4, the under-
lined elements have been solved, and they can be used to solve other unknowns by combining
the corresponding coefficients.

7. Put the resolved values x2i .i D 1; 2; : : : ; n=2/ back into the system to solve other unknowns.
Choosing all the equations .2i �1/th, we simplify the n=2 equations as shown in Figure 4 and
get a new system in which the coefficient matrix only contains odd-indexed elements.

8. Solve the new diagonal system by Thomas algorithm.
9. Integrate the solved values that are reached in partition algorithm and Thomas algorithm and

obtain the solution of the initial system.

Algorithm 3 presents the procedure of the single-iteration hybrid parallel algorithm. This algo-
rithm requires O.

p
n/ steps on a parallel computer with n processors and can achieve better

efficiency. Similarly, the computation of parallel patterns and the selection of the partition size p are
crucial to the operating efficiency because an appropriate p can largely shorten the operating steps
and runtime in paralleling process. Based on the functions discussed in the partition algorithm, we
describe other three main functions involved in the hybrid parallel algorithm as follows.

EXECUTE_1: It halves the tridiagonal system by the cyclic reduction method. We use Step 1 of
the cyclic reduction to produce a new tridiagonal system of n=2 equations only
containing the even index unknowns.

EXECUTE_2: It continues to further simplify the new tridiagonal system of n=2 equations by
the partition method. This function mainly consists of four subfunctions from
partition algorithm and eliminates the elements outside the leading diagonal until
the coefficient matrix changes into a diagonal matrix.

EXECUTE_3: It solves all the remaining unknowns. After solving the unknowns of the new
tridiagonal system, we can obtain the solution of the other half of unknowns by
Thomas algorithm. The computational formula has the form

Figure 4. Coefficient matrix after backward substitution with the partition method.
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Algorithm 3 : Single-iteration Hybrid Parallel Algorithm
Input:

A tridiagonal matrix A and a right-hand column
Output:

The solution of the tridiagonal systems and running time
Begin

1: Initialize the variables x0; xnC1  0; c1; bn  0.
Assign the original ai ; bi ; ci ; di to four new arrays ui ; vi ; wi ; li

2: for j D 1 to n=2 simultaneously do
3: EXECUTE_1(cyclic reduction, 2j )
4: end for
5: Partition the matrix A1 into p � p block tridiagonal form, and each block is a k � k tridiagonal

matrix
6: Initialize d0, gi (i D 0 to p), gik�2(i D 1 to p), f2i (i D 1 to k=2), and fikC2(i D 0 to p � 1)

simultaneously
7: Execute the elimination of the secondary diagonal elements in parallel
8: EXECUTE_2(partition algorithm, ik C 2j ) {

ELIMC(ik C 2j )
ELIMB(ik C 2j � 2 )
ELIMB(ik)
ELIMF(ik C 2j )
ELIMG(ik C 2j � 2 ) }

9: for each i D 1 to n simultaneously do
10: xi D di=ai
11: end for
12: Return the solution X1
13: Backward substitution solves all the unknowns
14: for i D 1 to n=2 simultaneously do
15: EXECUTE_3(2i � 1)
16: end for
17: Return the solution X2
18: Combine the solution X1 and X2, and return the whole solution X
End

x2i�1 D l2i�1 � w2i�1 � x2i�2 � v2i�1 � x2i=u2i�1;

i D 1; 2; : : : ; n=2:

It is observed that this process of backward substitution is superior to the one of the cyclic
reduction method.

3.2. Multi-iteration hybrid parallel algorithm

We have described the single-iteration hybrid parallel algorithm in detail. To verify whether the
hybrid parallel algorithm is suitable for more cases, we add iterations of the cyclic reduction method
before executing the partition method. For multiple iterations, the forward reduction of the cyclic
reduction method must perform two or more steps. The problem size of the reduced tridiagonal
systems, which will be solved by the partition method, becomes smaller accordingly. The differ-
ence between multi-iteration hybrid algorithm and single-iteration hybrid algorithm mainly is the
number of times that the cyclic reduction is executed before executing the partition algorithm. The
multi-iteration hybrid algorithm further decreases the tridiagonal system size by the cyclic reduc-
tion before the partition method executed and adds backward substitutions of the cyclic reduction
algorithm after the partition method and Thomas algorithm.

Algorithm 4 presents the description for multi-iteration hybrid parallel algorithm. In this
algorithm, the parallel operations of the cyclic reduction and partition methods are similar to
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Algorithm 4 : Multi-iterations Hybrid Parallel Algorithm
Input:

A tridiagonal matrix A and a right-hand column
Output:

The solution of the tridiagonal systems and running time
Begin

1: Initialize and assign these related variables
2: Reduce the tridiagonal systems of equations to a new systems Anewxnew D dnew with two or

multiple iterations of the cyclic reduction method.
3: Simplify the new equations Anewxnew D dnew by the partition method until this xnew can be

solved.
4: Backward substitution solves the tridiagonal systems whose problem size is twice of
Anewxnew D dnew as size by Thomas algorithm.

5: Perform one or more backward substitutions of the cyclic reduction method until getting the
solution of all unknowns.

6: Return the solution X of the tridiagonal systems.
End

Algorithm 3. This algorithm also requires O.
p
n/ steps on a parallel computer with n processors.

In the new systems Anewxnew D dnew , Anew is still a tridiagonal matrix. The dimension of the
tridiagonal matrix Anew is n=4 after two iterations of the cyclic reduction. Accordingly, the dimen-
sion of the matrix Anew is n=8 after three iterations of the cyclic reduction, and this number will be
n=2m after m iterations. The multi-iteration hybrid algorithm needs m � 1 backward substitutions
of the cyclic reduction method when this algorithm has m iterations of the cyclic reduction method.

4. OPERATION COUNTS

The criterion measuring an algorithm contains many aspects. The operation counts, which are indis-
pensable when measuring the performance of an algorithm, include vector operation counts for
parallel vector processing and scalar operation counts for the total operation steps. When implement-
ing an algorithm on a parallel computer with enough cores or an unlimited number of processors, the
vector operation counts are the only condition to be concerned. However, on machines with M pro-
cessors that are not enough for parallelization, we must take the scalar operation counts (the length
of each vector operation) into account. When computing the vector operation counts, we can calcu-
late through primarily two parts, left-side computation (the process of computation for the left side
of the equations) and right-side computation (the process of computation for the right side of the
equations), except for dividing operations within some algorithms. We now give arithmetic counts
for both vector and scalar operations.

In following tables, we note M as the expression of multiplication, A as the expression of addition,
D as the expression of division, and L as the expression of length. The size of the tridiagonal system
is n, and this number meets the condition n D 2m where m is a positive integer. Table I presents the
vector operation count of each step and the total number of vector operations for the cyclic reduction.
Operation counts for right-side computation are listed separately. The total of vector operations for
the cyclic reduction algorithm is 18 log2 n � 4.

Table II presents the vector operation counts of the partition method. To implement the algorithm
on a parallel computer, we should ensure that the number of processors is at least equal to max
(p; k). The notes are same as that of Table I. We assume that data are stored according to their natural
ordering. The coefficient matrix is partitioned into p�p blocks, and each block is k � k submatrix.
These tridiagonal coefficients are stored in consecutive memory locations [28]. And all the elements
of the operand vectors are spaced k-words apart in memory or in consecutive memory locations.
Then we do the same elimination operations on the similar locations for each block. During the
elimination, we need to operate both the left-side computations and right-side computations. From
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Table I. Operation counts of the cyclic reduction method.

Divide Length Left-side computation Right-side computation

Forward reduction .n D 2m/

Step1 3 .n=2/-2 4M+2A 2M+2A
1 3M+2A 2M+2A

(L = n=2) 1 2M+1A 1M+1A
Step2 3 .n=22/-2 4M+2A 2M+2A

1 3M+2A 2M+2A
(L = n=22) 1 2M+1A 1M+1A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Step(log2 n � 1) 3 0

1 3M+2A 2M+2A
(L = 2) 1 2M+1A 1M+1A
Step(log2 n) 1 1M+1A 1M+1A

1 1M
(L = 2) 1 2M+1A

Backward Substitution (two unknowns solved)

Step(mC 1) 2 2M+1A
Step(mC 2) 2 2M+1A

2 3M+2A
Step(mC 3) 2 2M+1A

6 3M+2A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Step(2m � 1) 2 2M+1A

(n=2)-2 3M+2A

Total of vector for forward reduction (3D+4M+2A)m-3M-1A (2M+2A)m+2M
Total of vector for backward substitution 0 (3M+2A)m-1M-1A

Total of vector operations for this algorithm 18m � 4 D 18 log2 n � 4

Table II. Operation counts of the partition method .n D pk/.

Divide Length Left-side computation Right-side computation

Step1
Step2 k � 1 p .k � 1/(1M+1A) .k � 1/(1M+1A)

p � 1 .k � 1/M
Step3 k � 2 p .k � 2/M .k � 2/(1M+1A)

1 p � 1 kM+.k � 1/A 1M+1A
Step4 p � 1 k .p � 1/(1M+1A) .p � 1/(1M+1A)
Step5 p � 1 k .p � 1/(1M+1A)

1 k � 1 1M+1A
Step6 1 n 1M

Total of 2k C 2p � 2 .4k C p � 5/M .2k C 2p � 2/M
vector counts C.2k C p � 3/A C.2k C 2p � 3/A

Total number of vector for this method 12k C 8p � 15

this table, the total number of vector operations for the partition algorithm is 2kC 8p � 15, and the
minimum of which is 19:6

p
n � 15 when k D

p
2n=3 Š 0:8

p
n and p D 1:25

p
n.

The vector operation counts and steps of the single-iteration hybrid parallel algorithm are pre-
sented in Table III. Considering the detailed description for operation counts of the cyclic reduction
and partition methods, we leave out some detailed description for the single-iteration hybrid paral-
lel algorithm operation counts in Table III. After the cyclic reduction method, we solve the reduced
tridiagonal system by the partition method, then by Thomas algorithm for backward substitution.
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Table III. Operation counts of the single-iteration hybrid parallel algorithm.

Divide Length Left-side computation Right-side computation

Cyclic reduction - first .n D 2m/

Step 1 3 .n=2/ � 2 4M+2A 2M+2A
1 3M+2A 2M+2A

(L = n=2) 1 2M+1A 1M+1A

Partition method - then .pk D n=2/

Step 2 p � k

Total of vector for 2k C 2p � 2 .4k C p � 5/M+ .2k C 2p � 2/M+
partition method .2k C p � 3/A .2k C 2p � 3/A

Thomas algorithm - last (Backward substitution)

Step 3 1 2M+1A
n=2 � 1 3M+2A

Total of vector operation counts 8k C 4p � 2 4k C 4p C 4

Total of vector for this hybrid algorithm 12k C 8p C 2 (which is at a minimum when k D
p
n=3)

Table IV. Vector operation counts .n D kp; n=2 D k1p1/.

Methods Left-side computation Right-side computation Total of computation

Cyclic reduction 9 log2 n � 4 9 log2 n 18 log2 n � 4
Partition method 4p C 8k � 10 4p C 4k � 5 8p C 12k � 15
Hybrid algorithm 4p1 C 8k1 � 2 4p1 C 4k1 C 4 8p1 C 12k1 C 2

Table V. Scalar operation counts .n D kp; n=2 D k1p1/.

Methods Left-side computation Right-side computation Total of computation

Cyclic reduction 9n � 10 log2 n � 6 9n � 12 log2 n 18n � 22 log2 n � 6
Partition method 12n � 8p � 6k 9n � 4p � 2k � 4 21n � 12p � 8k � 4
Hybrid algorithm 9n � 8p1 � 6k1 � 1 6:5n � 4p1 � 2k1 � 6 15:5n � 12p1 � 8k1 � 7

when using the partition method to compute the reduced system, one of the most remarkable things
is p � k D n=2 rather than p � k D n. We assume that m is a positive integer and n is a power
of 2. From this table, the total number of vector operation counts for the single-iteration hybrid par-
allel algorithm is 12k C 8p C 2, and its least value is 8

p
3n C 2 when k D

p
n=3 Š 0:58

p
n

and p D
p
3n.

Tables IV and V summarize the computations of these three algorithms. Table IV presents the
total of vector operation counts of the algorithms, and Table V presents the scalar operation counts
that are summations of operations in each step. On vector computers, both vector and scalar counts
are important. When the vector lengths become large, the vector counts become less significant.
In the tables, the left-side computations are obtained via the summation of left-side computations,
respectively, and the corresponding length in the aforementioned three tables. From the formulas
in the table, we can distill that the single-iteration hybrid parallel algorithm is most efficient as
far as the total number of vector counts when n is small. If n is slightly larger, the total num-
ber of vector counts of the cyclic reduction algorithm is the smallest, and this algorithm may be
the fastest regardless of the scalar counts. If considering the scalar counts, Table V shows that
the single-iteration hybrid parallel algorithm is the most efficient than other two algorithms, and
the partition method may be the worst when n is larger. With respect to computational complex-
ity, although these three algorithms are O.n/, the single-iteration hybrid parallel algorithm can be
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the fastest method because its coefficient is minimum. Figure 5 shows the comparison of the vec-
tor counts and scalar counts between three algorithms. When selecting different partition size p,
the total number of vector counts or scalar counts for the partition algorithm and single-iteration
hybrid parallel algorithm are not the same. Although based on the vector counts, the cyclic reduc-
tion seems to be the best, the scalar counts largely determine the superiority of algorithms in
this work.

The aforementioned tables and Figure 5 present detailed description for the single-iteration hybrid
parallel algorithm compared with two other parallel methods. The multi-iteration hybrid parallel
algorithm is different from the single-iteration hybrid algorithm. Considering that the scalar counts
are main influence factors for algorithms in the following work, we summarize only the scalar oper-
ation counts of this hybrid algorithm with different iterations in Table VI. With multiple iterations,
the multi-iteration hybrid algorithm has less left-side computations, more right-side computations,
and smaller total number of the scalar counts. If the cyclic reduction method makes t iterations,
the total number of scalar counts for multi-iteration hybrid parallel algorithm can be computed by
the formula

SH .t/ D 15nC
n

2t
� 12pt � 8kt � 7t;

where SH .t/ is the total number of scalar counts, n is the problem size of the tridiagonal systems,
and ptkt D n=2t .

Though multiple iterations of the cyclic reduction decrease the total scalar counts, the decreased
range is narrow. It is obvious that this number of the total scalar counts is always about 15n.
The other factors we must consider are that the pt and kt become smaller when t becomes

Figure 5. Comparison of three algorithms with vector and scalar operation counts. CR, cyclic reduction;
PM4, partition method with p D 4; PM8, partition method with p D 8; PM16, partition method with
p D 16; H4, the single-iteration hybrid parallel algorithm with p D 4; H8, the single-iteration hybrid

parallel algorithm with p D 8; H16, the single-iteration hybrid parallel algorithm with p D 16.

Table VI. Scalar operation counts of multi-iteration hybrid algorithm (n D kp; n=2t D ptkt ; t D 2; 3; 4; 5).

Iterations Left-side computation Right-side computation Total numbers of scalar counts

Two-iterations 7:50n � 8p2 � 6k2 � 2 7:75n � 4p2 � 2k2 � 12 15:25n � 12p2 � 8k2 � 14
Three-iterations 6:75n � 8p3 � 6k3 � 3 8:38n � 4p3 � 2k3 � 18 15:13n � 12p3 � 8k3 � 21
Four-iterations 6:38n � 8p4 � 6k4 � 4 8:69n � 4p4 � 2k4 � 24 15:06n � 12p4 � 8k4 � 28
Five-iterations 6:19n � 8p5 � 6k5 � 5 8:84n � 4p5 � 2k5 � 30 15:03n � 12p5 � 8k5 � 35
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larger. Hence, an excess of iterations of the cyclic reduction has little impact on the efficiency of
the multi-iteration hybrid parallel algorithm. For five iterations, the total scalar counts SH .t/ is
15:03n � 12p5 � 8k5 � 35, which is not more than 15:03n � 2

p
3n � 35.

5. EXPERIMENTAL RESULTS

The following test environment has been used for all benchmarks. Most experiments are tested on
a computer with two Intel Xeon Core E5506 CPUs (Santa Clara, CA, USA) running at 2.13 GHz
and 8 GB of main memory. Each CPU has four cores. The test machine runs the Ubuntu 12.10
Linux 64 bit Operating System (London, UK). In order to show whether the hybrid parallel algo-
rithm is generally more effective than the cyclic reduction and partition methods, we choose three
different p values for testing. All the evaluation results are an average of 20 times under the same
parameter settings.

OpenMP is designed to support portable implementation of parallel programs for shared memory
multiprocessor architectures. It is a set of compiler directives and callable runtime library routines
that extend C and C++ to express shared memory parallelism. It provides an incremental path for
parallel conversion of any existing software, as well as targeting at scalability and performance
for a complete rewrite or entirely new software. OpenMP is simpler than traditional Multi Point
Interface (MPI) in writing parallel programs, because OpenMP uses multi-threading, which spends
less time than MPI of using multi-process. Therefore, we implement these three parallel algorithms
based on OpenMP.

Table VII shows the experimental data obtained through repeated experiments with an approx-
imate average evaluation. These experiments are realized on the computer with eight processors
used synchronously.

The KLU algorithm, a fast serial algorithm, has better computational efficiency than three parallel
algorithms when the problem size is less than 211. However, the runtime of the KLU algorithm
increases rapidly as doubling the tridiagonal system size continuously. The speedup of the parallel
algorithms to the KLU algorithm increases to ten times or more when the size is 215, and this
figure reaches more than 20 times when the size is 219. Communication scheduling of the parallel
algorithms takes up part of the processing and elapsed time, and this scheduling time changes little as
the problem size increasing. So the parallel algorithms take more time than the KLU algorithm when
solving the smaller tridiagonal system, while take less time than the KLU algorithm when solving
larger tridiagonal systems. Considering that three parallel algorithms have much better efficiency
than the KLU algorithm, the following will only compare three parallel algorithms.

We can see that the single-iteration hybrid parallel algorithm is the fastest. The cyclic reduction
costs more running time than the partition method when n is small, and less running time when n
is larger than 212. From Table VII, several clear observations can be made. Although the single-
iteration hybrid parallel algorithm is not always the optimal method in the process of the entire
experiment, it can achieve better efficiency than the cyclic reduction and partition methods when the

Table VII. Runtime of three parallel algorithms and KLU algorithm in milliseconds.

n 28 29 210 211 212 213

Cyclic reduction 0.8556 0.9446 0.9552 1.1113 1.1971 1.4346
Partition method 0.8072 0.9262 0.9460 1.0052 1.2429 1.7158
Single-iteration 0.8814 0.9544 1.0815 1.1744 1.3235 1.4664
KLU algorithm 0.3556 0.4980 0.9204 1.8605 3.9901 8.1618

n 214 215 216 217 218 219

Cyclic reduction 1.9680 3.0720 5.1283 9.0811 17.2163 34.2585
Partition method 2.0243 2.7670 4.8543 8.7215 15.8901 31.9008
Single-iteration 1.7833 2.5507 4.5027 7.8140 14.4503 27.6950
KLU algorithm 16.561 32.793 66.515 140.27 302.806 612.439
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Figure 6. Performance comparison of three algorithms for different problem sizes with same partition size
p D 8 on eight cores computer. H, the single-iteration hybrid parallel algorithm.

Figure 7. Performance comparison of three algorithms for different problem sizes with same partition size
p D 4. Four threads are used to dispose the parallel computation synchronously.

size of the tridiagonal systems meets some dimension threshold. Especially, the larger the tridiago-
nal system size is, the more obvious the efficiency of the single-iteration hybrid parallel algorithm
becomes. While the problem size is less than the 212, the execution time of three parallel algo-
rithms is close for each system size, and the addition of the problem size usually only increases its
execution time marginally.

In order to facilitate performance comparison of these algorithms, we select different p values
and describe the performance by a scatter line chart for each different partition size p. Because
the scale of changes is small when the problem size is less than 213, we choose the problem size
above the 213 to describe the runtime clearly on broken line graph. Figure 6 shows the performance
comparison between three solvers of tridiagonal system with p D 8. The single-iteration hybrid
parallel algorithm improves the performance of the cyclic reduction and partition methods by 19.2%
and 13.2%, respectively. Figure 7 shows the performance comparison of these solvers for different
problem sizes with p D 4. In the experiment, we use four threads synchronously to solve the parallel
computation. From this figure, we can see that the runtime is generally more than one of Figure 6 for
the same problem size. The hybrid algorithm also improves the performance of other two parallel
methods by 17.2% and 12.5%, respectively. Figure 8 shows the comparison of three solvers with
p D 2. In the process with double threads, the performance principle is the same as the four-thread
solver. The runtime is accordingly more than one of Figure 7 with four threads. The performance
of the cyclic reduction and partition methods are improved by 15.0% and 13.2%, respectively. So
we find that when p changes from small to large for the same problem size, the execution time of
the solvers decreases correspondingly. The execution time no longer shortens until an appropriate
p reaches.
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Figure 8. Performance comparison of three algorithms for different problem sizes with same partition size
p D 2. Only two threads are used to dispose the parallel computation synchronously.

Figure 9. Performance comparison of three algorithms for different problem sizes with different partition
size p D 4 or p D 2 on only four cores computer. That means four or two threads are used to dispose the

parallel computation synchronously.

Figure 9 presents the performance results on other test platforms. This test computer is equipped
with one AMD Athlon(tm) II 620 CPU (four cores) (Sunnyvale, CA, USA) running at 2.60 GHz
and 4 GB memory. Its software environment is same as the preceding test computer. In the only four
cores computer, four threads can be used to parallel computing synchronously. So we test these three
parallel algorithms under two different partition sizes p D 4 and p D 2. The single-iteration hybrid
parallel algorithm improves the performance of the cyclic reduction and partition methods by 20.1%
and 15.4%, respectively, when p D 4. Accordingly, the values are improved by 22.5% and 14.7%,
respectively, when p D 2. In Figures 7–9, the partition method has the shorter runtime than the
cyclic reduction method. The single-iteration hybrid algorithm always executes the shortest runtime.
From aforementioned figures, we can conclude that the single-iteration hybrid parallel algorithm is
optimal than the cyclic reduction and partition methods.

To verify whether the hybrid parallel algorithm is suitable for more cases, we try multiple iter-
ations of the cyclic reduction method under the same p value. We choose two to five iterations to
experiment on two Intel Xeon Core CPUs. Also the different p values are used as factors assess-
ing the multi-iteration of the cyclic reduction method. Figure 10 presents five different iterations
of multi-iteration hybrid parallel algorithm for six diverse system sizes of the tridiagonal equations
with p D 8. Each broken line represents one to five-iterations hybrid parallel algorithm under the
same system size. The right box of this figure shows the tridiagonal system sizes that are the n
power of two. Such as the problem size is n D 214 when exponentD14. In this figure, when the
problem size is n D 219, the runtime of hybrid parallel algorithms is close to 27.7 milliseconds.
Figure 11 also presents five different iterations for six diverse tridiagonal system sizes with p D 4.
This indicates that only four threads are used synchronously on CPU. Figure 11 shows that runtime
of hybrid parallel algorithms is close to 33.5 milliseconds while the problem size is n D 219. From
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Figure 10. Runtime comparison of multi-iteration hybrid parallel algorithm with eight threads. The right
section shows the tridiagonal system size, and ‘exponent = 14’ means that this size is 214 and so on.

Figure 11. Runtime comparison of multi-iteration hybrid parallel algorithm with only four threads used
synchronously. The right section shows the tridiagonal system size, and ‘exponent = 14’ means that its value

is 214 and so on.

Figures 10 and 11, we can easily observe two obvious characteristics. With the iteration step of
the cyclic reduction method, the increased runtime is larger as the problem size increases. For same
tridiagonal system size, the runtime of the hybrid parallel methods fluctuates within a small scope
in the vicinity of a certain value. So the increase of iteration steps of the cyclic reduction method
has little effect on the performance of the hybrid parallel algorithms.

So far, we have compared and analyzed all three tridiagonal solvers with multi-thread technol-
ogy. By doing so, we have revealed the limitations and advantages of each algorithm. In order to
further improve the performance, we use hybrid approach by combining the benefits of the cyclic
reduction and partition methods. We also discover that the theoretical peak computing power is hard
to reach because of various factors including not only divisions, bank conflicts, synchronizations,
and time to access shared memory but also its internal pay, the load, the locality, and the pay of
thread synchronization.

6. CONCLUSIONS AND FUTURE WORK

In this work, we mainly present four algorithms for solving the tridiagonal linear system. The direct
methods considered in the paper are Thomas algorithm, the cyclic reduction, and partition methods.
In particular, we have proposed the hybrid parallel algorithm that is suitable for both parallel and
vector computers for solving a tridiagonal system of linear equations in this paper. Although the
hybrid parallel algorithm may have slightly higher vector operation counts than the cyclic reduc-
tion, it has the least scalar operation counts. In this paper, we show how the hybrid solution achieves
better performance with multi-threading programming technology. The main work is to study the
execution times of these algorithms ignoring the computation error generated in the process of elim-
ination and solving. From our several groups of experiments, we conclude that the hybrid parallel
algorithm can be superior to the two competing algorithms. By comparing the single-iteration and
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multi-iteration hybrid parallel algorithms, it is obvious that increasing iteration steps of the cyclic
reduction method has little effect on the performance of the hybrid parallel algorithms. Restricted by
the environment, we do not have parallel computers with plenty of cores to implement these parallel
algorithms and cannot get higher efficiency of execution on a multi-core computers.

We plan to expand the study to include the effects of multi-threading parameters in the analysis
as well as caching influences. The cost of transmitting a floating point number is assumed to be
a constant in this analysis but actually is a variable in multi-core architectures. This study also
proposes several directions for future research: (1) generalize the hybrid parallel algorithm for block
tridiagonal matrices; (2) implement this hybrid algorithm on the platform of graphic processing unit
with multi-core CPU; and (3) further improve the efficiency of execution on other parallel computers
and supercomputers.
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