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Traffic flow prediction is crucial for public safety and traffic management, and remains a big challenge be-

cause of many complicated factors, e.g., multiple spatio-temporal dependencies, holidays, and weather. Some

work leveraged 2D convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) to

explore spatial relations and temporal relations, respectively, which outperformed the classical approaches.

However, it is hard for these work to model spatio-temporal relations jointly. To tackle this, some studies

utilized LSTMs to connect high-level layers of CNNs, but left the spatio-temporal correlations not fully ex-

ploited in low-level layers. In this work, we propose novel spatio-temporal CNNs to extract spatio-temporal

features simultaneously from low-level to high-level layers, and propose a novel gated scheme to control

the spatio-temporal features that should be propagated through the hierarchy of layers. Based on these,

we propose an end-to-end framework, multiple gated spatio-temporal CNNs (MGSTC), for citywide traffic

flow prediction. MGSTC can explore multiple spatio-temporal dependencies through multiple gated spatio-

temporal CNN branches, and combine the spatio-temporal features with external factors dynamically. Exten-

sive experiments on two real traffic datasets demonstrates that MGSTC outperforms other state-of-the-art

baselines.
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1 INTRODUCTION

Traffic flow prediction is crucial for traffic management, environmental pollution, and public safety
[23], and is a vital part in the domain of intelligent transportation system (ITS) [60]. As more traffic
data of vehicles are collected from Global Positioning System (GPS) devices [44], traffic cameras
[26], mobile devices [56], and traditional road sensors [32], the problem is being more complex and
voluminous. Robust traffic prediction models are demanded to handle complexity of massive traffic
data, consider spatio-temporal correlations of traffic information to predict traffic conditions for
the near future.

The latest report from United Nations [39] states that, more than 55% of the world’s population
lives in city areas in 2017. As the urban population grows, this figure is expected to grow to 68%
by 2050 [39]. Therefore, many cities, such as New York and Beijing, are facing many different
pressures and challenges, among which traffic congestion is one of serious problems, resulting in
low car speeds, long traveling, waiting time, and so on. Recently, many researchers attempt to
leverage machine learning based methods to forecast traffic flows in cities [51, 56]. In these work,
a city is first divided into many regions. The inflow and outflow of a region are the total traffic
of crowds that have entered the region and the total traffic of crowds that have left the region,
respectively. The future traffic flows of each region then are predicted based on the past traffic
flows in the city.

Predicting the traffic flow of every region in a city is very challenging and affected by the fol-
lowing important factors.

Spatial dependencies. The inflow of one region, i.e., ri , in a city would be affected by the nearby
outflows as well as that of distant regions. The nearby regions are the neighbors that are either
adjacent or near to ri and distant regions otherwise. Similarly, the outflow of ri can affect other
regions in the city, and the inflow of ri would affect its own outflow as well.

Multiple temporal dependencies. The inflow, outflow of ri would be affected by the intervals of
short, middle, and long term. For instance, the traffic congestion of ri occurring at 6pm will affect
the traffic condition of the same region at the following time, i.e., 7 pm. One of the rush hours
of workdays, i.e., from Monday to Friday, is normally between 8 am and 9am in cities. It is easily
observed that the rush hour patterns repeat among workdays.

External factors. The traffic flows of different regions in a city would be tremendously affected by
external factors, such as traffic accidents, weather conditions, holidays, and other special events.

Many studies leveraged traditional machine learning methods for traffic prediction, e.g., k-
nearest neighbours (KNN) [12, 48] is used to predict traffic speeds and volumes, and support vector
machine (SVM) [22, 47] is used to predict traffic flow. However, all the existing machine learning
methods cannot capture spatio-temporal features of traffic network and make traffic prediction
on massive traffic data. In recent years, much deep learning-based research has been carried out
in both academia and industry, with applications across many domains, e.g., computer vision,
speech recognition, text understanding, and natural language processing. Due to its powerful
feature learning capabilities, many researchers have successfully applied deep learning techniques
to predict future traffic conditions using sequences of historical traffic conditions [2, 42, 54, 56].
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Some researchers combine two-dimensional (2D) convolutional neural network (CNN) and
long short-term memory network (LSTM) together to capture spatio-temporal features for traffic
prediction [15, 52, 54, 56]. However, these methods only explore temporal features with spatial
features in the high-level layers, while do not combine temporal features with spatial features in
low-level layers together. Hence, the low-level spatio-temporal features cannot be fully explored
in these methods.

To target on the limitations, in this work we propose a novel multiple gated spatio-temporal
correlation based CNNs framework, termed as “MGSTC,” that takes all the three categories of fac-
tors which are discussed above into consideration. To our best knowledge, the proposed MGSTC
is the first time that pure CNN-based model is explored for solving traffic prediction problems that
can capture spatio-temporal dependencies from low-level to high-level across the hierarchy of the
whole stacks. An earlier and simpler version of this work was included in a conference proceeding
[7]. The differences/advantages of this article compared with the conference version are summa-
rized as follows. (i) We have introduced a novel gated mechanism for spatio-temporal features into
the framework. (ii) We have introduced novel spatio-temporal convolutional blocks to extract the
spatio-temporal features. Our proposed model based on spatio-temporal convolutional blocks out-
perform the model based on three-dimensional (3D) CNNs. Furthermore, it has less parameters,
requires shorter training and testing time compared with original 3D CNN-based models.

It is worth noting that MGSTC is a general model for other traffic prediction problems, as long
as the traffic data can be represented in the form of spatio-temporal data. Our contributions can
be summarized as follows.

—We propose novel spatio-temporal correlation based CNNs to learn the spatio-temporal
features simultaneously from from low-level to high-level layers for traffic flow prediction.

—Motivated by the gate mechanism utilized in LSTM, we also propose a novel spatio-temporal
gated mechanism based on CNNs. This gated scheme allows the networks to control what
spatio-temporal features should be propagated through the hierarchy of spatio-temporal
CNN layers.

—We design a novel end-to-end framework, termed as MGSTC, based on multiple gated
spatio-temporal CNNs for city-wide traffic flow prediction, considering multiple spatio-
temporal dependencies and external factors. The MGSTC can combine the output features of
the multiple gated spatio-temporal CNN branches, and assign weights to different branches
dynamically.

—We evaluate our proposed models on NYC bike and Beijing taxi datasets. Experimental
results have demonstrated the superiority of our proposed models over state-of-the-art
baselines.

We organize the remaining of our work as follows. In the next section, the related work is
discussed. Section 3 describes our problem definition, analyzes the limitations of 2D CNN-based
approaches for traffic prediction and illustrates the importance of extracting spatio-temporal fea-
tures simultaneously. Section 4 presents our proposed framework, MGSTC. Sections 5 shows the
experimental results, while Section 6 concludes the work.

2 RELATED WORK

Due to the increasingly urgent traffic problems in many big cities, the citywide traffic flow pre-
diction has been attracting a large amount of research attentions in recently years. The traffic
prediction approaches can be mainly classified into the following two lines: traditional statistical
methods and artificial neural networks (ANNs)-based methods.
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Classical statistical methods usually construct different linear or non-linear models for time se-
ries prediction. KNN uses the periodicity of the traffic evolution for short-term traffic speed and
volume forecasting [12, 48]. Some researchers also utilize tensor completion approaches for traffic
data recovery [49]. SVM model [47] and the extensions [22] are selected due to the distinct advan-
tage to handle larger size of data source than other similar methods [3]. Additionally, other classical
time-series traffic predictive models, such as Bayesian networks [35], Markov chain [1], Kalman
filter [30], Multiple Kernel Regression [34], Auto-regressive Integrated Moving Average[38, 40,
46], and Spatial Correlated Analysis[31], are introduced to solve traffic prediction problems. These
methods can capture correlations of the time sequences of variables. However, spatial-temporal
correlation based features cannot be extracted well in the work.

ANNs are widely applied across many areas, e.g., recommendation system [41], computer vi-
sion [28, 45, 55], and speech recognition [17], to mention a few. ANNs can capture the non-linear
dynamics of spatio-temporal relations [6, 54]. Motivated by the latest significant progress on var-
ious tasks with ANNs-based methods, especially deep learning, many approaches based on deep
learning have also been proposed to tackle the traffic forecasting problem [2, 8, 10, 15, 32, 54, 56,
57]. Some of the works, such as recurrent neural network (RNN) and the variants of RNN, such
as gated recurrent unit (GRU), LSTM network, and the like, have shown promising performance
in traffic prediction compared to the above-mentioned classical statistical methods [2, 54]. One of
the main reasons is that RNN and the variants can effectively extract the characteristics from tem-
poral dependencies [2, 54]. Recently, some researches extended RNN-based methods to support
extracting spatio-temporal correlation features. For example, Jain et al. [24] proposed an approach
for combining high-level spatio-temporal graphs and RNNs, which shows improvement over the
state-of-the-art on modeling human motion and object interactions. Liang et al. [29] combined spa-
tial and temporal attention mechanism into LSTM for geo-sensory time series forecasting problem,
e.g., air quality and water quality prediction. Wang et al. [43] propose a spatio-temporal LSTM (ST-
LSTM) unit that can extract and memorize spatial and temporal representations simultaneously
and showed its advantages on three video prediction datasets. Zhang et al. [58] introduced an ex-
tremely efficient method to mimic multiple deep neural networks without increasing the network
parameters by way of multitask learning. Ziat et al. [13] introduced a dynamical spatio-temporal
model based on RNN for forecasting time series of spatial processes. Zhang et al. [59] proposed
a simple yet effective strategy to perform ensemble learning by parameter sharing and shows its
superiority with the application of video classification.

Moreover, some researches first modeled the traffic states into images and then utilized 2D CNNs
for traffic prediction [32]. In [56], a residual neural network framework is employed to model the
temporal information and collectively forecast the inflow and outflow of crowds of each region
in a city. However, these approaches can only capture spatial or temporal dependencies of the
traffic data independently. To contend with the limitation and better capture the spatial-temporal
correlation, the combinations of RNNs and CNNs are straightforwardly considered [25, 50–52, 56,
57]. The pioneer work is [50], where they extended the fully connected long short-term memory
(FC-LSTM) to have convolutional structures. Moreover, Yao et al. [52] apply local CNN, LSTM,
and semantic network to capture the spatial, temporal, and correlations among similar regions,
respectively. Du et al. [15] propose a hybrid multi-modal deep learning framework based on mul-
tiple CNN-GRU algorithms, which can effectively extract local spatial features and long depen-
dency features together with spatio-temporal correlations from the multi-modal traffic data. How-
ever, these approaches consider one aspect at one time, either temporal or spatial dependency,
while constructing the models. To address the limitations of the methods discussed above, we
propose novel multiple gated spatio-temporal 3D CNN (MGSTC) for traffic flow forecasting prob-
lems in this work.
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Fig. 1. Visualization of traffic flow maps in Beijing and New York City. A city is partitioned into a grid map.

Two values in each grid denote the traffic inflow and outflow, respectively.

3 PROBLEM DEFINITION AND ANALYSIS

3.1 Citywide Traffic Flow Prediction Problem

The definition of citywide traffic flow prediction problem is briefly introduced in this subsection.

Definition 1 (Regions of a City). Following the same idea of the previous studies [14, 32, 51, 56],
a city is partitioned into an I × J grid map where a grid denotes a region of a city. The regions
of a city can be defined as pairs (i, j ), where denotes that the region is in the ith row and the jth

column of the grid map.

Definition 2 (Historical Traffic States). The entire time span T of historical traffic states can be
split as non-overlapping time intervals T = 1, 2, 3, . . . , t − 1.

Definition 3 (Traffic Inflow and Outflow). Following the previous studies [51, 56], the inflow and
outflow of a region are the total traffic of crowds that have entered the region and the total traffic
of crowds that have left the region, respectively.

Problem 1 (Citywide Traffic Flow Prediction). The problem of citywide traffic flow prediction is
to predict the inflow and outflow of each region of the city at the next time interval t , based on
the historical citywide traffic flow data with time intervals T = 1, 2, 3, . . . , t − 1.

3.2 Importance of Extracting Spatio-temporal Features Simultaneously

In this section, we demonstrate that the spatial and temporal dependencies are required to be
considered simultaneously. For example, as shown in Figure 2, the inflow of one region (i.e., r ) of a
city at time t is affected by the outflows of its nearby at time t , and also be affected by the outflows
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Fig. 2. Necessity of extracting spatio-temporal features simultaneously.

of its distant regions at the time before t . In the meanwhile, the traffic flow of the region ri at the
time t − 1 will affect the region’s traffic flow at the time following. We can observe that the traffic
flow of one region is affected by the spatial and temporal factors simultaneously, which inspires
us to design a appropriate model that can learn and extract the spatio-temporal features jointly.

3.3 Limitations of Approaches Based on 2D CNN for Traffic Prediction

As discussed above, in order to conduct accurate and robust traffic prediction, spatial and temporal
dependencies are required to be considered jointly. However, in 2D CNN, only two dimensions of
features could be captured by 2D convolutional operations. Convolutional layers are applied on
2D local neighborhood feature map to extract spatial features with a 2D convolutional kernel. 2D
CNN performs well in learning from the features of images that only contains two dimensions
(latitude and longitude) [27, 28]. However, fully learning from spatial and temporal features is
vitally important to the traffic problem. It is hard for 2D CNN to learn the spatio-temporal features
when an additional temporal dimension needs to be considered.

Many researchers have made efforts to learn the spatio-temporal features based on 2D CNN.
Generally, these studies could be classified into the following four lines. (1) As shown in Figure 3(a),
some flatten two dimensions of the space into a dimension, and then treat one dimension of a 2D
image for space and another dimension for time. However, these methods cannot model the actual
spatio-temporal dependencies well. That is because, the two-dimensions of spatial dependency are
flattened into one dimension, thus losing actual spatial information. (2) The second one is to replace
the channels of images with the slices of time and utilize 2D CNN to extract the spatio-temporal
features. However, applying 2D convolution on a multiple channel image (multiple frames can
be reconstructed into multiple channels) also leads to an image. Hence, temporal information is
also lost after every convolutional layer. (3) The third one is to combine 2D CNN with RNN or
the variants, e.g., LSTM [50, 52, 53] as illustrated in Figure 3(c). 2D CNN is utilized to capture the
spatial dependencies and subsequently LSTMs are utilized to capture the temporal dependencies
of the output. However, this type of approaches only builds temporal correlations on the high-
level spatial features while leave the correlations in the low-level spatial features to not be fully
exploited. (4) The fourth one is to extract spatial features by using 2D CNNs for a slice of 2D images
along the time dimension, and then aggregate the outputs together by Tanh function [56]. Similar

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 4, Article 42. Publication date: May 2020.



Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal CNNs 42:7

Fig. 3. 2D CNN-based approaches; (a) Flatten the two dimensions of the space into a dimension, and model

spatio-temporal dependencies into a 2D image. Then utilize 2D CNN to extract the spatio-temporal fea-

tures; (b) Model traffic states along the time dimension into channels of images to construct the temporal

dependencies; (c) Utilize 2D CNN to capture the spatial dependencies and then feed the outputs to LSTM

to capture the temporal dependencies; (d) Utilize 2D CNNs to extract the spatial features for a slice of 2D

images along the time dimension, and then aggregate the outputs together by a Tanh function.

Fig. 4. (a) Modeling multiple spatio-temporal dependencies into multiple spatio-temporal 3D volumes; (b)

The proposed architecture of MGSTC.

with the methods in item 3, the temporal dependencies among low-level spatial features cannot
be explored.

4 PROPOSED MGSTC FRAMEWORK

4.1 Framework Overview

Utilizing MGSTC consists of three steps where each step is described in the following: (1) In the
first step, the citywide traffic flow data is first converted into multiple 3D volumes with spatial and
temporal information; (2) In the second step, a training dataset of 3D volumes is used to train a
model using our proposed framework MGSTC; (3) In the third step, the trained model is utilized
to predict traffic flow in citywide areas.

The process of modeling traffic flow data with 3D volumes is depicted in Figure 4(a) and the
framework of MGSTC is depicted in Figure 4(b). There are two components in MGSTC, multiple
gated 3D CNN branches and an external branch. A branch of our proposed gated 3D CNN stack
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Fig. 5. Modeling spatio-temporal correlation dependency. (a) A multi-channel image that denotes the inflow/

outflow of a city. (b) A multi-channel 3D volume that denotes a slice of multi-channel images along the time

dimension.

can learn the spatial dependency and temporal dependency together. In this work, closeness depen-
dency and periodic, e.g., daily and weekly, dependencies are considered. By utilizing multiple gated
3D CNN branches, MGSTC extracts multiple spatio-temporal correlation based features from traf-
fic data. Then a weighted fusion method is utilized to fuse the extracted multiple spatio-temporal
correlation features. For external factors, we extract some features manually from external datasets
that contain holidays, weather conditions, and the like. Then, the external features are embedded
by a two-layer fully-connected neural networks. Then, the extracted external features are fused
together with the multiple spatio-temporal features. Lastly, a fully-connected neural network is
applied to calculate the cross-entropy loss in traffic flow prediction.

We describe the way of data modeling, our proposed gated ST CNN for extracting saptio-
temporal features, the way of data modeling, the architecture of MGSTC and the training process
in the following.

4.2 Modeling Process

In this section, we present the way of modeling multiple spatio-temporal dependencies of city-
wide traffic flow into multiple spatio-temporal correlation-based 3D volumes. In the following,
we first illustrate the process of modeling citywide traffic flow with spatio-temporal correlations
based on 3D data volumes. Lastly, we present the process of how to model multiple temporal
dependencies.

4.2.1 Modeling Spatio-Temporal Correlations with 3D Data Volumes. In time interval t , the traf-
fic situation of a city can be denoted by a tensor Xt ∈ Ri×j×k , where k is the number of traffic
variables and the city is partitioned into a i × j grid map. As shown in Figure 5(a), the tensor can
be considered as an image with k channels, i pixels height and j pixels width. This constructed
multi-channel image can preserve the spatial dependency of citywide traffic states. Specifically, by
setting k = 2 and filling the inflow/outflow values into these 2 channels, the 2 channel image can
capture the spatial correlations of citywide traffic flow states. Givenh time intervals, the traffic flow
values of these time intervals can be denoted as a tensorV ∈ Rh×i×j×2. As shown in Figure 5(b), the
generated tensor can be considered as a 3D data volume with the size of h × i × j × 2, where h is
the number of images. The reconstructed 3D volume can present the spatio-temporal information
of citywide traffic flow situations.

4.2.2 Multiple Temporal Dependencies. Despite the future traffic states are affected by the his-
torical traffic states in the recent time, they are also affected by periodic temporal dependencies.
Figures 6(a) and 7(b) describe the inflow value at each time intervals in 7 days. From these figures,
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Fig. 6. Multiple temporal dependencies for NYCBike. (a) daily; (b) weekly.

Fig. 7. Multiple temporal dependencies for BJTaxi. (a) daily; (b) weekly.

we can find that the traffic flow data show a certain repeatability pattern. Therefore, we can iden-
tify the daily periodic patterns clearly on the two datasets. Moreover, Figures 6(a) and 7(b) are
plotted to present the weekly periodicity of the traffic data.

From the cases illustrated above, it is clear that daily periodicity and weekly periodicity have
significant impacts on the traffic states, though the degrees of influences are not completely the
same. Obviously, the traffic states in the recent time have significant impacts on the traffic states in
the following time. Inspired by the observations, we can construct multiple 3D volumes separately
for the multiple temporal properties, based on the images with spatial information. The steps of
the modeling the multiple temporal properties are presented in Figure 4(a). For the closeness 3D
volumes, a few 2-channel images of the recent time intervals are used to model the temporal
closeness dependency. Let the traffic flow states of a recent fragment be [Xt−lc

,Xt−(lc−1), . . . ,Xt−1].

These frames can be modeled with a 3D volume, Vc ∈ Rlc×i×j×2.
In the same way, we can reconstruct the periods volumes. We take the daily period as an example.

Suppose that ld is the time interval from the period, and d is the period span. The daily period of
a dependent sequence is [Xt−ld×d ,Xt−(ld−1)×d , . . . ,Xt−1]. This sequence can be reconstructed into

a 3D volume Vd ∈ Rld×i×j×2. We only use daily and weekly periods in our implementation. Other
kinds of periods, e.g., monthly and seasonal, can be supported in the same way.

4.3 Our Proposed Gated Spatio-Temporal CNN

4.3.1 Exploring Spatio-Temporal Features with 3D CNNs. Unlike 2D CNN, 3D CNN has the abil-
ity to capture the features with three dimensions by applying the 3D convolutional operations and
other 3D activation functions. As shown in Figure 8(a), if the traffic data is represented into spatio-
temporal correlation-based 3D volumes, 3D CNN can extract the spatio-temporal correlation fea-
tures through 3D convolution operations [33, 37]. Due to the construction of 3D CNN, if we apply
3D convolutions with a 3D kernel, the 3D kernel can sweep over the entire 3D topology. Moreover,
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Fig. 8. Our proposed spatio-temporal convolutional blocks. (a) Extract spatio-temporal features by the origi-

nal 3D CNN. (b) Our proposed spatio-temporal convolutional block without residual fusion. (c) Our proposed

spatio-temporal convolutional block with residual fusion.

through adopting the same kernel sharing across space and time dimensions (highlighted in dark
blue), the 3D CNN model can take full advantage of spatio-temporal dependencies and potential
hidden correlations of the traffic flow data. We present the 3D convolutional operation as follows:

u
β
i j (x ,y, z) =

∑
m,n,l

V
β−1

i (x −m,y − n, z − l )W β
i j (m,n, l ), (1)

where W
β

i j is the 3D kernel in the β th layer convoluting over the 3D feature volume V
β−1

i , and

W
β

i j (m,n, l ) is the element-wise weight in the 3D convolution kernel. Then, the formulation of 3D

feature volume in β th layer can be represented as follows:

V
β

j = f �
�

∑
i

u
β
i j
�
�
, (2)

where f is the activation function.

4.3.2 Spatio-Temporal Convolutioal Blocks. As shown in Figure 8(a), a original 3D convolution
is carried out using a filter t × d × d where t denotes the temporal extent and d is the spatial width
and height. Original 3D convolutions simultaneously model the spatial information like 2D filters
and construct temporal connections across frames. To reduce the model size, we propose spatio-
temporal convolutional blocks as shown in Figure 8(b). Suppose we have 3D convolutional filters
with size of t × d × d , it can be naturally decoupled into 1 × d × d convolutional filters equivalent to
2D CNN on spatial domain, and t × 1 × 1 convolutional filters like 1D CNN equivalent to temporal
domain in a cascaded manner. The 2D CNN for spatial domain and the 1D CNN for temporal
domain can be grouped as a spatio-temporal convolutional block to extract the spatio-temporal
features. These two kinds of filters can influence each other in the same path and only the temporal
1D filters are connected to the final output of the block directly.

To make the output of spatial and temporal convolutions influence the final output simultane-
ously, we adopt the residual fusion between the output of spatial convolution and the final output
of the block. This mechanism is also motivated by the residual learning utilized in CNNs for image
recognition [19, 20]. The spatio-temporal block with residual connections is shown in Figure 8(c).

4.3.3 Spatio-Temporal Gated Mechanism. RNN-based methods are becoming popular in se-
quential time series analysis. Gating mechanisms can control the path through which information
flows in the network and have proven to be useful for RNN [21]. Some researchers have designed
Gated Linear Units (GLUs) based on 2D CNNs for language processing and achieved better perfor-
mance compared with RNN-based models (e.g., LSTM) [11, 16]. GLU allow the networks to focus
on fewer elements if needed, which is similar with the gates utilized in LSTMs.
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Inspired by [11, 16], we design spatio-temporal GLU based on 3D CNN or spatio-temporal CNN
as shown in Figure 8(b). In the scheme, supposing the input is X , a simple gated mechanism based
on 3D convolution or spatio-temporal CNN is illustrated as following:

Θ([A,B]) = A ⊗ σ (B)

A = ST (X )

B = ST (X ),

(3)

where A and B are the inputs to the non-linearity, ⊗ is the point-wise multiplication, σ is the
activation function, and ST denotes the 3D convolution or spatio-temporal convolution without
activation function.

The gate σ (B) controls whether the inputsA are relevant to the current spatio-temporal features
or not. For the activation function ⊗, we utilize tanh as introduced in [11].

4.3.4 Hierarchical Learning. By stacking and 3D convolution layers, spatio-temporal convolu-
tional blocks and 3D pooling layers, the spatio-temporal features can be extracted hierarchically
from low-level layers to high-level layers. In the pooling layers, the produced feature volumes
can be sub-sampled with max-pooling operation, reducing variance and computational complex-
ity, and extracting low-level features from cubic neighborhoods [33, 37]. In the hierarchical CNN
layers, different spatio-temporal kernels are employed with the following non-linear activation
functions.

4.4 Multiple Gated Spatio-temporal CNNs

After modeling, the 3D volumes can be fed into the proposed MGSTC as illustrated in Figure 4(b).
Each branch takes one type of 3D volumes and targets on exploring this type of spatio-temporal
dependency. For instance, the closeness branch takes the 3D volumes of closeness as inputs, and the
daily branch takes 3D volumes of daily as inputs, respectively.

As discussed in Section 4.2, all the regions in the city involves multiple temporal dependencies,
though the degrees of influence of different temporal dependencies may be different. To tackle
this, we propose a novel parametric-tensor-based fusion method that combine features extracted
by multiple branches and Equation (4) shows the fusion process:

Vf usion =Wc ⊗ Vc +Wd ⊗ Vd +Ww ⊗ Vw , (4)

where Vc ,Vd ,Vw are the spatio-temporal feature volume extracted by the branches of closeness,
daily, and weekly, respectively; ⊗ is Hadamard product;Wc ,Wd ,Ww are the learnable parameters
that can adjust the weights of the branches; and Vf usion is the volume of fused spatio-temporal
features.

Then, Vf usion is flattened into a vector, termed as Vmc , the final feature extracted by multiple
gated 3D CNNs branches.

4.5 External Branch

The external factors, eg., weather conditions, holidays, and special events, can affect the
citywide traffic states significantly. For instance, in holidays like Chinese New Year and Christ-
mas, the traffic flow in some regions are heavier compared to non-holidays, while in some
regions, the traffic situations are opposite. Another example is that rainy weather can cause slow
down the traffic speed due to slippery roads.

In this work, we mainly consider the weather conditions, holiday events, and other metadata,
such as the day of week, workday, and weekend. Two fully-connected layers are conducted on Et

to embed the external factors intoVext . We then concatenate the featuresVmc which are extracted
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by the multiple gated spatio-temporal CNNs branches with the external features Vext . Finally, a
fully-connected layer is followed, the output of which is the predicted traffic flows of the city.

4.6 Training Process of MGSTC

Algorithm 1 illustrates the training process of MGSTC. In time interval t , the 2-channel image
which denotes the inflow/outflow values of the city is regarded as the ground-truth. The 3D vol-
umes constructed by the historical traffic states are utilized as the inputs of MGSTC. We adopt
closeness branch, daily, and weekly periods in our implementation. More periods can be considered
in a similar way. All the trainable parameters in the proposed MGSTC are initialized randomly
and then optimized by the back propagation. In this work, we adopts stochastic gradient descent
(SGD) [4] to minimize the cross entropy loss function of MGSTC.

ALGORITHM 1: MGSTC Algorithm

Require: Historical observations: X0, ...,n−1;
External factors: E1, ...,n−1;
Lengths of closeness, daily and weekly: lc , ld , lw ;
Daily span: d , Weekly span: w .

Ensure: Learned MGSTC model.
1: D ← ∅;
2: //Modeling traffic values into multiple temporal and spatial volumes;
3: for all available time interval t (1 ≤ t ≤ n − 1) do

4: Vc ← [Xt−lc
,Xt−(lc−1), . . . ,Xt−1];

5: Vd ← [Xt−ld×d ,Xt−(ld−1)×d , . . . ,Xt−1];
6: Vw ← [Xt−lw×w ,Xt−(lw−1)×w , . . . ,Xt−1];
7: put a training instance (Vc ,Vd ,Vw ,Et ) into D;
8: end for

9: //Training the model;
10: Initialize all learnable parameters θ in MGSTC;
11: while stopping criteria is not met do

12: Select a batch of instances Db from D randomly;
13: Feed each Vc ,Vd ,Vw ,Et of an instance in Db into the corresponding branch respectively;
14: Find θ by minimizing the objective with Db ;
15: end while

16: return

5 EXPERIMENTS

In this section, the performance of our proposed models is compared with other existing state-of-
the-art methods.

5.1 Experiment Settings

We implement our methods on Tensorflow (1.2.1) and Keras (2.1.6) on 4 NVIDIA P100 GPUs. Two
real-world traffic flow datasets, BeiJing and New York City datasets, are utilized in the experiments
and illustrated in detail as follows and summarized in Table 1.

—NYCBike: This dataset is bike trajectory from NYC from 1st April to 30th September in
2014. In our experiment, the testing data are the last 10 days of the trajectory data, while
others are treated as the training data. Moreover, holidays are provided and regarded as the
external information.
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Table 1. Statistics of the Datasets

Dataset TaxiBJ BikeNYC
Location Beijing New York
Data type Taxi GPS Bike rent
Sampling time-interval 30 minutes 1 hour
Gird map size (32,32) (16,8)
Available images 21,862 4,392
Train images 15,142 3,480
Test images 1,344 240

—BJTaxi: This is the taxi trajectory data collected from Beijing. In our experiments, the test-
ing data contains traffic values of the last 4 weeks, while other traffic values are treated as
the training data. Temperature, weather conditions and holidays are also provided in the
dataset as external information.

5.2 Implementation Details

Data Preprocessing. For the NYCBike dataset, the entire city is split into a 8 × 16 grid map and
the time span is set to 1 hour. For the BJTaxi dataset, the entire city is split into a 32 × 32 grid map
and the time span is set to 30 minutes. Using Definition 3, we can get two types of traffic flows
of NYCBike and BJTaxi. Day-of-week, weekend/weekday, weather conditions, holidays, and the
like, are transformed into binary vectors and fed into the framework as external factors. Min–Max
normalization is applied to convert original traffic values in [0, 1] scale, while the prediction values
are de-normalized for evaluations. Similarly, we also apply Min–Max normalization to the existing
methods before compared them with our proposed MGSTC. The method of transformation we used
is similar to the method proposed in [56].

Parameters. The number of time intervals of closeness, daily, and weekly on NYCBike dataset
are set to 4, 4, and 4, respectively. The number of time intervals of closeness, daily, and weekly on
BJTaxi dataset are set to 6, 4, and 4, respectively, as the the time segment in BJTaxi is set to half
an hour. For all models, the learning rate is set to 0.0002 and the Adam optimizer is applied to
optimize the model. We train proposed models for a maximum of 200 epochs (training iterations)
and adopt an early stop strategy, i.e., we stop training if the validation loss does not decrease for
15 consecutive epochs. Additionally, we apply relu as the activation function for all layers. Batch
normalization is used and the batch size is set to 64 in the experiment.

While designing the structure of the neural networks, we need to consider the following two
important factors: (i) hyper parameters of convolutional layer and pooling layer (e.g., convolutional
filter size and polling size); and (ii) depth of the networks. Owing to the size of our generated 3D
volumes of NYCBike dataset is small (i.e., 4 × 8 × 16 in all the branches), only two 3D convolutional
layers are applied in all the branches for NYCBike dataset. The kernel sizes in all the branches are
set to (2, 2, 3), where the first 2 denotes the temporal kernel size and (2, 3) denotes the spatial kernel
size. The number of 3D convolutional filters of the first layer is 32, and that of the second layer
is 64. Then a spatial-temporal gate with the kernel size (2, 2, 3) is applied to control the flow of
spatio-temporal features. A pooling layer with the size of (1, 2, 2) is followed, and an extra dropout
layer is set to 0.25 to avoid the over-fitting issue.

For the BJTaxi dataset, the grid map is 32 × 32 which are larger than that of the NYCBike dataset.
We apply three 3D convolutional layers in all the multiple branches. The parameters of MST3D and
MGST3D are described as follows. In the closeness branch, the kernel size is set to (2, 2, 3) for these
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three layers. In the daily and weekly branches, the kernel size of the first layer is (2, 2, 3), while the
other two layers are set to (1, 2, 3). The above settings can align the output sizes of the closeness,
daily, and weekly branches. The number of 3D convolutional filters of three 3D convolutional lay-
ers are set to 32, 64, and 64, respectively. Then a spatial-temporal gate is also followed with these
three layers to control the flow of spatio-temporal features with the kernel (2, 2, 3). The param-
eters of the max pooling layer and the dropout layer are the same as those set for the NYCTaxi
dataset.

The parameters of MSTC and MGSTC are described as follows. For fair comparison, we replace
the 3D CNNs in MST3D and MGST3D with our proposed spatio-temporal CNN blocks with the
same filters. For example, for the 3D convolutional operation with kernel (2, 2, 3), we decouple
the operation into the 2D CNN on spatial domain with kernel (1, 2, 3) and 1D CNN on temporal
domain with the kernel (2, 1, 1). The residual fusion mechanism is adopted in the spatio-temporal
CNN blocks.

Metrics for Evaluation. Mean Average Percentage Error (MAPE) and Rooted Mean Square Error
(RMSE) are utilized as the evaluation metrics [14, 51, 52, 56]. Samples with values less than 10 are
ignored to calculate the MAPE result, which is a common practice used in traffic prediction [51,
52]. The two evaluation metrics are defined in Equations (5) and (6).

MAPE =
1

N

N∑
α=1

|ŷt − yt |
yt

, (5)

RMSE =

√√√
1

N

N∑
α=1

(ŷt − yt ), (6)

where yt and ŷt denote the real value and the prediction value on time interval t , respectively, and
N is the number of all samples.

5.3 Methods Under Comparisons

The compared methods are listed as follows.
Classical Time-Series Prediction Approaches.

—HA: Historical average (HA) predicts the traffic values based on the average values of the
previous time intervals.

—ARIMA: Auto-regressive integrated moving average (ARIMA) is a widely used approach
for time series analysis [5].

Classical Statistical Prediction Approaches.

—LinUOTD [36]: A linear regression method with a spatio-temporal regularization.
—XGBoost [9]: A well-known boosting tree method.

Deep Learning Methods.

—Multilayer Perceptron (MLP): We compare our proposed MGSTC with a neural network
[18] which contains four fully connected layers.

—ConvLSTM [50]: ConvLSTM adds convolutional layers to LSTM.
—ST-ResNet [57]: ST-ResNet models citywide traffic flow at different times into 2D images.

2D CNNs are utilized to extract spatial features for closeness, period and trend information.
Then a Tanh function is utilized to aggregate the relevant features together. We set the
length trend, period and closeness as 4, 4, and 4, respectively.
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Table 2. Baseline Comparisons on NYCBike and BJTaxi

Method
NYCBike BJTaxi

RMSE MAPE RMSE MAPE
HA 14.35 39.22% 57.69 38.34%

ARIMA 10.07 29.23% 22.78 22.13%
LinUOTD 9.76 28.12% 21.23 20.22%
XGBoost 6.93 23.12% 17.84 17.62%

MLP 7.68 24.93% 18.25 17.83%
ConvLSTM 7.98 25.62% 19.54 18.63%
ST-ResNet 6.33 21.81% 16.89 15.48%

STDN 6.20 21.57% 16.65 15.27%
MST3D 5.81 20.68% 15.99 14.78%
MSTC 5.79 20.67% 15.82 14.67%

MGST3D 5.76 20.55% 15.86 14.65%
MGSTC 5.75 20.55% 15.81 14.63%

—STDN [51]: STDN combines local 2D CNNs, LSTM and attention mechanism together for
traffic flow prediction. The network of STDN is an extension of [52]. Therefore, we just
utilizes STDN as a comparison. We modify some codes of STDN to make STDN predict the
inflow/outflow of the city maintaining the network structure of STDN.

The variants of our proposed MGSTC used in this experiment are listed as follows. These variants
all contains closeness, daily, weekly, and external branches

—MST3D: Our proposed framework which utilize 3D CNN and does not adopt the spatio-
temporal gated mechanism.

—MSTC: Our proposed framework which utilizes our proposed spatio-temporal CNN blocks
with residual fusion and does not adopt the spatio-temporal gated mechanism.

—MGST3D: Our proposed framework which utilize 3D CNN and adopts the spatio-temporal
gated mechanism.

—MGSTC: Our proposed framework which utilizes our proposed spatio-temporal CNN
blocks and adopts the spatio-temporal gated mechanism.

5.4 Overview of Performance Evaluations

Table 2 presents the RMSE and MAPE results of our proposed models as compared to existing
methods for the inflows and outflows together on the NYCBike and BJTaxi datasets. Tables 3 and
4 present the detailed results of inflows and outflows separatedly. We run all the methods 10 times
and record the average results of each method.

We can observe that even the MST3D which does not adopt the spatio-temporal gated mecha-
nism outperforms other compared baselines regarding to RMSE and MAPE on both datasets, i.e.,
the RMSE and the MAPE of our MST3D in the NYCBike dataset are 5.81 and 20.68%, respectively,
the RMSE and the MAPE of our MST3D in the BJTaxi dataset are 15.98 and 14.78%, respectively. By
adopting the spatio-temporal gated mechanism, the RMSE and MAPE are further decreased, i.e.,
the RMSE and the MAPE of our MGST3D in the NYCBike dataset are 5.76 and 20.55%, respectively,
the RMSE and the MAPE of our MGST3D in the BJTaxi dataset are 15.88 and 14.65%, respectively.
From Tables 3 and 4, we can observe that MST3D can outperform other compared baselines for the
predictions of both inflow and outflow. The results demonstrate the effectiveness of our schemes of
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Table 3. Inflow and Outflow Results on NYCBike

Methods
Inflow Outflow

RMSE MAPE RMSE MAPE
HA 14.02 38.75% 14.91 39.68%

ARIMA 9.97 28.97% 10.49 29.49%
LinUOTD 9.56 27.59% 10.11 28.74%
XGBoost 6.89 22.93% 7.06 23.43%

MLP 7.25 24.63% 8.07 25.29%
ConvLSTM 7.74 25.57% 8.32 25.72%
ST-ResNet 6.08 21.23% 6.63 22.17%

STDN 5.98 21.01% 6.51 21.96%
MST3D 5.66 20.21% 5.96 21.14%
MSTC 5.61 20.19% 5.96 21.13%

MGST3D 5.59 20.13% 5.92 20.99%
MGSTC 5.57 20.14% 5.91 20.98%

Table 4. Inflow and Outflow Results on BJTaxi

Methods
Inflow Outflow

RMSE MAPE RMSE MAPE
HA 57.57 37.76% 57.89 39.68%

ARIMA 22.58 22.12% 22.96 22.19%
LinUOTD 21.19 20.02% 21.44 20.33%
XGBoost 17.61 17.42% 18.23 17.69%

MLP 18.23 17.54% 18.30 18.21%
ConvLSTM 19.29 18.55% 19.98 18.72%
ST-ResNet 16.74 15.01% 17.01 15.78%

STDN 16.43 15.12% 16.78 15.44%
MST3D 15.98 14.71% 16.11 14.85%
MSTC 15.77 14.60% 15.98 14.84%

MGST3D 15.82 14.61% 15.97 14.76%
MGSTC 15.79 14.60% 15.96 14.75%

adopting multiple gated 3D CNNs to capture the spatio-temporal features and extracting external
features. Note that, MGST3D outperforms MST3D.

Furthermore, we also can observe that our proposed MSTC and MGSTC outperform other com-
pared baselines regarding to RMSE and MAPE on both datasets, which demonstrates the effective-
ness of utilizing our proposed spatio-temporal convolutional blocks to extract the spatio-temporal
features for traffic flow datasets. MSTC and MGSTC also achieve better results than MGST3D an
MST3D, respectively. Similar to MST3D and MGST3D, MGST3D performs better than MST3D,
which demonstrates the effectiveness of adopting the gated spatio-temporal mechanism.

In contrast, the traditional time-series prediction methods (i.e., ARIMA and HA) cannot achieve
good results as they only utilize historical values to predict the future values and do not ex-
plore spatio-temporal dependencies and other external factors. The regression-based methods can
achieve better performance than other traditional time-series prediction approaches as they ex-
plore spatial correlations. However, they still failed to capture the spatial dependency and the
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Table 5. Effects of the Residual Fusion

Method
NYCBike BJTaxi

RMSE MAPE RMSE MAPE
MST3D 5.81 20.68% 15.99 14.78%

MSTC-NRes 5.81 20.72% 15.91 14.75%
MSTC 5.79 20.67% 15.82 14.67%

complex non-linear temporal dependency. Our proposed models significantly outperforms the
above methods.

Our proposed models also outperforms MLP and ST-ResNet. One of the possible reasons is that
MLP cannot explicitly model spatial and temporal dependencies. Moreover, ST-ResNet only uses
2D CNNs to learn low-level spatial features and then take advantages of Tanh function to learn the
temporal dependency on the extracted spatial features, which leaves the low-level spatio-temporal
dependencies not fully exploited and also ignores the temporal sequential dependency. MGSTC
also outperforms ConvLSTM and STDN which combine 2D CNNs and LSTM together for traffic
prediction. Similarly with ST-ResNet, ConvLSTM and STDN also overlooks the temporal correla-
tions with low-level spatial features.

5.5 Effects of the Residual Fusion

To make the output of spatial and temporal convolutions influence the final output simultaneously,
we adopt the residual connections between the output of spatial convolution and the final output
of the spatio-temporal convolutional block. In this section, we evaluate the effectiveness of residual
fusion of the outputs of spatial and temporal convolutions. The experimental results are presented
in Table 5. MSTC-NRes means our proposed MSTC model without residual fusion. We can observe
that MST3D and MSTC-NRes obtain similar results. After adopting the residual fusion mechanism,
the performance on both datasets is improved.

5.6 Effects of Multiple Branches and External Factors

To evaluate the effects of adopting multiple gated CNN branches and the effectiveness of con-
sidering external factors, we apply different branches to examine the perform of the following
variants.

—MGS3D-C: This variant only utilizes closeness branch on original 3D CNNs.
—MGS3D-CD: This variant utilizes both closeness and daily branches on original 3D CNNs.
—MGS3D-CDW: This variant utilizes closeness, daily, and weekly branches on original 3D

CNNs.
—MGSTC-C: This variant only utilizes closeness branch on spatio-temporal convolutional

blocks with residual fusion.
—MGSTC-CD: This variant utilizes both closeness and daily branches on spatio-temporal

convolutional blocks with residual fusion.
—MGSTC-CDW: This variant utilizes closeness, daily, and weekly branches on spatio-

temporal convolutional blocks with residual fusion.

Figure9 shows the results of MGST3D, MGSTC, and its variants We can clearly observe that
MGSTC-C which only uses the closeness branch outperforms the other baselines. It demonstrates
the advantages of adopting 3D CNNs and spatio-temporal convolutional blocks to learn spatio-
temporal features in traffic prediction. The RMSE and MAPE are further decreased by adding the
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Table 6. Time Complexity of Different Approaches

Methods
NYCBike BJTaxi

Training Testing Training Testing
time (s) time (s) time (s) time (s)

ST-ResNet 150 0.75 4,994 1.92
STDN 18,980 89.8 379,600 207.4

MST3D 126 0.23 5,902 2.74
MSTC 134 0.16 3,610 1.22

MGST3D 279 0.32 6,749 3.94
MGSTC 169 0.19 3,840 1.45

Fig. 9. Results with MGST3D and MGSTC on RMSE. (a) MGST3D on NYCBike. (b) MGST3D on BJTaxi. (c)

MGSTC on NYCBike. (d) MGSTC on BJTaxi.

daily and weekly branches. It proves that exploring periodic dependencies can improve the predic-
tion performance. An interesting observation is that, for BJTaxi dataset, the RMSE of MGSTC-CD
is a bit bigger than that of MGSTC-C. It illustrates that adding daily branch has a little effect on BJ-
Taxi dataset. The performance is further improved by adding the external branch. It demonstrates
that external factors can significantly affect the performance of our method. Lastly, we can see
that the method that combines the closeness, daily, weekly, and the external branches together can
achieve the lowest RMSE.

5.7 Time Complexity of Different Approaches

In this section, we study the time complexity of our proposed MGST3D and MGSTC compared
with other baselines. Table 6 shows the running time of MGST3D, MGSTC, and other baselines
in the training and prediction procedures. For simplicity, only one P100 GPU is utilized for all
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Fig. 10. Visual comparison of predicted results of different variants on TaxiBJ dataset. The top four rows

are the predicted results of MGST3D-C, MGST3D-D, MGST3D-W, and MGST3D. The last row is the ground

truth map. The left column is inflow maps and the right column is outflow map.

the approaches. We only compare our MGSTC with the existing methods which have achieved
relatively good results. We can observe that the running time of STDN are the longest in both
training and testing procedures. That is because, STDN utilizes local CNNs to only predict the
center of the value, and it uses a sliding window across the whole city to train and then predict
every region. For example, it needs to repeats 8 × 16 times to predict the traffic values of the whole
city for NYCTaxi dataset.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 4, Article 42. Publication date: May 2020.



42:20 C. Chen et al.

For NYCTaxi dataset, the MST3D performs slightly better than ST-ResNet. One of the main
reasons is that MST3D uses two 3D CNN layers, while ST-ResNet only uses two convolutional
layers and 12 residual units. For BJTaxi dataset, the testing time of MST3D that uses three 3D CNN
layers is slightly longer than that of the 2D ST-ResNet. Obviously, the 3D CNN layers are more
complex than the 2D CNN layers in neural networks. However, the training time of the MST3D is
similar to that of the ST-ResNet. It demonstrates the speed of convergence of our proposed MST3D
is faster than that of ST-ResNet. After adopting the spatio-temporal gated mechanism, the training
time and testing time is increased.

We also can observe that the running time and testing time of MGSTC are shorter than that of
MGST3D. It shows that replacing original 3D CNNs with our proposed spatio-temporal convolu-
tional blocks can achieve better results with shorter running time and testing time.

5.8 Analysis of Spatio-temporal Convolutional Blocks and Original 3D CNNs

We first discuss the parameters of spatio-temporal convolutional blocks compared with 3D CNN
layers. Given a 3D CNN layer with 3D convolutional filter which has the size of t × d × d , the
parameter of this 3D convolutional layer is M × t × d × d , where M is the number of the channels.
After replacing this 3D convolutional layer with a spatio-temporal block, the parameters become
M × 1 × d × d +M × t × 1 × 1. We can find that the parameters of a spatio-temporal block is much
less than that of a 3D CNN layer.

From Tables 2, 3, and 4, we can observe that MSTC and MGSTC outperforms MST3D and
MGST3D, respectively, which shows that adopting our proposed spatio-temporal convolutional
blocks can achieve better results with less parameters than adopting original 3D CNNs. Table 6
also shows that replacing original 3D CNNs with our proposed spatio-temporal convolutional
blocks can achieve better results with shorter running time and testing time.

6 CONCLUSIONS

Traffic flow prediction is very important and challenging because it involves many complicated
factors, such as spatio-temporal correlation-based dependencies, multiple temporal patterns, and
external influences. We proposed spatio-temporal convolutional blocks to extract the spatio-
temporal features jointly across the whole neural network stack. Moreover, motivated by the
gated mechanism utilized in RNN, we also introduce a spatio-temporal CNN-based gated mecha-
nism to control the flow of spatio-temporal features. In the end, a framework, termed as MGSTC,
that consists of multiple gated spatio-temporal convolutional branches and an external branch
is designed for citywide traffic flow prediction. We utilize multiple gated patio-temporal convo-
lutional branches to capture the spatial and multiple temporal dependencies together. A novel
weighted fusion method is proposed in MGSTC to combine the features extracted by multi-
ple gated patio-temporal convolutional branches branches. MGSTC can predict the traffic in-
flows and outflows simultaneously. We will further investigate the learned spatio-temporal fea-
tures for better interpretability and explore graphical information of road networks in our future
work.
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