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Abstract

Background: The outbreak and epidemic of COVID-19 has created worldwide impact

and attracted global attention. Considerable effort has been devoted to the study of the

transmission dynamics of COVID-19. However, there are lack of simple and straightfor-

ward expressions of the growing curves of important indicators, such as the cumulative

number of confirmed cases and the cumulative number of dead cases.

Methods: We adopt two methods. The first method is based on regression analysis. We fit

the available data into a curve by the method of least squares. The best curve is obtained

by solving a multivariable minimization problem. The second method is based on dif-

ferential equations. We establish an analytical model of transmission dynamics based on

the susceptible-exposed-infectious-recovered-dead (SEIRD) process using a linear system

of ordinary differential equations, which characterize the daily change in each compart-

ment. The size of each compartment (i.e., the number of people in each stage of the SEIRD

process) is readily available based on the solution to these differential equations.

Results: Both methods are applied to the COVID-19 epidemic data in the world as a case

study. Furthermore, predictions of the cumulative number of confirmed cases and the

cumulative number of dead cases in April 2020 using our models and methods are also

provided. From a global perspective, unless powerful and effective social and medical

impacts are made, by the end April of 2020, the cumulative number of confirmed cases

is 23.333 and 36.068 millions respectively using regression analysis and analytical model,

and the cumulative number of dead cases is 1.148 and 2.528 millions respectively using

regression analysis and analytical model, based on the current situation.

Conclusions: In this paper, we make some progress towards analytical expressions of the

daily growth of the cumulative number of confirmed cases and the cumulative number

of dead cases, two most important and daily reported figures.

Keywords: Analytical model, COVID-19, linear system of ordinary differential equations,

prediction, regression analysis, SEIRD process, transmission dynamics.
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1 Introduction

1.1 Motivation

The outbreak and epidemic of COVID-19 has created worldwide impact and attracted

global attention [6, 13]. The total number of coronavirus cases and the total number of

coronavirus deaths in the world are growing exponentially and explosively [2, 4, 5]. Such

pandemic has generated significant impact socially, economically, and politically.

Considerable effort has been devoted to the study of the transmission dynamics of

COVID-19 [9, 12]. Li et al. reported that the mean incubation period was 5.2 days, the

mean serial interval was 7.5 days, the basic reproductive number R0 was 2.2, and the

epidemic was doubled in size every 7.4 days [15]. Liu et al. reported that the average

incubation duration of 2019-nCoV infection was 4.8 days, and estimated the R0 values of

2019-nCoV as 2.90 and 2.92 using the methods of exponential growth (EG) and maximum

likelihood (ML) respectively [16]. Nishiura et al. estimated the median serial interval at

4.0 days [19]. Zhang et al. mentioned that the ML value of R0 was 2.28 for COVID-19

outbreak at the early stage on the Diamond Princess cruise ship [21]. Zhao et al. pointed

out that the early outbreak data largely follow the exponential growth, and estimated

that the mean R0 for the 2019-nCoV ranges from 2.24 to 3.58 [22]. Zhou et al. found that

the median duration of viral RNA shedding from oropharyngeal specimens was 20 days

(range of 8–37 days) [23].

It is clear that all existing studies have only focused on individual quantities such

as the basic reproductive number, the mean serial interval, the mean incubation period,

and the mean recovery time. However, based on these quantities, it is still not possible

to predict how the number of infected people, the number of recovered individuals, and

the number of dead cases change daily. There are lack of simple and straightforward ex-

pressions of the growing curves of important indicators, such as the cumulative number

of confirmed cases and the cumulative number of dead cases.

1.2 Contributions

In this paper, we make some progress towards analytical expressions of the daily growth

of the cumulative number of confirmed cases and the cumulative number of dead cases,
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two most important and daily reported figures. We adopt two methods.

The first method is based on regression analysis. We fit the available data into a curve

by the method of least squares. The best curve is obtained by solving a multivariable

minimization problem. The details are presented in Section 2.

The second method is based on differential equations. We establish an analytical

model of transmission dynamics based on the susceptible-exposed-infectious-recovered-

dead (SEIRD) process using a linear system of ordinary differential equations, which char-

acterize the daily change in each compartment. The size of each compartment (i.e., the

number of people in each stage of the SEIRD process) is readily available based on the

solution to these differential equations. The details are presented in Section 3.

Both methods are applied to the COVID-19 epidemic data in the world as a case

study. Furthermore, predictions of the cumulative number of confirmed cases and the

cumulative number of dead cases in April 2020 using our models and methods are also

provided. The details are presented in Section 4.

2 Regression Analysis

In this section, we develop a regression analysis method.

2.1 The Method

Assume that a group of n available data points (x1,y1),(x2,y2), ...,(xn,yn) are to be fit into

a function y = f (a1,a2, ...,ak,x), where a1,a2, ...,ak are parameters of f to be decided. The

method of least squares [1] is used to find a1,a2, ...,ak. The sum of squared residuals is

E(a1,a2, ...,ak) =
n

∑
i=1

(yi− f (a1,a2, ...,ak,xi))
2,

where E is viewed as a function of a1,a2, ...,ak. To minimize E(a1,a2, ...,ak), we only need

to find a1,a2, ...,ak, such that ∇E(a1,a2, ...,ak) = 0, i.e., ∂E/∂a j = 0, for all 1≤ j ≤ k. This is

a multivariable minimization problem.

For transmission dynamics of coronavirus, we consider an exponential function in

the form of f (x) = abx + c, where a and b are parameters and c is a given constant, such

that yi ≈ abxi + c, for all 1 ≤ i ≤ n. To use the method of least squares to find a and b, the
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sum of squared residuals is

E(a,b) =
n

∑
i=1

(yi− (abxi + c))2,

where E is viewed as a function of a and b. To minimize E(a,b), we need

∂E
∂a

=
n

∑
i=1

2(yi− (abxi + c))(−bxi) = 0,

and
∂E
∂b

=
n

∑
i=1

2(yi− (abxi + c))(−axibxi−1) = 0.

To solve the above equations, we notice that the first equation implies that

a =
s1

s2
=

n
∑

i=1
(yi− c)bxi

n
∑

i=1
b2xi

,

and the second equation implies that

a =
s3

s4
=

n
∑

i=1
(yi− c)xibxi−1

n
∑

i=1
xib2xi−1

.

To find b, we need s1/s2 = s3/s4. Notice that F(b) = s1s4− s2s3 is an increasing function of

b. Hence, b can be found by using the standard bisection method ([8], pp. 22), such that

F(b) = 0.

The quality of the above regression analysis can be evaluated by the adjusted relative

error (ARE), defined for yi as

AREi =

(
yi

max1≤i≤n(yi)

)
×
(

abxi + c− yi

yi

)
×100%.

Notice that (
abxi + c− yi

yi

)
×100%

is the relative error for yi. Since the magnitudes of y1,y2, ...,yn can differ dramatically, sim-

ply taking the maximum relative error does not seem appropriate, since a large relative

error for a very small yi does not seem significant. Therefore, the relative error for yi is

adjusted by a factor of
yi

max1≤i≤n(yi)
.
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Table 1: Quality of Regression Analysis

CWorld(t) DWorld(t)

t Analytical Actual ARE Analytical Actual ARE

21 304874 304979 -0.012% 12931 13011 -0.189%

22 336362 337459 -0.128% 14465 14640 -0.414%

23 372070 378830 -0.787% 16225 16513 -0.682%

24 412565 422574 -1.166% 18244 18894 -1.541%

25 458490 471035 -1.461% 20560 21282 -1.712%

26 510571 531865 -2.481% 23217 24073 -2.031%

27 569634 596366 -3.114% 26264 27343 -2.559%

28 636614 663127 -3.089% 29759 30861 -2.612%

29 712575 723390 -1.260% 33769 34065 -0.701%

30 798718 784738 1.629% 38369 37773 1.415%

31 896410 858377 4.431% 43645 42146 3.557%

2.2 A Case Study

In this section, we apply our method to a case study.

Let CWorld(t) be the cumulative number of confirmed cases in the world by the tth

day (i.e., xt = t and yt =CWorld(t)). Based on the data published by Worldometer [5] during

March 1–31, 2020 (with March 1, 2020 as the first day), we get

CWorld(t) = 16729.4550655×1.1340597t +70000.

Let DWorld(t) be the cumulative number of dead cases in the world by the tth day (i.e.,

xt = t and yt = DWorld(t)). Based on the data published by Worldometer [5] during March

1–31, 2020 (with March 1, 2020 as the first day), we get

DWorld(t) = 584.4834711×1.1470922t +2500.

In Table 1, we display the analytical data, the actual data, and the ARE for CWorld(t)

and DWorld(t) during March 21–31, 2020, with AREi in the range [−3.114%,4.431%] for

CWorld(t), and AREi in the range [−2.612%,3.557%] for DWorld(t).
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3 An Analytical Model

In this section, we establish an analytical model of transmission dynamics.

3.1 The SEIRD Process

In this section, we describe the SEIRD process (see Figure 1).

The susceptible-exposed-infectious-recovered-dead (SEIRD) model belongs to the

class of compartmental disease models [7]. “Susceptible", “Exposed", “Infectious", “Re-

covered", and “Dead" are compartments, and each individual in the population is as-

signed to one of these compartments. The model is extended from the SIR model [10] and

the SEIR model [11, 14, 20] (other variations include SZR, SIZR, and SIZRQ models [18]).

• Susceptible individuals have no immunity to the disease, who may be exposed to

the disease and move into the “Exposed" compartment through contact with an

exposed or infectious person.

• Exposed individuals have been exposed to the disease, but have not shown sign or

illness and thus behave like normal persons; however, they can transmit disease to

others, and will move into the “Infectious" compartment.

• Infectious individuals show clear symptom of sickness, and have been tested and

confirmed to be patients, who are typically quarantined or hospitalized, can still

transmit disease to family members, medical staff, and other people, and eventually

move into the “Recovered" or the “Dead" compartments.

• Recovered individuals can no longer become infected, typically because they have

immunity from a prior exposure, which is often appropriate if immunity is long-

lasting or the disease is being modeled over a relatively short time period.

• Dead individuals remain in the “Dead" compartment forever.

3.2 A System of Differential Equations

In this section, we establish an analytical model of transmission dynamics using a system

of ordinary differential equations.
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Figure 1: The SEIRD process

Let S(t),E(t), I(t),V (t),D(t) be respectively the numbers of individuals in the suscepti-

ble, exposed, infectious, recovered, and dead compartments at time t (measured in days).

S(t),E(t), I(t),V (t),D(t) are nonnegative functions of t ≥ 1, which satisfy

S(t)+E(t)+ I(t)+V (t)+D(t) = N,

and

dS(t)/dt +dE(t)/dt +dI(t)/dt +dV (t)/dt +dD(t)/dt = 0.

The daily reported cumulative number of confirmed cases is C(t) = I(t)+V (t)+D(t). The

daily reported cumulative number of dead cases is D(t).

Let N, RE , RI , TE , TI , α be positive constants defined below.

• N is the size of (i.e., the number of people in) the population.

• RE is the reproductive number of an exposed individual.

• RI is the reproductive number of an infectious individual.

• TE is the average number of days in the “Exposed" compartment.

• TI is the average number of days in the “Infectious" compartment.

• α is the percentage of infectious individuals who eventually die.

Notice that the basic reproductive number is actually R0 = RE +RI .
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We have the following linear system of ordinary differential equations:

dS(t)
dt

=−
(

RE

TE
·E(t)+ RI

TI
· I(t)

)
,

dE(t)
dt

=
RE −1

TE
·E(t)+ RI

TI
· I(t),

dI(t)
dt

=
E(t)
TE
− I(t)

TI
,

dV (t)
dt

= (1−α)
I(t)
TI

,

dD(t)
dt

= α
I(t)
TI

,

with given initial values S(1),E(1), I(1),V (1),D(1). These equations are elaborated as fol-

lows.

• dS(t)/dt: RE/TE is the number of newly exposed people contacted by an exposed

individual every day, and (RE/TE)E(t) is the total number of such people on the

tth day. Similarly, RI/TI is the number of newly exposed people contacted by an

infectious individual every day, and (RI/TI)I(t) is the total number of such people

on the tth day. Therefore, the total number of newly exposed people (who leave the

“Susceptible" compartment) is (RE/TE)E(t)+(RI/TI)I(t) on the tth day.

• dE(t)/dt: The number of newly exposed people (who move into the “Exposed" com-

partment) is (RE/TE)E(t)+(RI/TI)I(t) on the tth day. On the other hand, the number

of exposed people who move into the “Infectious" compartment is E(t)/TE on the

tth day. Therefore, the change in the “Exposed" compartment is ((RE−1)/TE)E(t)+

(RI/TI)I(t) on the tth day.

• dI(t)/dt: The number of exposed people who move into the “Infectious" compart-

ment is E(t)/TE on the tth day. On the other hand, the number of infectious people

who leave the “Infectious" compartment is I(t)/TI on the tth day. Therefore, the

change in the “Infectious" compartment is E(t)/TE − I(t)/TI on the tth day.

• dV (t)/dt: The number of infectious people who move into the “Recovered" com-

partment is (1−α)(I(t)/TI) on the tth day.

• dD(t)/dt: The number of infectious people who move into the “Dead" compartment

is α(I(t)/TI) on the tth day.
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3.3 An Analytical Solution

In this section, we provide an analytical solution to the linear system of ordinary differ-

ential equations.

Notice that dE(t)/dt and dI(t)/dt form an autonomous linear system of differential

equations:

dE(t)
dt

=

(
RE −1

TE

)
E(t)+

(
RI

TI

)
I(t),

dI(t)
dt

=

(
1

TE

)
E(t)−

(
1
TI

)
I(t),

It is well known that such differential equations accommodate analytical solutions [3].

Let

A =


RE−1

TE

RI
TI

1
TE

− 1
TI
.


If matrix A has eigenvalues λ1 and λ2 with corresponding eigenvectors v1 = (x1,y1) and

v2 = (x2,y2), then we have

E(t) = c1x1eλ1t + c2x2eλ2t ,

I(t) = c1y1eλ1t + c2y2eλ2t ,

for some constants c1 and c2, which can be decided based on the initial conditions E(1) =

b1, and I(1) = b2, by solving the following equations:

c1x1eλ1 + c2x2eλ2 = b1,

c1y1eλ1 + c2y2eλ2 = b2,

whose solution is

c1 =

∣∣∣∣∣∣ x2eλ2 b1

y2eλ2 b2

∣∣∣∣∣∣
/∣∣∣∣∣∣ x2eλ2 x1eλ1

y2eλ2 y1eλ1

∣∣∣∣∣∣ ,
c2 =

∣∣∣∣∣∣ x1eλ1 b1

y1eλ1 b2

∣∣∣∣∣∣
/∣∣∣∣∣∣ x1eλ1 x2eλ2

y1eλ1 y2eλ2

∣∣∣∣∣∣ .
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The eigenvalues of the matrix A are values of λ that satisfy the equation∣∣∣∣∣∣∣∣
RE−1

TE
−λ

RI
TI

1
TE

− 1
TI
−λ

∣∣∣∣∣∣∣∣= 0,

or, ∣∣∣∣∣∣∣∣
−(λ − RE−1

TE
) RI

TI

1
TE

−(λ + 1
TI
)

∣∣∣∣∣∣∣∣= 0,

that is,

λ
2−
(

RE −1
TE

− 1
TI

)
λ − RE +RI−1

TETI
= 0.

The solutions are

λ1 =
1
2

((
RE −1

TE
− 1

TI

)
+

√(
RE −1

TE
− 1

TI

)2

+4
(

RE +RI−1
TETI

))
,

and

λ2 =
1
2

((
RE −1

TE
− 1

TI

)
−

√(
RE −1

TE
− 1

TI

)2

+4
(

RE +RI−1
TETI

))
.

The eigenvector vi = (xi,yi) satisfies
−(λi− RE−1

TE
) RI

TI

1
TE

−(λi +
1
TI
)


 xi

yi

= 0.

We can set xi = 1, and yi = (λi− RE−1
TE

)/(RI
TI
), for i = 1,2.

Based on E(t) and I(t), we can get

V (t) =
(

1−α

λ1TI

)
c1y1(eλ1t− eλ1)+

(
1−α

λ2TI

)
c2y2(eλ2t− eλ2)+V (1),

and

D(t) =
(

α

λ1TI

)
c1y1(eλ1t− eλ1)+

(
α

λ2TI

)
c2y2(eλ2t− eλ2)+D(1),

and

C(t) = I(t)+V (t)+D(t)

=

(
1+

1
λ1TI

)
c1y1eλ1t +

(
1+

1
λ2TI

)
c2y2eλ2t− c1y1eλ1

λ1TI
− c2y2eλ2

λ2TI
+V (1)+D(1),
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and

S(t) = N−E(t)− I(t)−V (t)−D(t)

= N− c1x1eλ1t− c2x2eλ2t

−
(

1+
1

λ1TI

)
c1y1eλ1t−

(
1+

1
λ2TI

)
c2y2eλ2t +

c1y1eλ1

λ1TI
+

c2y2eλ2

λ2TI
−V (1)−D(1).

Notice that since λ2 < 0, we have eλ2 < 1, and eλ2t → 0 as t → ∞. Hence, we have the

following approximations:

C∗(t) =
(

1+
1

λ1TI

)
c1y1eλ1t ,

and

D∗(t) =
(

α

λ1TI

)
c1y1eλ1t ,

which are accurate for large t.

Now, we can explain why R0 (or any other quantity) alone cannot predict how C(t)

and D(t) grow. It is clear that C(t) is determined by RE , RI , TE , TI , E(1), I(1), V (1), D(1),

collectively, and D(t) is determined by RE , RI , TE , TI , α , E(1), I(1), D(1), collectively.

3.4 A Case Study

In this section, we apply our method to a case study.

The parameters in our model are set as follows. The incubation period means the

time between catching the virus and beginning to have symptoms of the disease. Most

estimates of the incubation period for COVID-19 range from 1–14 days, most commonly

around five days. We set DE = 5 [15, 16]. Using available preliminary data, the median

time from onset to clinical recovery is approximately 2 weeks for mild cases and 3–6

weeks for severe or critical cases. We set DI = 20 [17, 23].

For the same data in Section 2.2 for the world, we get

C∗World(t) = 29539.4430255×1.1155783t ,

and

D∗World(t) = 1454.9810657×1.1155783t ,

where we set RE = 1.39, RI = 0.50, and α = 0.157. The initial values are E(1) = 20,000,

I(1) = 10,000, V (1) = 20,000, D(1) = 2,000.
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Table 2: Quality of Analytical Model

CWorld(t) DWorld(t)

t Analytical Actual ARE Analytical Actual ARE

21 296654 304979 -0.970% 13865 13011 2.026%

22 330674 337459 -0.790% 15518 14640 2.083%

23 368612 378830 -1.190% 17366 16513 2.024%

24 410921 422574 -1.358% 19431 18894 1.274%

25 458107 471035 -1.506% 21738 21282 1.082%

26 510736 531865 -2.462% 24314 24073 0.572%

27 569438 596366 -3.137% 27190 27343 -0.363%

28 634914 663127 -3.287% 30402 30861 -1.089%

29 707949 723390 -1.799% 33986 34065 -0.187%

30 789417 784738 0.545% 37988 37773 0.510%

31 880294 858377 2.553% 42453 42146 0.728%

In Table 2, we display the analytical data, the actual data, and the ARE for CWorld(t)

and DWorld(t) during March 21–31, 2020, with AREi in the range [−3.287%,2.553%] for

CWorld(t), and AREi in the range [−1.089%,2.083%] for DWorld(t).

4 Future Prediction

Using our analytical results in Sections 2 and 3, we display predictions of CWorld(t) and

DWorld(t) on April t, 2020 in Figures 2 and 3 respectively. The regression analysis method

gives higher predictions than the analytical model method, since the analytical model

results in a smaller base of exponentiation.

From a global perspective, unless powerful and effective social and medical impacts

are made, by the end April of 2020, the cumulative number of confirmed cases is 23.333

and 36.068 millions respectively using regression analysis and analytical model, and the

cumulative number of dead cases is 1.148 and 2.528 millions respectively using regression

analysis and analytical model, based on the current situation.
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Figure 2: Prediction of CWorld(t) on April t, 2020.
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Analytical Model

Figure 3: Prediction of DWorld(t) on April t, 2020.
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5 Conclusions

We have made some progress towards analytical expressions of the daily growth of the

cumulative number of confirmed cases and the cumulative number of dead cases, two

most important and daily reported figures. Our analytical methods and results have been

tested using the COVID-19 epidemic data in the world, and proven to be effective and

accurate. We have also predicted the cumulative number of confirmed cases and the

cumulative number of dead cases in April 2020 using our models and methods.
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