
Computer Networks 238 (2024) 110092

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Elastically accelerating lookup on virtual SDN flow tables for
software-defined cloud gateways
Bing Xiong a, Jing Wu a, Qiaorong Huang a, Jinyuan Zhao b, Qiang Tang a, Jin Zhang a,∗,
Kun Yang c, Keqin Li d

a School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
b School of Information Science and Engineering, Changsha Normal University, Changsha 410199, PR China
c School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO43SQ, UK
d Department of Computer Science, State University of New York at New Paltz, NY 12561, USA

A R T I C L E I N F O

MSC:
00-01
99-00

Keywords:
Software-defined cloud gateways
Virtual SDN flow tables
Tuple space search
Network traffic jitters
Elastic accelerating caches

A B S T R A C T

In recent years, Software-Defined Networking has been gradually applied to cloud gateways to provide efficient,
reliable and flexible data transmission services for various large-scale cloud platforms. However, massive
concurrent accessing produces huge network traffic from tenants to cloud platforms, which aggregates at cloud
gateways and brings serious performance bottlenecks regarding packet classification. To solve this problem, this
paper proposes an elastically accelerated lookup method of virtual SDN flow tables for software-defined cloud
gateways. The method caches active exact flows in virtue of network traffic locality, enabling most packets
to directly hit the cache and bypass tuple space search, which significantly accelerates flow table lookup.
Focusing on network traffic jitters, the cache adaptively adjusts its capacity according to the dynamic changes
of the number of active exact flows to maintain high cache hit rates, aiming to achieve elastic acceleration
of flow table lookup. Furthermore, we theoretically derive the performance metrics of our proposed method
such as cache hit rates, cache yield rates and average search length, based on the Zipf distribution model
of network traffic. Eventually, we evaluate the performance of our proposed elastically accelerated lookup
method by experiments with real network traffic traces. Experimental results indicate that our proposed method
outperforms existing cache-accelerated methods with stable cache hit rates around 80% and the speedup of
average search length up to 2.84 even under network traffic jitters.
1. Introduction

As a popular information service pattern in today’s Internet era,
cloud platforms have gradually penetrated into various types of in-
dustries in recent years, and become a key information infrastructure
in contemporary society [1]. In cloud platforms, a cloud gateway is
responsible for information interaction between datacenters and end-
users or other datacenters, and has a crucial impact on cloud service
performance and quality of user experience. However, traditional cloud
gateways only support the conversion between specific protocols often
bound to hardware, and is difficult to adapt to new published pro-
tocols. This greatly impedes the rapid update and upgrade of cloud
gateways to meet the fast development of cloud platforms. As a novel
network paradigm with the separation of control from data and high
programmability, Software-Defined Networking (SDN) [2] significantly
simplifies the functions of packet switching devices, raises data trans-
mission efficiency, reduces network construction and operation costs,

∗ Corresponding author.
E-mail address: jzhang@csust.edu.cn (J. Zhang).

and support rapid network updates and upgrades. Nowadays, a number
of vendors design software-defined cloud gateways to achieve fast and
flexible packet classification [3,4].

To achieve the flexible definition of packet flows with different
granularity, SDN introduces wildcards into the match fields of its
flow tables, primarily composed of key fields from protocol headers.
However, this disables virtual SDN flow tables to directly apply hashing
methods to achieve fast lookup. Until now, tuple space search (TSS) [5]
is a prevalent approach to address this problem. It divides all rules in a
flow table into a certain number of tuples in accordance with the mask
identifying the position of wildcards in the match fields. Subsequently,
Each tuple can be organized with a hash table and be looked up with
its unique mask and the match fields in each flow entry. As for an
arrived packet, it is ignorant of its mask and thus cannot locate its
corresponding tuple in the flow table. Consequently, each packet has
to match against all tuples one by one until a flow entry is found.
vailable online 9 November 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.110092
Received 16 June 2023; Received in revised form 16 October 2023; Accepted 5 No
vember 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:jzhang@csust.edu.cn
https://doi.org/10.1016/j.comnet.2023.110092
https://doi.org/10.1016/j.comnet.2023.110092


Computer Networks 238 (2024) 110092B. Xiong et al.

p
c
w
i
s
p
t
e
a
e

This implies that it needs to undergo the lookup failures of multiple
tuples before a successful match. More seriously, it will present a sharp
increase in the number of tuples and the size of each tuple under
network traffic surges especially induced by cyber attacks [6], which
leads to significant growth in the lookup overheads of the flow table.

To speed up the lookup of virtual SDN flow tables, some researchers
proposed to offload the flow table lookup of incoming packets in
cloud gateways to general-purpose PCs, programmable NICs, and other
hardwares, such as AccelNet [7] and OVS-CAB [8]. However, these
approaches usually require to add additional hardwares with high
cost, which impedes their extensive applications in virtualized plat-
forms. Moreover, much work utilized decision trees to divide flow
rule space into several subspaces, and locate the respective subspace
for each arrived packet, such as EffiCuts [9], PartitionSort [10,11]
and CutTSS [12]. But each insertion or deletion requires a series of
adjustment operations on decision trees with slow update speeds. In
addition, some scholars also suggested to cache important flows in
network traffic to bypass flow table lookup, such as CuckooFlow [13]
and BLP [14]. Nevertheless, existing flow caches are hard to achieve
stable and high hit rates due to their fixed capacity, especially under
network traffic jitters even cyber attacks [15].

To solve the above problems, this paper proposes an elastically ac-
celerated lookup method of virtual SDN flow tables for software-defined
cloud gateways. We first investigates into network traffic locality and
jitters in cloud gateways. Then we devise an elastic accelerating cache
to achieve stable acceleration of flow table lookups, in the presence
of network traffic jitters even cyber attacks. Further, we design an
elastically accelerated lookup method of virtual SDN flow tables and
quantitatively analyze its average search length. Finally, we verify the
performance of our proposed elastic accelerating cache and flow table
lookup method with real network traffic traces. The main contributions
of this paper are summarized as follows.

• Devising an elastic accelerating cache to accommodate active
exact flows at software-defined cloud gateways, according to the
distribution characteristics of network traffic. In particular, the
cache capacity is dynamically adjusted to keep consistence with
the varying number of active exact flows, for stably achieving
high cache hit rates.

• Designing cache scaling conditions based on cache replacement
rates, which real-timely senses the dynamic changes in the num-
ber of active exact flows. Meanwhile, we derive the hit rates and
yield rates of our proposed elastic accelerating cache based on the
Zipf distribution of network traffic.

• Building an elastically accelerated lookup method of virtual SDN
flow tables, which enables the majority of packets directly hit
the above cache to bypass their tuple space searches, and stably
achieves fast flow table lookup in the case of network traffic jitters
even cyber attacks.

• Providing the algorithmic implementation of the flow table lookup
method, deriving average search length of our proposed flow
table lookup method based on its cache hit rates, and verifying
its superiority by experiments with real network traffic traces.

The remainder of this paper is organized as follows. Section 2
resents related works. In Section 3, we introduce software-defined
loud gateways and analyze the distribution characteristics of its net-
ork traffic. Section 4 describes our designed elastic accelerating cache

ncluding its various operations, and deduces the theoretical expres-
ions of its hit rates and yield rates. In Section 5 we provide our
roposed elastically accelerated lookup method of virtual SDN flow
ables, and theoretically derive its average search length. Section 6
valuates the performance of our proposed elastic accelerating cache
nd flow table lookup method with real network traffic traces by
2

xperiments. In Section 7, we conclude the paper.
2. Related work

To accelerate packet classification in virtual SDN switches, some
researchers proposed to offload the flow table lookup of each arrived
packet to hardware, such as general-purpose PCs, special hardware and
programmable NICs. Molnár et al. [16] designed a switch architecture
ESwitch, which exploits on-the-fly template-based code generation to
compile any SDN pipeline into efficient machine code as fast data path.
However, this architecture limits network flexibility and programma-
bility. Miano et al. [17] offloaded the portion of rules supported
by hardware ASICs while keeping the remaining ones in software,
supporting the presence of multiple hardware tables. However, their
acceleration is limited, since they cannot offload flow rules incom-
patible with the ASICs. Similarly, Varvello et al. [18] designed a
GPU-accelerated virtual switch GSwitch, which accelerates the linear
and tuple search of virtual SDN flow tables by exploiting high paral-
lelism and latency-hiding capabilities of GPUs. Fu et al. [19] proposed a
FPGA-accelerated SDN software switch, which offloads time-consuming
functions such as packet buffer management and packet parsing to
FPGAs. Firestone et al. [7] presented AccelNet to offload packet for-
warding function from host networking to the Azure SmartNIC, which
increases packet forwarding rates. Furthermore, Gao et al. [8] offloaded
entire data plane of OVS to SmartNIC, which effectively enhances the
packet forwarding performance of OVS. However, these designs usually
require to add additional hardwares with high cost, and is difficult to
be extensively deployed in the virtualized environments.

Some research efforts accelerated the lookup of virtual SDN flow
tables by elaborately designing their data structures and algorithms.
Lookup methods based on decision trees, such as HiCut [20], Hyper-
Cuts [9], EffiCuts [21], CutSplit [22] and ByteCut [23], divided flow
rule space into several subspaces, and located respective subspace for
each arrived packet. However, decision trees are hard to update, which
requires to reconstruct the trees with a series of adjustments. As an
alternative, tuple space search (TSS) is applied to achieve fast updates
of virtual SDN flow tables. Nevertheless, the lookup performance of TSS
is sensitive to the size of flow tables, especially the number of tuples. To
improve upon TSS, James et al. [24] proposed an online packet classi-
fication algorithm TupleMerge, which reduces the number of tuples by
merging similar flow rules. To incorporate the advantages of decision
trees and TSS, Yingchareonthawornchai et al. [10,11] presented an
integrated approach PartitionSort, which leverages ruleset sortability
to gain a small number of partitions and utilizes multi-dimensional
interval trees to obtain fast lookup and updates on each partition. Li
et al. [12] proposed a two-stage scheme CutTSS, which first constructs
partial decision trees from several rule subsets grouped with respect to
their small fields, and applies TSS to handle packet classification at non-
leaf terminal nodes. However, the number and size of tuples will surge
in the presence of network traffic jitters and even cyber attacks [25],
which gives rise to a sharp decline in the lookup performance of the
flow tables.

To date, many scholars leveraged caching techniques to accelerate
the lookup of virtual SDN flow tables. Congdon et al. [26] proposed a
prediction cache based on network traffic locality, which maps packet
signature into flow key and predicts respective flow rules for incoming
packets, thereby reducing the latency of packet classification. Pfaff
et al. [27] developed a well-known virtual switch, Open vSwitch,
which first selects non-intersecting and non-priority megaflows and
holds them in its kernel space, enabling the majority of packets to go
through fast kernel data-path. Then it caches microflows typically TCP
connections in its megaflow table, which boosts packet classification
speed in the kernel. Moreover, Wang et al. [28] devised a packet-tuple
mapping cache CuckooDistributor to directly locate tuples for arrived
packets, aiming to reduce the tuple space search overheads of the
megaflow table. Besides, they adaptively adjusted the insertion speed
of the microflow cache in terms of its historical miss rates to increase

its hit rates. Xiong et al. [13] designed an active-exact-flow cache based



Computer Networks 238 (2024) 110092B. Xiong et al.
Fig. 1. A typical deployment scenario of software-defined cloud gateways.

on Cuckoo hashing, which enables most of packets directly hit the
cache and locate their corresponding flow entries. Zhou et al. [14]
applied bounded linear probing to reduce the hash collisions of the
flow cache, and designed probabilistic bubble LRU to achieve fast
cache replacements, which improves the cache utilization and hit rates.
However, these caches are hard to achieve stable and high hit rates due
to their fixed capacity, especially under network traffic jitters.

3. Motivation

3.1. Software-defined cloud gateways

Cloud computing has become a prevalent information service pat-
tern in today’s Internet era, with its on-demand services, dynamic
scalability, strong reliability, and cost-effectiveness. It has been widely
employed in various kinds of areas to build cloud platforms, which
provide efficient and flexible information services. In cloud platforms,
a cloud gateway takes charge of data transmission between datacen-
ters and end-users or other datacenters, and has a great effect on
communication performance and quality of user experience. However,
traditional cloud gateways only implement the translation between
specific protocols closely associated with hardware, without the abil-
ity to accommodate new released protocols. This greatly prevents
cloud gateways from fast update and upgrade to satisfy the rapid
development requirements of cloud platforms. With the growing ma-
turity and widespread applications of SDN, some manufacturers have
designed software-defined cloud gateways, such as Tripod [1] and
Cloud-Gateway Automation [4], to be deployed in their cloud plat-
forms. By leveraging the separation of data and control and high
programmability of SDN, cloud gateways can reduce their reliance on
hardware, achieve flexible network configuration and management,
improve data transmission efficiency, and significantly reduce network
deployment and maintenance costs.

Fig. 1 depicts a typical deployment scenario of software-defined
cloud gateways. The cloud platform is segmented into multiple regions,
each of which contains numerous virtual private clouds (VPCs) that
provide independent and secure information services to tenants. Each
VPC consists of a varying number of virtual machines interconnected
through virtual switches. All VPCs in a region are uniformly connected
to cloud gateways, which provide access channel to the Internet and
local datacenters. As for each region, its SDN controller establishes its
network view, and calculates the forwarding paths of packet flows to
generate flow rules, installed into cloud gateways and virtual switches.
Upon receiving a packet, the cloud gateways perform lookup on its
virtual SDN flow table with the flow identifier of the packet. If the
lookup succeeds, we retrieve the actions in the matched flow entry,
and apply them to the packet. Otherwise, a flow setup request is sent
to the controller.
3

A large cloud platform usually hosts numerous enterprise tenants
and tens of thousands of individual tenants. Each enterprise tenant
probably owns thousands of VMs and provides concurrent accessing
for millions of customers. The number of visits on the cloud platform
demonstrates a trend of rapid growth, with the expanding business of
enterprise tenants and the increasing number of individual tenants. The
simultaneous accessing of numerous customers generate huge network
traffic converged on cloud gateways, leading to their serious perfor-
mance bottlenecks of packet forwarding. Meanwhile, customer visits
demonstrate significant diversity during different time periods, such
as, daytime vs. evening, weekdays vs. weekends, off-season vs. peak
season. Moreover, many e-commerce platforms sometimes conduct on-
line promotion activities on shopping festivals like Double Eleven and
Black Friday, resulting in an explosion of customer visits and online
transactions. These situations pose unprecedented challenges on the
data transmission of cloud gateways. In summary, it is imperative to
achieve stable and fast packet forwarding in software-defined cloud
gateways.

3.2. Network traffic characteristics at cloud gateways

In software-defined cloud gateways, network traffic chiefly orig-
inates from information services provided by private clouds leased
by enterprises or individuals, as well as management, upgrades, new
business deployments and other system operations in cloud platforms.
Both customer accessing behavior and system operations generate a
sequence of data transmission activities in a short time period, and the
amount of transmitted data greatly varies in packet flows. This means
that network traffic at cloud gateways presents obvious locality [29],
manifested as: (a) from the perspective of spatial dimension, a majority
of packets are aggregated in a few flows, while most flows only account
for a small number of packets [30]; (b) from the perspective of time
dimension, packets in an elephant flow tend to arrive in batches [31].
Consequently, the state of a flow can be classified into active state with
a batch of transmitting packets and idle state with only a few scattered
packets or none in transmission. Specifically, each flow is supposed to
stay at the idle state when it first appears. For subsequent packets,
the flow will come into the active state, if the interval time between
currently-arrived packet and the latest one in the flow is less than a
preset threshold [32]. Since SDN introduces wildcards into the match
fields of its flow tables, each wildcarding flow can be regarded as a
convergence of multiple exact flows. Thus we can cache active exact
flows in software-defined cloud gateways, to skip heavy flow table
lookup for subsequent packets and achieve fast packet classification.

The distribution of customer visits exhibits a noticeable bias over
time, and system operations also demonstrate evident burstiness. These
are prone to result in the jitter of network traffic in cloud gateways,
as well as the number of active exact flows. To verify network traf-
fic jitters, we select publicly released datasets [33] and observe the
quantitative change of active exact flows. We choose a network traffic
trace with the duration of 106 s around midnight on January 22,
2020, and a synthetic one with the duration of 15 s on each follow-
ing days (2017/7/26, 2018/9/3, 2018/11/9, 2019/9/3, 2019/10/18,
2020/9/26). We set the packet interval threshold (PIT) of active exact
flows respectively as 100 ms, 500 ms, and 1 s, and measure the number
of active exact flows in Fig. 2. As seen from Fig. 2, the number of
active exact flows shows apparent volatility regardless of the value of
the PIT threshold. For instance, the number of active exact flows in
Fig. 2(a) varies in a small range between 15K and 20K when PIT is set
to 1 s, while that in Fig. 2(b) sharply fluctuates between 15K and 60K.
Consequently, the acceleration cache of virtual SDN flow table should
adapt to the dynamic changes in the number of active exact flows,
so that software-defined cloud gateways can stably achieve favorable
packet classification performance.



Computer Networks 238 (2024) 110092B. Xiong et al.
Fig. 2. The number of active exact flows with different thresholds.

4. Elastic accelerating cache of virtual SDN flow tables

4.1. Cache design

To effectively reduce heavy lookup overheads of virtual SDN flow
tables, several research efforts have designed exact-flow caches, such as
MicroFlow [27], CuckooFlow [13], to bypass the tuple space search of
flow table lookup. However, the MicroFlow cache kept newly arrived
exact flows without sufficiently taking advantage of network traffic
locality, which leads to a obvious room for improvement in its hit rates.
To remedy this defect, the CuckooFlow cache held active exact flows to
effectively increase cache hit rates. Nevertheless, the Cuckoo cache is
difficult to cope with network traffic jitters in software-defined cloud
gateways, and cannot stably achieve satisfactory acceleration effects,
due to its fixed cache capacity. When network traffic sharply grows, the
cache cannot accommodate newly-arrived active exact flows, resulting
in a significant decline in cache hit rates and cache acceleration effect.
Conversely for rapidly decreasing network traffic, there will be an
increasing number of vacant entries emerged in the cache, which gives
rise to cache space waste and low cache utilization. In this paper, we
design an elastic accelerating cache (EAC) in Fig. 3, which adaptively
adjusts its capacity in accordance with the varying number of active
exact flows in network traffic, to steadily achieve high cache hit rates
and utilization.

The EAC cache consists of k logical segments with the length l and
their corresponding sub-hash functions. As for a segment, each active
exact flow is mapped into a candidate position in it by its respective
sub-hash, where flow information is recorded. An active exact flow is
usually identified by multiple protocol fields such as source IP address,
destination IP address, source port, destination port, protocol type,
etc., with at least 13 bytes. To save cache space and accelerate cache
matching, each cache entry keeps flow fingerprint ffp as its key typically
2 or 4 bytes, generated from the identifier fid of its active exact flow.
Besides, each cache entry also contains the flow entry address addr and
the timestamp time. The addr indicates the flow entry corresponding to
the active exact flow for further packet forwarding. The time records
the arrival time of the latest packet within the flow, for the replacement
and timeout scanning of the cache. The sub-hash function for each
segment is designed as the modulo l of the random permutation of m
(log2l≤m<n) non-repeating bits randomly selected from the ffp with the
length n.

It is requisite to real-timely sense the dynamic changes of the
number of active exact flows for precise cache capacity adjustment. We
define cache replacement rates, i.e., the number of cache replacements
per unit time, as the indicator for determining whether the cache needs
to be scaled. As for rapid increases in the number of active exact
flows, the cache will be quickly filled up. Subsequent active exact flows
intensively arrived will frequently replace into the cache, resulting in a
significant growth in the number of cache replacements. In this case, we
add a new segment into the cache to accommodate newly-arrived active
exact flows to maintain high cache hit rates. When the number of active
exact flows sharply decreases, subsequent active exact flows sparsely
arrived will be directly stored in vacant cache entries generally without
4

Fig. 3. Our designed elastic accelerating cache.

Fig. 4. An example of cache lookup.

replacements, since more and more expired flows will be eliminated
from the cache in time by timeout scanning. This significantly reduces
the number of cache replacements, and we delete one cache segment
after transferring active exact flows in it to other segments. By this way,
we aim to improve cache utilization while keeping high cache hit rates.
In summary, the number of active exact flows fluctuates with network
traffic jitters, and the cache adaptively expands or retracts to steadily
achieve high cache hit rates and utilization.

4.2. Cache operations

4.2.1. Cache lookup
Fig. 4 describes an example of cache lookup. Suppose that the EAC

cache contains k segments, each of which corresponds to a sub-hash
function subH𝑖(1≤i≤k). When a packet p within a flow f arrives at
time 𝑡0, its flow identifier fid is calculated and hashed into its flow
fingerprint ffp, for subsequent parallel lookup on all segments. For the
𝑖th segment, we calculate the mapping position pos (1≤pos≤l) of the
flow by its respective sub-hash function subH𝑖(.), and locate the cor-
responding candidate cache entry Cache[i][pos], for further matching
with the flow fingerprint ffp. If the flow fingerprint successfully matches
a mapped cache entry with a flow f𝑖, we locate its entry in virtual
SDN flow table with the index addr in the cache entry. Meanwhile,
the timestamp time in the cache entry is updated to 𝑡0. Otherwise, we
return null.

4.2.2. Cache update
In a software-defined cloud gateway, each exact flow repeatedly

switches between the active state and the idle one, along with the
intermittent arrival of packet batches [32]. Therefore, the active-exact-
flow cache should support dynamic update to ensure cache acceleration
effect. When a flow entry is deleted from a virtual SDN flow table, all
exact flows mapped into it should be deleted from the cache, to ensure
correct mapping between the cache and the flow table. We describe the
insertion and deletion of our proposed EAC cache as follows.



Computer Networks 238 (2024) 110092B. Xiong et al.

d
l
t
f
t
i
f
f
e
c
s
n
T
r
o

4

4

I
u
b
a
t
c
c
f
p
2

𝑝

Fig. 5. An example of cache insertion.

(a) Cache insertion: For an active exact flow f to be inserted, we
first calculate its flow fingerprint ffp with its flow identifier fid. Then,
we map the flow into each segment of the cache with its sub-hash
function, and check whether there is any empty mapped cache entry.
Each cache insertion has two cases:

Case 1: If there is any empty mapped cache entry, we directly
record the information of the flow f into the first one, such as the flow
fingerprint ffp, the index of the corresponding flow entry addr, and the
timestamp time.

Case 2: If there is no empty mapped cache entry, we will replace the
flow without any arrived packet for longest time in all mapped cache
entries. Fig. 5 provides a specific example of the cache insertion in this
case. We first retrieve the timestamp time of each mapped cache entry,
and find out the flow f𝑖 with the oldest timestamp. Then, we replace f𝑖
with the flow f.

(b) Cache deletion: Similarly to the above cache insertions, we first
calculate the flow fingerprint ffp with the identifier fid of the flow f to
be deleted. Then, we calculate the mapping position of the flow in each
segment of the cache, and match all mapped cache entries one by one
with the ffp. If a cache entry is successfully matched, we will reset it.

(c) Timeout scanning: As time goes on, an active exact flow in the
cache probably becomes idle or even terminated. Therefore, the cache
needs to apply timeout scanning to timely eliminate all expired flows to
accommodate newly-arrived active exact flows. We first obtain current
system time, and then scan each cache segment to check whether each
flow within it has expired. In particular, we read the timestamp in
each cache entry, and calculate the time interval between it and the
current system time. Then, we compare the time interval with the
packet interval threshold PIT. If the time interval goes beyond the PIT,
it means that the flow in the cache entry has expired, and we reset the
entry.

4.2.3. Cache scaling
When the number of active exact flows noticeably increases, the

EAC cache needs to add segments to accommodate newly-arrived active
exact flows to keep high cache hit rates. However, adding too many
segments probably leads to poor cache utilization, due to the presence
of quite a few empty entries in added segments. Conversely, a sharp
decrease in the number of active exact flows is likely to result in a non-
negligible number of empty cache entries. Hence, it is imperative to
design appropriate scaling conditions for the EAC cache, so its capacity
always matches with the number of active exact flows. In our design,
the EAC cache timely senses the dynamic changes of the number of
active exact flows by cache replacement rates, and adaptively adjusts
its capacity by adding or deleting segments. Considering the evident
diversity of network traffic at different time under various application
scenarios, it is extremely difficult to set a uniform threshold of cache re-
placement rates. Hence, we employ the variation of cache replacement
rates as the indicator of performing cache scaling. Fig. 6 illustrates an
example of cache expansion and retraction.

In Fig. 6, the EAC cache calculates its cache replacement rate in each
5

fixed period (e.g., 1 s) to obtain its variation from that in previous one.
Fig. 6. An example of cache expansion and retraction.

As for an apparent increasing range in cache replacement rates, the
cache immediately adds a segment 𝑆𝑘+1 and generates a corresponding
sub-hash function subH𝑘+1 (.) in Fig. 6(a). The newly-arrived active ex-
act flows f is kept in the segment 𝑆𝑘+1, due to the complete occupation
of its all mapping positions in the front k segments. As for a distinct
rop in cache replacement rates, we transfer all active exact flows in the
ast segment 𝑆𝑘 to the other segments as much as possible, and delete
he segment S𝑘 in Fig. 6(b). For each flow to be transferred (e.g., f𝑚,
𝑛), we calculate its mapping position in each preceding segment. If
here is an empty position, we directly deposit the transferred flow f𝑛
nto it. Otherwise, we find out the flow without any arrived packet
or longest time among them, and replace it with the transferred flow
𝑚. In addition, when there is a very small number of cache segments
specially in initial phases, it is vital to add segments to ensure high
ache hit rates. Meanwhile, when there is an excessive number of cache
egments for the sharply-increasing number of active exact flows, the
umber of segments should be limited to ensure cache yield rates.
herefore, we set the lower bounds of cache hit rates and cache yield
ates, to respectively impose lower and upper bounds on the number
f segments, aiming to ensure overall cache performance.

.3. Performance metrics

.3.1. Cache hit rates
The cache hit rate is a critical metric to evaluate cache performance.

n cloud gateways, network traffic exhibits evident locality due to
ser access behavior and system operations. Specifically, most packets
elong to a few flows from the perspective of packet distribution [30],
nd packets within a flow tend to arrive in batches in terms of packet
ransmission. Extensive studies have applied the Zipf distribution to
haracterize the quantitative distribution of packets in flows [34] ac-
ording to network traffic locality. Suppose that there are N packet
lows ranked as 𝑓1, 𝑓2, . . . , f𝑁 in descending order of their size, the
acket arrival probability p(r) of the flow f𝑟 with the ranking r (r=1,
, . . . , N) can be expressed as (1).

(𝑟) = 𝐶
𝑟𝛼

. (1)

The parameter 𝛼 in (1) represents the skewness of all packets
distributed over flows, and C is a positive constant. Considering that
the EAC cache holds active exact flows, the packet arrival probability



Computer Networks 238 (2024) 110092B. Xiong et al.

a

𝐶

s
h
s

Table 1
The estimation of the hit rates of the EAC cache.
N 𝛼 k CHR𝐸𝐴𝐶

100𝐾 0.96 5 81.18%
100𝐾 0.96 4 79.03%
100𝐾 0.98 4 80.88%
100𝐾 0.98 3 78.32%
200𝐾 0.98 7 80.66%
200𝐾 0.98 6 79.36%
200𝐾 1.00 6 81.35%
200𝐾 1.00 5 79.92%
400𝐾 1.00 9 80.17%
400𝐾 1.00 8 79.30%
400𝐾 1.02 8 81.45%
400𝐾 1.02 7 80.35%

p(r) can be regarded as the metric to measure the activity degree of
the exact flow fr. Suppose that the EAC cache always keeps the top kl
ctive flows, its cache hit rates CHR𝐸𝐴𝐶 can be calculated as:

𝐻𝑅𝐸𝐴𝐶 =
∑𝑘𝑙

𝑟=1 𝑝(𝑟)
∑𝑁

𝑟=1 𝑝(𝑟)
=

∑𝑘𝑙
𝑟=1 𝑟

−𝛼

𝛤𝛼(𝑁)
. (2)

where 𝛤𝛼(N)=∑𝑁
𝑖=1 𝑟

−𝛼 . According to (2), we estimate the cache hit rate
CHR𝐸𝐴𝐶 in Table 1, with the cache segment length l fixed as 3K, and
suitable segment number K for different number of exact flows N and
kewness of flow distribution 𝛼. As seen from Table 1, we can still keep
igh cache hit rates even if appropriately reducing the number of cache
egments k, for the increasing skewness of flow distribution 𝛼 and a

certain number of exact flows N. By contrast, it needs to increase the
number of cache segments k to keep cache hit rates at similar levels,
for specific skewness of flow distribution 𝛼 and significant increase
in the number of exact flows N. In summary, cache hit rates can
be maintained at approximately 80%, by adaptively adjusting cache
capacity for various network traffic with different parameters. This
means that our designed EAC cache can steadily achieve favorable
acceleration effect, and effectively adapt to network traffic jitters.

4.3.2. Cache yield rates
When network traffic jitters, the EAC cache dynamically expands

its capacity to maintain high cache hit rates, which also brings about
more storage overheads. Thus it needs to design metrics to measure the
performance benefit of invested cache capacity. With reference to the
yield rates in economics [35,36], we define the cache yield rate (CYR)
in (3) as the ratio of the cache hit rate CHR𝐸𝐴𝐶 in (2) to the number of
cache segments k, since the EAC cache is composed of a varying number
of segments.

𝐶𝑌𝑅𝐸𝐴𝐶 =
𝐶𝐻𝑅𝐸𝐴𝐶

𝑘
=

∑𝑘𝑙
𝑟=1 𝑟

−𝛼

𝑘𝛤𝛼(𝑁)
. (3)

By fixing the length of each segment l as 1K, we estimate the cache
hit rate and cache yield rate with increasing number of cache segments
in Fig. 7, for different number of exact flows N and different skewness
of flow distribution 𝛼. As seen from Fig. 7, the cache hit rate steadily
rises while the cache yield rate reduces with increasing number of cache
segments. When the number of segments grows from 4 to 8 with N
= 100K and 𝛼 = 1.00, the cache hit rate increases from 73.6% to
79.3% and the cache yield rate declines from 18.4% to 9.9%. As for
the increasing number of exact flows N, the number of active exact
flows will accordingly rise and the EAC cache needs to add segments
to ensure high cache hit rates. When N increases from 100𝐾 to 200𝐾
in Fig. 7(a), the number of segments should be added from 6 to 9 for
keeping cache hit rates above 75%. As for the growing skewness of flow
distribution 𝛼 with stronger network traffic locality, the EAC cache with
an identical number of segments will achieve higher cache hit rates and
cache yield rates. When 𝛼 rises from 1.00 to 1.05 with the number of
segments 10 in Fig. 7(b), the cache hit rate will increase from 81.2% to
6

Fig. 7. The cache hit rate and cache yield rate with increasing number of segments.

Fig. 8. The elastically accelerated lookup method of virtual SDN flow tables in
software-defined cloud gateways.

85.4%, and the cache yield rate will come up from 8.1% to 8.5%. Under
such circumstances, it is suitable to reduce the number of segments to
save cache space, while maintaining high cache hit rates.

5. Elastically accelerated lookup methods of virtual SDN flow
tables

5.1. Algorithmic description

With the above EAC cache, we further construct an elastically
accelerated lookup method of virtual SDN flow tables for software-
defined cloud gateways in Fig. 8. This method identifies active exact
flows in network traffic, and accommodates them in the EAC cache. As
for each arrived packet, the cloud gateway extracts its flow identifier,
and matches against the EAC cache. If the match succeeds, we locate a
flow entry by the matched cache entry, and directly forward the packet
in accordance with the action set in the flow entry. Otherwise, it still
needs to further perform tuple space search on the flow table for packet
forwarding. Owing to the accommodation of active exact flows, the
EAC cache will be hit by a majority of packets in network traffic, by-
passing flow table lookup. When network traffic jitters, the EAC cache
adaptively expands or retracts its capacity to always hold all active
exact flows. By this way, it is expected to keep high cache hit rates,
and the lookup method can stably achieve fast packet classification in
the cloud gateway.

Algorithm 1 describes the algorithmic implementation of the above
elastically accelerated flow table lookup method. Upon receiving a
packet, the cloud gateway first parses its protocol headers to extract
its key fields, and calculates its flow identifier fid for its lookup on
the EAC cache (line 2). If the lookup succeeds to match a cache entry,
we locate the corresponding flow entry with the index addr within it.

Subsequently, we retrieve the match fields in the flow entry and verify



Computer Networks 238 (2024) 110092B. Xiong et al.

b
t
e
f
t
t
l
l

M
t
p
4
i
e
c
s
p
(
a
n

𝐴

t
t

m
M
a
s
n
p
m

6

6

f
n
t

whether they match with the flow identifier fid (line 3–5). As for a
successful match, we skip the tuple space search of the flow table and
directly forward the packet in accordance with the actions in the flow
entry (line 6). Finally, we update the flow entry including counters, and
the timestamp in the cache entry with the arrival time of the packet
(line 7–8).

As for the case of failed cache lookup, we continue to perform tuple
space search on the flow table. In particular, we match against all tuples
one by one with their masks and the flow identifier, until a flow entry
is found. As for each tuple, we compute a masked key by the bitwise
AND of its mask and the flow identifier, to match against the tuple
(line 12–14). If the match succeeds, we will apply the actions in the
matched flow entry to the packet, and update the flow entry (line 15–
18). Subsequently, we check whether the exact flow, which the packet
resides in, has turned into the active state. In particular, we calculate
the arrival time interval between the packet and the latest packet in
the exact flow, and compare it with the PIT threshold (line 22). If it is
less than the PIT threshold, we will insert the exact flow into the EAC
cache (line 23–24). If the tuple space search fails, the cloud gateway
will create a packet-in message as flow setup request, and send it to
SDN controller for instructions (line 29–30).
Algorithm 1: elastically accelerated flow table lookup algorithm
1 Function PacketClassify(Packet pkt)

Input: A packet 𝑝 arrived at software-defined cloud
gateway

Output: Flow table lookup result
2 𝑓𝑖𝑑 ← 𝑃𝑎𝑟𝑠𝑒𝑃𝑎𝑐𝑘𝑒𝑡(𝑝𝑘𝑡);
3 𝑐𝑒 ← 𝐶𝑎𝑐ℎ𝑒𝐿𝑜𝑜𝑘𝑢𝑝(𝑓𝑖𝑑);
4 if 𝑐𝑒 ≠ 𝑁𝑈𝐿𝐿 then
5 𝑓𝑒 ← 𝐺𝑒𝑡𝐹 𝑙𝑜𝑤𝐸𝑛𝑡𝑟𝑦(𝑐𝑒.𝑎𝑑𝑑𝑟);
6 if 𝑓𝑖𝑑 == 𝑓𝑒 → 𝑓𝑖𝑑 then
7 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑠(𝑓𝑒.𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑝𝑘𝑡);
8 𝑈𝑝𝑑𝑎𝑡𝑒𝐹 𝑙𝑜𝑤(𝑓𝑒, 𝑝𝑘𝑡);
9 𝑐𝑒.𝑡𝑖𝑚𝑒 ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝𝑘𝑡.𝑡𝑖𝑚𝑒);
10 return True;
11 for 𝑖 ← 1 to 𝑇𝑈𝑃𝐿𝐸_𝑁𝑈𝑀 do
12 𝑘𝑒𝑦 ← 𝑝𝑘𝑡.𝑓 𝑖𝑑&𝑡𝑢𝑝𝑙𝑒𝑠[𝑖].𝑚𝑎𝑠𝑘;
13 for 𝑓𝑒 in 𝑡𝑢𝑝𝑙𝑒𝑠[𝑖] do
14 if 𝑓𝑒.𝑘𝑒𝑦 == 𝑘𝑒𝑦 then
15 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑠(𝑓𝑒.𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑝𝑘𝑡);
16 𝑈𝑝𝑑𝑎𝑡𝑒𝐹 𝑙𝑜𝑤(𝑓𝑒, 𝑝𝑘𝑡);
17 break;
18 end
19 end
20 if 𝑓𝑒 ≠ 𝑁𝑈𝐿𝐿 then
21 if 𝑓𝑖𝑑 == 𝑓𝑒.𝑙𝑎𝑡𝑒𝑠𝑡_𝑓𝑖𝑑 ∧ 𝑝𝑘𝑡.𝑡𝑖𝑚𝑒 − 𝑓𝑒.𝑡𝑖𝑚𝑒 ≤ 𝑃𝐼𝑇

then
22 𝑓 ← 𝑁𝑒𝑤𝐹𝑙𝑜𝑤(𝑓𝑖𝑑, 𝑖𝑑𝑥, 𝑝.𝑡𝑖𝑚𝑒);
23 𝐶𝑎𝑐ℎ𝑒𝐼𝑛𝑠𝑒𝑟𝑡(𝑓 );
24 return True;
25 end
26 end
27 𝑚𝑠𝑔 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑝𝑘𝑡);
28 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑚𝑠𝑔);
29 return False;

5.2. Algorithmic performance

The average search length is a primary metric to characterize the
performance of our proposed elastically accelerated lookup method of
virtual SDN flow tables OFT-EAC. Thus we theoretically derive the
average search length of our proposed method OFT-EAC and contrast it
with that of state-of-the-art flow table lookup methods. For simplicity,
we assume that each packet only matches a flow entry in the flow table
7

m

at most. Suppose that the flow table contains T tuples, and each tuple
has the load factor 𝛽. For our proposed method OFT-EAC, each arrived
packet first performs parallel lookup on the EAC cache with the search
length l. If the lookup succeeds, we locate the corresponding flow entry
indicated by the cache entry with the total search length 2. Otherwise,
we have to perform the tuple space search on the flow table, with the
average search length expressed as ASL𝑐𝑎𝑐ℎ𝑒−𝑚𝑖𝑠𝑠. Then, we can calculate
the average search length of our proposed method ASL𝑂𝐹𝑇−𝐸𝐴𝐶 in (4),
with the hit rates of the EAC cache CHR𝐸𝐴𝐶 in (2).

𝐴𝑆𝐿𝑂𝐹𝑇−𝐸𝐴𝐶 = 2𝐶𝐻𝑅𝐸𝐴𝐶 + (1 − 𝐶𝐻𝑅𝐸𝐴𝐶 )𝐴𝑆𝐿𝑐𝑎𝑐ℎ𝑒−𝑚𝑖𝑠𝑠. (4)

As for cache lookup failure, the packet has to traverse all tuples one
y one until successfully matching a flow entry in any tuple. Suppose all
uples share equal probability of successful matching, we can infer that
ach packet will perform failed lookup of (𝑇−1)∕2 tuples on average. As
or each failed tuple lookup, we need to travel through the tuple with
he search length 𝛽. As for final successful lookup on a tuple, it takes
he search length 𝛽∕2 + 1 to locate a flow entry in the tuple. With the
ength of each cache lookup 1, we further deduce the average search
ength of the flow table for each failed cache lookup ASL𝑐𝑎𝑐ℎ𝑒−𝑚𝑖𝑠𝑠 in

(5).

𝐴𝑆𝐿𝑐𝑎𝑐ℎ𝑒−𝑚𝑖𝑠𝑠 = 1 + 𝑇 − 1
2

𝛽 +
𝛽
2
+ 1 =

𝑇 𝛽
2

+ 2. (5)

By substituting CHR𝐸𝐴𝐶 and ASL𝑐𝑎𝑐ℎ𝑒−𝑚𝑖𝑠𝑠 in (4) respectively with
(2) and (5), we derive the average search length of our proposed flow
table lookup method ASLOFT-EAC in (6).

𝐴𝑆𝐿𝑂𝐹𝑇−𝐸𝐴𝐶 = 2 +
𝑇 𝛽
2

(1 −
∑𝑘𝑙

𝑟=1 𝑟
−𝛼

𝛤𝛼(𝑁)
). (6)

The popular virtual SDN switch, Open vSwitch [27], designs the
icroFlow cache holding recently arrived exact flows in kernel space,

o accelerate the lookup on virtual SDN flow tables. For each arrived
acket, the switch divides its 32-bit flow identifier into 4 parts to locate
positions in the cache, and parallelly matches with cache entries

n them with the search length 1. If successfully matching a cache
ntry, the switch will retrieve a mask in it, and perform lookup on the
orresponding tuple with the search length 𝛽∕2+1. Thus we can get the
earch length for cache hit as 𝛽∕2+2. If the cache misses, the switch will
erform tuple space search with the average search length identical to
5). Setting the hit rate of the MicroFlow cache as p, we can deduce the
verage search length of the flow table lookup method in Open vSwitch
amed as OFT-MicroFlow in (7).

𝑆𝐿𝑂𝐹𝑇−𝑀𝑖𝑐𝑟𝑜𝐹 𝑙𝑜𝑤 =
𝑇 𝛽
2

− 1
2
𝑝𝛽(𝑇 − 1) + 2. (7)

According to (6) and (7), we estimate the average search length and
he speedup ratios of the above two lookup methods of virtual SDN flow
ables in Table 2, with the number of tuples T as 16 and the segment

length l of the EAC cache as 3K. As seen from Table 2, our proposed
ethod OFT-EAC has much shorter average search length than the OFT-
icroFlow, with average speedup ratio around 1.64. Furthermore, the

verage search length of our proposed OFT-EAC grows in relatively
low way while that of the OFT-MicroFlow rapidly increases, when the
umber of exact flows doubles. This is attributed to the fact that our
roposed EAC cache can keep high cache hit rates, which implies that
ost packets directly hit the cache without looking up the flow table.

. Experiments

.1. Experimental methodology

According to our flow cache design, all scattered packets and the
irst two packets of each batch in any flow will miss the cache, and
eed to proceed with tuple space search on our flow table. Apparently,
hese packets will be sparsely distributed in the flow from the time di-

ension, which implies the absence of temporal locality. Nonetheless,



Computer Networks 238 (2024) 110092B. Xiong et al.
Table 2
The average search length of different flow table lookup methods.
N 𝛼 k 𝛽 p 𝐴𝑆𝐿OF 𝐴𝑆𝐿OFT Speed-

T-EAC -MicroFlow up

100𝐾 0.96 5 2 0.60 5.01 9.00 1.80
100𝐾 0.96 4 2 0.65 5.36 8.25 1.54
100𝐾 0.98 4 2 0.70 5.06 7.50 1.48
100𝐾 0.98 3 2 0.75 5.47 6.75 1.23
200𝐾 0.98 7 4 0.60 8.19 16.00 1.95
200𝐾 0.98 6 4 0.65 8.60 14.50 1.69
200𝐾 1.00 6 4 0.70 7.97 13.00 1.63
200𝐾 1.00 5 4 0.75 8.43 11.50 1.36
400𝐾 1.00 9 8 0.60 14.69 30.00 2.04
400𝐾 1.00 8 8 0.65 15.25 27.00 1.77
400𝐾 1.02 8 8 0.70 13.87 24.00 1.73
400𝐾 1.02 7 8 0.75 14.46 21.00 1.45

Fig. 9. The number of wildcarding flows in network traffic traces.

spatial locality probably still exists, as each flow is likely to contain a
different number of packet batches and scattered packets. Specifically,
a majority of packets are expected to gather in a small number of
elephant flows, while a large number of mice flows only account for
a minority of packets. Consequently, packet traffic for the tuple space
search will exhibit the spatial locality in terms of traditional exact
flows.

As for network traffic traces, we select TRACE20190922 and
TRACE20200122, collected from a 10Gps backbone link at the border
of Jiangsu Province in the CERNET (China Education and Research Net-
work). Each traffic trace involves 15,420,235 packets with a sampling
ratio of 1:4 [33]. Fig. 9 illustrates the varying number of wildcarding
flows in the two traces. As shown in Fig. 9, TRACE20190922 and
TRACE20200122 respectively last for approximately 85 s and 106 s,
and contain a steady number of wildcarding flows around 31K and
29K after the timeout interval 10 s.

By setting the PIT threshold of active exact flows respectively as
128 ms, 256 ms and 512 ms for the above trace, we get a varying
number of active exact flows in Fig. 10. As seen from Fig. 10, the
number of active exact flows presents a similar pattern for different
PIT thresholds. Specifically, the TRACE20190922 demonstrates a small
fluctuation until 23 s, with transient fluctuations between 9 s and 14 s.
However, the number of active exact flows experiences a sharp increase
and stabilizes at around 10K at 23 s. In contrast, the TRACE20200122
shows frequent and significant fluctuations in the number of active
exact flows, with sudden decreases at 14 s, 59 s, and 81 s followed
by rebounds at 29 s and 75 s. In short, both traffic traces exhibit
momentary fluctuations in the number of active exact flows, which can
8

Fig. 10. The number of active exact flows in network traffic traces.

Fig. 11. The real-time number of segments in the EAC cache.

effectively verify the performance of our proposed EAC cache and the
corresponding lookup method of virtual SDN flow tables.

6.2. Cache performance

6.2.1. Real-time cache capacity
As for the above network traffic traces, the EAC cache adapts its

capacity to the varying number of active exact flows, in accordance
with its scaling conditions. In particular, we set the PIT threshold
as 256 ms, the length of each segment as 1K, the initial number of
segments as 5, the expansion period as 1 s, the lower limits of cache
hit rates and cache yield rates respectively as 75% and 10%, and
the decrease and increase threshold of its replacement rates for its
extensions and retractions respectively as 10.5% and 7.9%. With the
above cache parameter settings, we perform flow table lookup on the
network traffic trace, and obtain the real-time number of segments in
our proposed EAC cache in Fig. 11.

By comparing Fig. 10 with Fig. 11, we can see that the number
of segments accordingly increases or decreases for significant rising or
falling on the number of active exact flows. This is attributed to the
significantly decreased or increased proportion of active exact flows in
the EAC cache, which leads to distinct reduction or growth in cache
replacement rates beyond its threshold, and triggers the extensions or
retractions of the cache. When the number of active exact flows surges,
the cache replacement rates rise rapidly and the EAC cache quickly
adds its segments to maintain high cache hit rates, such as during 27 s–
30 s in Fig. 10(b). When the cache yield rates reach the lower bound,
the cache immediately deletes its segments to enhance overall cache
performance, such as 41 s in Fig. 11(a). On the whole, the average
number of cache segments is respectively 6.30 and 4.57, for the trace
TRACE20190922 and TRACE20200122.

6.2.2. Cache hit rates
We compare the cache hit rates of our proposed EAC cache, Cuck-

ooFlow cache [13] and MicroFlow cache [27], with the above network
traffic traces. The capacity of the CuckooFlow cache and the MicroFlow
cache is suited to be respectively set as 7K and 5K in the light of the
average number of segments in the EAC cache in Fig. 11. With the
above parameter settings, we respectively operate the EAC cache, the



Computer Networks 238 (2024) 110092B. Xiong et al.
Fig. 12. The hit rates of different caches.

CuckooFlow cache and the MicroFlow cache on the network traffic in
the trace, and get respective cache hit rates in Fig. 12.

As shown in Fig. 12, our proposed EAC cache achieves much higher
and more stable hit rates than the CuckooFlow and the MicroFlow,
regardless of network traffic traces. For the TRACE20190922 and
TRACE20200122, the average cache hit rate of the EAC cache is
respectively 81.77% and 79.70%, exhibiting an improvement of 6.09%
and 3.27% over the CuckooFlow cache, while 13.29% and 11.89% over
the MicroFlow cache. Additionally, the fluctuation of the hit rates of
the EAC cache is respectively 8.31% and 7.78%, which is 50.58% and
17.57% lower than the CuckooFlow cache, while 43.64% and 24.72%
lower than the MicroFlow cache. These are primarily attributed to the
fact that the EAC cache holds active exact flows and its capacity is
adaptively adjusted to the dynamic changes in the number of active
exact flows. In contrast, both the CuckooFlow and the MicroFlow keep
fixed capacity, without effective adaptability to the dynamic changes
of network traffic.

6.2.3. Cache yield rates
With the above parameter settings, we perform accelerated lookup

methods of virtual SDN flow tables respectively based on the EAC
cache, the CuckooFlow and the MicroFlow on each traffic trace, and
calculate corresponding cache yield rates in Fig. 13. As seen from
Fig. 13, the EAC cache achieves higher cache yield rates than the
CuckooFlow and the MicroFlow, regardless of network traffic traces.
The EAC cache with a smaller capacity still achieves higher cache hit
rates than those of the CuckooFlow and the MicroFlow, which results
in much higher yield rates than those of the two caches. As for the
EAC cache with a larger capacity, its hit rates are significantly higher
than those of the CuckooFlow and the MicroFlow, which gives rise to
its higher yield rates.

The above experimental phenomenon can be explained by combina-
tive observations of Figs. 11, 12 and 13. As for the TRACE20190922,
our proposed EAC cache only contains 5˜6 segments during its first
half (1–40 s), with smaller capacity and higher cache hit rates. This
naturally brings about higher cache yield rates than those of the
CuckooFlow and the MicroFlow. As for its latter half (after 42 s), the
EAC cache stabilizes at about 7 segments, with its capacity equivalent
to that of the CuckooFlow and the MicroFlow, but slightly higher cache
hit rates. These still result in higher yield rates of the EAC cache.
As for the TRACE20200122, the EAC cache keeps steady at 4 or 5
segments, with the capacity no more than that of the CuckooFlow and
the MicroFlow, while significantly higher cache hit rates. Hence, the
EAC cache achieves much higher yield rates, especially for the case of
only 4 segments during 20–28 s, 60–74 s, 82–93 s and 96–106 s.

6.3. Average search length

Average search length is a key performance metric for the lookup
methods of virtual SDN flow tables. With the above configurations and
the hash length of each tuple set as 29, we respectively perform flow
table lookup methods OFT-EAC, OFT-CuckooFlow and OFT-MicroFlow
9

Fig. 13. The hit rates of different caches.

Fig. 14. The average search length of different accelerated lookup methods of virtual
SDN flow table.

on network traffic traces, and calculate their average search length in
Fig. 14.

As shown in Fig. 14, our proposed OFT-EAC has much shorter and
stable average search length than that of the OFT-CuckooFlow and the
OFT-MicroFlow. In Fig. 14, the average search length of the OFT-EAC
remains around 4.87 and 6.98 respectively for the TRACE20190922
and the TRACE20200122, after the initial phase (10 s). Its average
speedup ratios are respectively 2.43 and 1.45 compared to the OFT-
CuckooFlow, while 2.84 and 1.63 in contrast to the OFT-MicroFlow.
Moreover, the average search length of the OFT-EAC respectively fluc-
tuates by 3.22 and 2.43, which are 54.15% and 23.39% less than
the OFT-CuckooFlow, while 64.57% and 36.67% less than the OFT-
MicroFlow. This is attributed to the fact that the EAC cache in the
OFT-EAC can adapt to network traffic jitters and always keep high
cache hit rates, which means that most of packets will hit the cache
without looking up virtual SDN flow tables.

7. Conclusion

Aiming at the problem of unstable packet classification performance
of software-defined cloud gateways caused by network traffic jitters,
this paper proposes an elastically accelerated lookup method of virtual
SDN flow tables. Particularly, we first cache active exact flows by ex-
ploiting network traffic locality, which enables most packets to bypass
tuple space search, significantly accelerating the lookup of virtual SDN
flow tables. Furthermore, the cache adaptively expands or retracts its
capacity in accordance with the dynamic changes in the number of
active exact flows to consistently maintain high cache hit rates, which
achieves elastic acceleration of flow table lookup. Lastly, we evaluate
the performance of our proposed flow table lookup method and its
elastic accelerating cache with jittered network traffic traces.

The experimental results indicate that our proposed flow table
lookup method outperforms the OFT-CuckooFlow and the OFT-
MicroFlow in terms of cache hit rates, cache yield rates and average
search length. As for network traffic with significant fluctuation, our
proposed elastic accelerating cache stably achieves hit rates around
80%, approximately 6.09% and 13.29% higher than those of the
CuckooFlow and the MicroFlow respectively. Moreover, our proposed



Computer Networks 238 (2024) 110092B. Xiong et al.

&

J
t
M

D

l
e
N
s
t
S
J
e
Q
U

D

A

d
d
P
P
C

R

elastic accelerating cache achieves much higher yield rates, especially
for the case of small number of cache segments. Finally, our proposed
flow table lookup method achieves the speedup ratios of average search
length about 2.43 and 2.84, and its fluctuation reduced by 54.15%
and 64.57%, respectively compared to the OFT-CuckooFlow and the
OFT-MicroFlow. In conclusion, our proposed lookup method of virtual
SDN flow tables significantly promotes the efficiency and robustness of
packet classification in software-defined cloud gateways.

In our future work, more network traffic traces will be collected
from different network scenarios to verify the effectiveness and ap-
plicability of our proposed elastically accelerated lookup method of
virtual SDN flow tables. In the future, we will implement and integrate
the method into popular virtual SDN switches, such as Open vSwitch.
Furthermore, we also plan to apply our proposed elastic accelerating
cache to other flow-based devices and systems, to address other issues
including the energy consumption of TCAM flow table lookup and the
measurement precision of elephant flows.

CRediT authorship contribution statement

Bing Xiong:Methodology, Writing – original draft, Writing – review
editing, Project administration. Jing Wu: Writing – review & editing,

Visualization. Qiaorong Huang: Writing – original draft, Software.
inyuan Zhao: Investigation, Formal analysis. Qiang Tang: Valida-
ion. Jin Zhang: Resources, Supervision. Kun Yang: Conceptualization,
ethodology. Keqin Li: Conceptualization, Theoretical guidance.

eclaration of competing interest

The authors declare the following financial interests/personal re-
ationships which may be considered as potential competing inter-
sts: Bing Xiong reports financial support was provided by National
atural Science Foundation of China. Bing Xiong reports financial

upport was provided by Hunan Provincial Natural Science Founda-
ion of China. Bing Xiong reports financial support was provided by
cientific Research Fund of Hunan Provincial Education Department.
ing Wu reports financial support was provided by Postgraduate Sci-
ntific Research Innovation Project of Hunan Province. Bing Xiong,
iaorong Huang has patent #ZL202111110409.5 licensed to Changsha
niversity of Science and Technology.

ata availability

The authors do not have permission to share data.

cknowledgments

This work was supported in part by National Natural Science Foun-
ation of China (62272062), Hunan Provincial Natural Science Foun-
ation of China (2023JJ30053), Scientific Research Fund of Hunan
rovincial Education Department, China (22A0232, 22B0300), and
ostgraduate Scientific Research Innovation Project of Hunan Province,
hina (CX20230913).

eferences

[1] M.H. Zhang, J. Bi, K. Gao, et al., Tripod: Towards a scalable, efficient and
resilient cloud gateway, IEEE J. Sel. Areas Commun. 37 (3) (2019) 570–585.

[2] Sood M. Nishtha, A survey on issues of concern in software defined networks, in:
3rd International Conference on Image Information Processing, ICIIP, Waknaghat,
India, 2015, pp. 295–300.

[3] T. Pan, N.B. Yu, C.H. Jia, et al., Sailfish: Accelerating cloud-scale multi-tenant
multi-service gateways with programmable switches, in: ACM Conference o
Special Interest Group on Data Communication, SIGCOMM, New York, USA,
2021, pp. 194–206.

[4] S. Natarajan, A. Ramaiah, M. Mathen, A software defined cloud-gateway automa-
tion system using OpenFlow, in: 2nd IEEE International Conference on Cloud
10

Networking, CloudNet, San Francisco, USA, 2014, pp. 219–226.
[5] S. Venkatachary, S. sub hash, V. George, Packet classification using tuple space
search, in: ACM Conference on Special Interest Group on Data Communication,
SIGCOMM, Cambridge, USA, 1999, pp. 135–146.

[6] D. Tang, Y.D. Yan, S.Q. Zhang, et al., Performance and features: Mitigating the
low-rate TCP-targeted doS attack via SDN, IEEE J. Sel. Areas Commun. 40 (1)
(2022) 428–444.

[7] D. Firestone, A. Putnam, S. Mundkur, et al., Azure accelerated networking:
SmartNICs in the public cloud, in: 15th USENIX Symposium on Networked
Systems Design and Implementation, NSDI, Renton, USA., 2018, pp. 50–64.

[8] P. Gao, Y. Xu, H.J. Chao, OVS-CAB: Efficient rule-caching for open vSwitch
hardware offloading, Comput. Netw. 188 (2) (2021) 1–14.

[9] S. Singh, F. Baboescu, G. Varghese, et al., Packet classification using multidimen-
sional cutting, in: ACM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM, New York, USA, 2003,
pp. 213–224.

[10] S. Yingchareonthawornchai, J. Daly, A.X. Liu, et al., A sorted partitioning
approach to high-speed and fast-update OpenFlow classification, in: 24th IEEE
International Conference on Network Protocols, ICNP, Singapore, 2016, pp. 1–10.

[11] S. Yingchareonthawornchai, J. Daly, A.X. Liu, et al., A sorted-partitioning
approach to fast and scalable dynamic packet classification, IEEE/ACM Trans.
Netw. 26 (4) (2018) 1907–1920.

[12] W. Li, T. Yang, O. Rottenstreich, et al., Tuple space assisted packet classification
with high performance on both search and update, IEEE J. Sel. Areas Commun.
38 (7) (2020) 1555–1569.

[13] B. Xiong, Z. Hu, Y. Luo, et al., CuckooFlow: Achieving fast packet classification
for virtual OpenFlow switching by exploiting network traffic locality, in: 17th
IEEE International Symposium on Parallel and Distributed Processing with
Applications, ISPA, Xiamen, China, 2019, pp. 1071–1078.

[14] D. Zhou, H. Yu, M. Kaminsky, et al., Fast software cache design for network
appliances, in: 2020 USENIX Annual Technical Conference, USENIX ATC, Boston,
USA, 2020, pp. 657–671.

[15] D. Tang, S. Wang, B. Liu, et al., GASF-IPP: Detection and mitigation of LDoS
attack in SDN, IEEE Trans. Serv. Comput. (2023) 1–12, (early access).

[16] L. Molnár, G. Pongrácz, G. Enyedi, et al., Dataplane specialization for high-
performance OpenFlow software switching, in: ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, Florianopolis, Brazil, 2016,
pp. 539–552.

[17] S. Miano, F. Risso, H. Woesner, Partial offloading of OpenFlow rules on a tra-
ditional hardware switch ASIC, in: IEEE Conference on Network Softwarization,
NetSoft, Bologna, Italy, 2017, pp. 1–9.

[18] M. Varvello, R. Laufer, F. Zhang, et al., Multilayer packet classification with
graphics processing units, IEEE/ACM Trans. Netw. 24 (5) (2016) 2728–2741.

[19] W.W. Fu, T. Liu, Z.G. Sun, FAS: Using FPGA to accelerate and secure SDN
software switches, Secur. Commun. Netw. 2018 (2018) 1–13.

[20] P. Gupta, N. Mckeown, Classifying packets with hierarchical intelligent cuttings,
IEEE Micro 20 (1) (2000) 1–9.

[21] B. Vamanan, G. Voskuilen, T.N. Vijaykumar, EffiCuts: Optimizing packet classi-
fication for memory and throughput, ACM SIGCOMM Comput. Commun. Rev.
40 (4) (2010) 207–218.

[22] W. Li, X. Li, H. Li, et al., CutSplit: A decision-tree combining cutting and
splitting for scalable packet classification, in: IEEE Conference on Computer
Communications, INFOCOM, Honolulu, USA, 2018, pp. 2645–2653.

[23] J. Daly, E. Torng, ByteCuts: Fast packet classification by interior bit extraction,
in: IEEE Conference on Computer Communications, INFOCOM, Honolulu, USA,
2018, pp. 2654–2662.

[24] D. James, B. Valerio, L. Leonardo, et al., TupleMerge: Fast software packet
processing for online packet classification, IEEE/ACM Trans. Netw. 27 (4) (2019)
1–15.

[25] D. Tang, S. Zhang, Y. Yan, et al., Real-time detection and mitigation of LDoS
attacks in the SDN using the HGB-FP algorithm, IEEE Trans. Serv. Comput. 15
(6) (2022) 3471–3484.

[26] P.T. Congdon, P. Mohapatra, M. Farrens, et al., Simultaneously reducing latency
and power consumption in OpenFlow switches, IEEE/ACM Trans. Netw. 22 (3)
(2014) 1007–1020.

[27] B. Pfaff, J. Pettit, T. Koponen, et al., The design and implementation of
open vSwitch, in: 12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI, Oakland, USA, 2015, pp. 2–16.

[28] Y. Wang, T.Y.C. Tai, R. Wang, et al., Optimizing open vSwitch to support millions
of flows, in: IEEE Global Communications Conference, GlobeCom, Singapore,
2017, pp. 1–7.

[29] W. Mao, Z. Shen, X. Huang, Facilitating network functions virtu-alization
by exploring locality in network traffic, in: 2nd International Conference on
Computer Science and Artificial Intelligence, CSAI, New York, USA, 2018, pp.
495–499.

[30] J. Wallerich, H. Dreger, A. Feldmann, et al., A methodology for studying
persistency aspects of internet flows, ACM SIGCOMM Comput. Commun. Rev.
35 (2) (2005) 23–36.

[31] Y. Wan, H. Song, Y. Xu, et al., T-cache: Dependency-free ternary rule cache
for policy-based forwarding, in: IEEE Conference on Computer Communications,

INFOCOM, Toronto, Canada, 2020, pp. 536–545.

http://refhub.elsevier.com/S1389-1286(23)00537-6/sb1
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb1
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb1
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb2
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb2
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb2
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb2
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb2
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb3
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb4
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb5
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb6
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb6
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb6
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb6
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb6
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb7
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb7
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb7
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb7
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb7
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb8
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb8
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb8
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb9
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb10
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb10
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb10
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb10
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb10
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb11
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb11
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb11
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb11
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb11
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb12
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb12
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb12
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb12
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb12
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb13
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb14
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb14
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb14
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb14
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb14
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb15
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb16
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb17
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb17
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb17
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb17
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb17
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb18
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb19
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb19
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb19
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb20
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb20
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb20
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb21
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb21
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb21
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb21
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb21
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb22
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb22
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb22
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb22
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb22
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb23
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb24
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb24
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb24
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb24
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb24
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb25
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb25
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb25
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb25
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb25
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb26
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb27
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb27
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb27
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb27
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb27
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb28
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb28
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb28
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb28
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb28
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb29
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb30
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb30
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb30
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb30
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb30
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb31
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb31
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb31
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb31
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb31


Computer Networks 238 (2024) 110092B. Xiong et al.
[32] B. Xiong, R. Wu, J. Zhao, et al., Efficient differentiated storage architecture for
large-scale flow tables in software-defined wide-area networks, IEEE Access 7
(2019) 141193–141208.

[33] Network traffic traces, http://iptas.edu.cn/src/system.php.
[34] R.B. Basat, X.Q. Chen, G. Einziger, et al., Randomized admission policy for

efficient top-k, frequency, and volume estimation, IEEE/ACM Trans. Netw. 27
(4) (2019) 1432–1445.

[35] J.Y. Campbell, R.J. Shiller, Yield spreads and interest rate movements: A bird’s
eye view, Rev. Econ. Stud. 58 (3) (1991) 495–513.

[36] P.R. Yang, Using the yield curve to forecast economic growth, J. Forecast. 39
(7) (2020) 1057–1080.

Bing Xiong received the Ph.D. degree in Computer Science
by master-doctorate program from Huazhong University of
Science and Technology (HUST), China, in 2009, and the
B.S. degree from Hubei Normal University, China, in 2004.
He worked as a visiting scholar in the Department of
Computer and Information Science, Temple University, USA,
from 2018 to 2019. He is currently an associate professor
in the School of Computer and Communication Engineering,
Changsha University of Science and Technology, China. His
main research interests include future network architecture,
network measurements, and digital twins.

Jing Wu received the B.S. degree in Computer Science and
Technology from Changsha University of Science and Tech-
nology, China, in 2022. He is currently pursuing the M.S.
degree in the School of Computer and Communication En-
gineering, Changsha University of Science and Technology,
China. His main research interests include software-defined
networking, network virtualization and packet classification.

Qiaorong Huang received the B.S. degree in Software
Engineering from Changsha University of Science and Tech-
nology, China, in 2020. She is currently pursuing the M.S.
degree in the School of Computer and Communication En-
gineering, Changsha University of Science and Technology,
China. Her main research interests include software-defined
networking, network virtualization and packet classification.

Jinyuan Zhao, received the Ph.D. degree in Computer
Science from Central South University, China, in 2020, and
the M.S. degree from Central China Normal University,
China, in 2007. She worked in the School of Computer
and Communication, Hunan Institute of Engineering, China,
from 2007 to 2020. She is currently an assistant professor in
the School of Information Science and Engineering, Chang-
sha Normal University, China. Her main research interests
include future network architecture, network measurements.

Qiang Tang received the BE, ME, and Ph.D. degrees from
the Department of Control Science and Engineering from
Huazhong University of Science and Technology, Wuhan,
China, in 2005, 2007, and 2010, respectively. He was
an academic visitor sponsored by CSC in University of
Essex during 2016–2017. He is currently a lecturer with
the School of Computer and Communication Engineering,
Changsha University of Science and Technology, Changsha,
China. His research interests include vehicle network re-
source optimization, mobile edge computing, smart grid,
and wireless sensor network.
11
Jin Zhang received the B.S. degree in communication
engineering and the M.S. degree in computer application
from Hunan University, Changsha, China, in 2002 and
2004, respectively, and the Ph.D. degree in biomedical
engineering from Zhejiang University, Hangzhou, China, in
2007. He has been a Professor with Changsha University of
Science and Technology since 2021. From 2008 to 2009, he
worked as an Associate Professor with the Hunan University,
Changsha, China. From 2009 to 2011, he worked as a
Postdoctoral Fellow with the Beijing Normal University,
Beijing, China. From 2012 to 2013, he worked as a Post-
doctoral Fellow with the University of Chicago, Chicago,
IL, USA. From 2014 to 2021, he has been a Professor with
Hunan Normal University, Changsha, China. His research
interests include computer network, software engineering,
and artificial intelligence.

Kun Yang received his Ph.D. from the Department of
Electronic & Electrical Engineering of University College
London (UCL), UK. He is currently a Chair Professor in
the School of Computer Science & Electronic Engineering,
University of Essex, leading the Network Convergence Lab-
oratory (NCL), UK. He is also an affiliated professor at
UESTC, China. Before joining in the University of Essex
at 2003, he worked at UCL on several European Union
(EU) research projects for several years. His main research
interests include wireless networks and communications,
IoT networking, data and energy integrated networks and
mobile computing. He manages research projects funded
by various sources such as UK EPSRC, EU FP7/H2020 and
industries. He has published 400+ papers and filed 30
patents. He serves on the editorial boards of both IEEE
(e.g., IEEE TNSE, IEEE ComMag, IEEE WCL) and non-IEEE
journals (e.g., Deputy EiC of IET Smart Cities). He was an
IEEE ComSoc Distinguished Lecturer (2020–2021). He is a
Member of Academia Europaea (MAE), a Fellow of IEEE, a
Fellow of IET and a Distinguished Member of ACM.

Keqin Li is a SUNY Distinguished Professor of Computer
Science with the State University of New York. He is
also a National Distinguished Professor with Hunan Uni-
versity, China. His current research interests include cloud
computing, fog computing and mobile edge computing,
energyefficient computing and communication, embedded
systems and cyber–physical systems, heterogeneous com-
puting systems, big data computing, high-performance
computing, CPU–GPU hybrid and cooperative computing,
computer architectures and systems, computer networking,
machine learning, intelligent and soft computing. He has
authored or coauthored over 900 journal articles, book
chapters, and refereed conference papers, and has received
several best paper awards. He holds nearly 70 patents an-
nounced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top 5
most influential scientists in parallel and distributed com-
puting in terms of both single-year impact and career-long
impact based on a composite indicator of Scopus citation
database. He has chaired many international conferences.
He is currently an associate editor of the ACM Computing
Surveys and the CCF Transactions on High Performance
Computing. He has served on the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, the
IEEE Transactions on Computers, the IEEE Transactions
on Cloud Computing, the IEEE Transactions on Services
Computing, and the IEEE Transactions on Sustainable Com-
puting. He is an AAAS Fellow, an IEEE Fellow, and an
AAIA Fellow. He is also a Member of Academia Europaea
(Academician of the Academy of Europe).

http://refhub.elsevier.com/S1389-1286(23)00537-6/sb32
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb32
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb32
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb32
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb32
http://iptas.edu.cn/src/system.php
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb34
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb34
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb34
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb34
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb34
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb35
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb35
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb35
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb36
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb36
http://refhub.elsevier.com/S1389-1286(23)00537-6/sb36

	Elastically accelerating lookup on virtual SDN flow tables for software-defined cloud gateways
	INTRODUCTION
	RELATED WORK
	MOTIVATION
	Software-Defined Cloud Gateways
	Network Traffic Characteristics at Cloud Gateways

	ELASTIC ACCELERATING CACHE OF VIRTUAL SDN FLOW TABLES
	Cache Design
	Cache Operations
	Cache lookup
	Cache update
	Cache scaling

	Performance Metrics
	Cache hit rates
	Cache yield rates


	ELASTICALLY ACCELERATED LOOKUP METHODS OF VIRTUAL SDN FLOW TABLES
	Algorithmic Description
	Algorithmic Performance

	EXPERIMENTS
	Experimental Methodology
	Cache Performance
	Real-time cache capacity
	Cache hit rates
	Cache yield rates

	Average Search Length

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


