
E-Companion to Learning Preferences with Side Information

A. Survey of works employing user-item interaction data

Table 2 summarizes the di�erent forms of user-item interaction data that have previously been studied.

Activity Interaction Representative articles
Direct Feedback Numerical ratings Breese et al. (1998)

Ansari et al. (2000)
Herlocker et al. (2002)

Text reviews Hu and Liu (2004)
Das and Chen (2007)
Archak et al. (2011)

Purchases In-store sales transactions Fader and Hardie (1996)
Chong et al. (2001)
Chintagunta et al. (2005)
Chintagunta and Dube (2005)

Online sales transactions Bodapati (2008)
Moon and Russell (2008)

In-site actions Add to cart, search Wu and Rangaswamy (2003)
Product view Moe (2006)
Clicks on email links sent by site Ansari and Mela (2003)
Product customization Sismeiro and Bucklin (2004)
Browsing Bucklin and Sismeiro (2003)

Montgomery et al. (2004)
Besbes et al. (2015)

Outside online Twitter, Google, Wiki, IMDB Liu et al. (2016)
Blogs Gopinath et al. (2013)
Browsing Trusov et al. (2016)
Tagging Ghose et al. (2012)

Physical actions Try-on, facial expressions Lu et al. (2016)
Movement, direction faced, gaze Hui et al. (2013)

Usage Song listening time Chung et al. (2009)

Table 2: List of user-item interactions.

A classic user-item interaction is users’ direct feedback in the form of numerical ratings. Numerical
ratings have been the traditional subject of study for recommender system researchers (Breese et al. (1998),
Herlocker et al. (2002) and Ansari et al. (2000)). The prototypical example of this is the Netflix Prize
competition (Bennett and Lanning (2007)), where the data consisted of users’ movie grades on a scale from 1
to 5. Advances in text mining techniques have also allowed analysis of users’ text reviews; see Hu and Liu
(2004) and Archak et al. (2011).

Bodapati (2008) points out that ‘in real-world systems, explicit self-reports of ratings are not observed
as frequently as behavioral data in the form of purchases.’ Along these lines, another well-studied type of
interaction is purchases. Sales transaction data at the customer-product granularity has existed for some
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time now in many forms, e.g. customer transactions have been tracked in brick-and-mortar retail with the
use of scanning devices and loyalty programs. There have been studies dealing with this type of data; for
example, Chong et al. (2001), Fader and Hardie (1996), Chintagunta et al. (2005), and Chintagunta and Dube
(2005) all analyze purchase data among households at brick-and-mortar stores. Online retail has made sales
transactions even easier to record. Both Bodapati (2008) and Moon and Russell (2008) use online purchase
data to make product recommendations.

Beyond purchases, advanced tracking software allows for all types of online behavior to be recorded.
Within a business’ website, a variety of user-item interactions may be recorded, including adding an item to
a virtual shopping cart (Wu and Rangaswamy (2003)), viewing an item’s page (Moe (2006)), and clicking on
personalized email links (Ansari and Mela (2003)). These interactions also extend beyond a business’ own
website into general online behavior, including user-generated content such as blogs (Gopinath et al. (2013))
and social media (Liu et al. (2016)).

Increasingly sophisticated technology has even allowed for collection and analysis of new kinds of data in
the brick-and-mortar setting. Data is generated for example through cell phone tracking and in-store video:
Macy’s encourages shoppers to scan products through their mobile app (MobileCommerceDaily (2013)), and
video can be used to record when customers slow down and look at a product (Hui et al. (2013)); Lu et al.
(2016) were even able to record and analyze customers’ facial expressions while trying on clothing items.

B. Comparison of slice rank to existing tensor ranks

There are many definitions of rank for tensors that have already been studied. The two most common, which
tensor recovery has focused on, are referred to here as CP rank and Tucker rank. We review the canonical
definitions of these ranks here. See Kolda and Bader (2009) for a more thorough treatment of these concepts.

CP rank The CP rank of a tensor relates to its orthogonal decompositions. A rank-one tensor is any tensor
M œ Rm◊m◊n that is the outer product of three vectors, i.e. M = u ¢ v ¢ w for some u œ Rm, v œ Rm, and
w œ Rn, or equivalently, M

k
i,j = uivjwk. For any tensor M , we denote its CP rank as CP(M), which is the

minimum number r such that M can be expressed as the sum of r rank-one tensors.

Tucker rank The Tucker rank of a tensor M , denoted Tucker(M), is the vector (r1, r2, r3), where rd is the
rank of its mode-d unfolding. This relates to its higher order singular value decomposition: given a tensor of
Tucker rank (r1, r2, r3), there exist vectors u

1
, . . . , u

r1 œ Rm, v
1
, . . . , v
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Proposition 1 establishes that the slice rank is a less restrictive measure of complexity than either of these
two rank definitions. Recall that CP(r) is the set of tensors with CP rank at most r, Tucker(r, r, l) is the set
of tensors whose Tucker rank is component-wise at most (r, r, l), and Slice(r) is the set of tensors whose slice
rank is at most r.

Proof of Proposition 1. We first prove that CP(r) ™ Slice(r). Suppose M œ CP(r). By definition there
exist vectors u

1
, . . . , u

r œ Rm, v
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r œ Rn, such that each entry of M can be
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k.
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Let U and V be the matrices with columns u
1
, . . . , u

r and v
1
, . . . , v

r, respectively. Then we can equivalently
write the above expression in matrix form for slices as

M
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!
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¸
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,

where S
k is the diagonal matrix whose diagonal elements are w

1
k, . . . , w

r
k. This equivalent expression for the

slices of M reveals that the slice rank of M is at most r, and so M œ Slice(r).
Now we prove that Tucker(r, r, l) ™ Slice(r). Suppose M œ Tucker(r, r, l). By definition there exist
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Let U and V be the matrices with columns u
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Once again, this equivalent expression for the slices of M reveals that the slice rank of M is at most r, and
so M œ Slice(r). ⌅

C. Proof of Proposition 2

Our proof follows a standard Bayesian argument for minimax lower bounds; for example, see the proof of
Theorem 1.2 in Chatterjee (2014). We will separately show that MSE(M̂) Ø C(r2

/m
2) and MSE(M̂) Ø

C(r/mn). We first give a detailed proof that MSE(M̂) Ø C(r2
/m

2). For each ground truth slice M
k, let the

elements sitting in the first r rows and first r columns be drawn independently from a uniform distribution,
and the remaining elements set equal to 0:

(7) M
k
ij ≥

Y
]

[
Uniform[0, 1] if i Æ r and j Æ r

0 if i > r or j > r

.

Note that all slices of M share the same column and row spaces, both with dimension at most r. Finally,
conditional on M , each entry X

k
i,j of X is drawn from the following two point distribution:

(8) X
k
ij ≥ Ber(Mk

ij).
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Then for each i Æ r and j Æ r, we have
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The first equality is the law of total variance. For the second equality, observe that M
k
ij is independent of

all entries of X except for its corresponding entry X
k
ij . The third equality comes from the fact that, having

defined M
k
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Then for any estimator M̂ , the definition of variance implies that
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Taking expectations of both sides, and applying (9), we have

E
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The proof concludes by summing both sides over all entries of M in the first r rows and first r columns (i.e.
nr

2 entries in total) and dividing by m
2
n.

A nearly identical argument shows that MSE(M̂) Ø C(r/mn). For the first slice M
1, let the elements in

the first r rows be drawn independently from a uniform distribution, and the remaining elements set equal to
0:

(10) M
1
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Y
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[
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.

Set the entries of the remaining slices equal to the corresponding entries in the first slice, i.e. M
k
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1
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all k. Once again, conditional on M , each entry X
k
ij is drawn independently from the distribution in (8), so

while the slices of M are copies of each other, the slices of X are not. Then for each i Æ r, we have
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Again, the first equality is the law of total variance, and for the second equality, observe that M
k
ij is

independent of all entries of X except for the (i, j)th entry of each slice. For the third equality, the distribution
of M
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ij conditional on X
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Therefore, for any estimator M̂ we have

E
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The proof concludes by summing both sides over all entries of M in the first r rows (i.e. nmr entries in total)
and dividing by m

2
n. ⌅

D. Proofs of Theorems 1 and 2 and Corollary 1

Before proceeding with the proofs, it will be convenient to review and introduce some additional notation.
For n œ Z+, [n] denotes the set {1, . . . , n}. If X is a matrix, then ÎXÎ2, ÎXÎF , and ÎXÎú are respectively
the operator, frobenius, and nuclear norms of X. ‡i(X) is the i

th largest singular value of X. For a matrix
U œ Rm◊r with orthonormal columns, we will refer to U as a matrix and subspace interchangeably, where the
subspace is the space in Rm spanned by the columns of U ; PU = UU

€ is the projection operator onto the
subspace U . We use d(U, Û) =

..PU ≠ PÛ

..
F

as a metric for subspaces.
It will su�ce to prove Theorem 2; Theorem 1 is just the special case when ” = 0. The proof of Theorem

2 involves two steps, corresponding to the two stages of the algorithm: learning subspaces and projection. In
the first step, we show that we are able to closely estimate the column and row spaces, and in the second
step, we show that if our estimates of the ‘true’ column and row spaces are close, then our estimate of each
slice is close.

D.1. Step 1: Column and Row Space Estimation

To estimate the column space (and similarly the row space), we take the top column singular vectors of
X(1) = M(1) + ‘(1), so it is important to understand the extent to which ‘(1) changes the singular vectors of
M(1). Lemma 1 bounds the error of this step. The first result in Lemma 1 is an upper bound on E

Ë
d(U, Û)2

È
,

which is the expected error of our subspace estimate. Because of the decomposition we make later on, we
also need to bound E

Ë..‘
k
..2

F
d(U, Û)2

È
for any slice of the noise tensor ‘

k, which is complicated by the fact
that ‘

k and d(U, Û) are not independent. The second result in Lemma 1 controls this term.

Lemma 1. Let M œ Rm◊mn be a matrix with column space U œ Rm◊r. Suppose ‘ œ Rm◊mn is a random
matrix with independent elements, where each element ‘ij is mean-zero, and E[‘2

ij ], E[‘4
ij ], and E[‘6

ij ] are
respectively bounded by K2, K4, and K6. Let X = M + ‘, and let Û œ Rm◊r be the column singular vectors
of X corresponding to its largest r singular values. Then taking expectation over ‘, we have
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where M
1 and ‘

1 are the m ◊ m submatrices consisting of the first m columns of M and ‘, respectively.
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Note that M
1 and ‘

1 in the statement of Lemma 1 can in fact be any m ◊ m submatrices of M and ‘;
they are taken to be the first M columns to save on notation, and without loss of generality. The proof of
Lemma 1 relies on the Davis-Kahan Theorem (Davis and Kahan (1970)), via a recent extension by Yu et al.
(2015), which we reproduce as Lemma 2. Note that Lemma 2 is a statement about symmetric matrices, which
we adapt to our setting where the matrices are not symmetric or even square; Yu et al. (2015) also show
a version of Lemma 2 for rectangular matrices that is a similar modification to Wedin’s Theorem (Wedin
(1972)), but applying that directly would not yield as strong a bound as Lemma 1. However, this stronger
bound requires the noise to be balanced.

Lemma 2 (Davis-Kahan Variant; Yu et al. (2015), Theorem 2). Suppose S and Ŝ are symmetric matrices, and
let U and Û be the eigenvectors corresponding to the r largest eigenvalues of S and Ŝ, respectively. Let ⁄r(S)
and ⁄r+1(S) be the r

th and r + 1th largest eigenvalues of S. Then assuming ⁄r(S) ”= ⁄r+1(S) , we have

d(U, Û) Æ
2
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2
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...
F

⁄r(S) ≠ ⁄r+1(S) .

Proof of Lemma 1. First note that the column singular vectors of M and X are identical to the eigenvectors
of MM

€ and XX
€, respectively, and further, the eigenvectors of XX

€ ≠ flIm are the same for any fl œ R.
Thus, Lemma 2 can be applied directly with S = MM

€, and Ŝ = XX
€ ≠ flIm for any fl œ R, and

⁄r(MM
€) ≠ ⁄r+1(MM

€) = ‡r(M)2 ≠ ‡r+1(M)2 = ‡r(M)2:
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To upper bound the numerator, we make the following decomposition:
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We have decomposed the numerator of (12) into three terms. The last term is a deterministic quantity.
The proof concludes by bounding the expectation of the first two terms. All of the following calculations
proceed in the same manner: the equalities come from rewriting expressions in expanded form and setting
any summands with a lone E[‘ij ] to zero, and the inequality applies the assumptions on the moments of the
noise terms.
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Combining (13) and (15) completes the first result, and combining (14) and (16), along with the fact that
E
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2, completes the second.
⌅

D.2. Step 2: Projection onto Estimated Spaces

Lemma 3 decomposes the error of the projection step in terms of the error of our column and row space
estimates. For any slice M

k, our estimate of this slice is the projection of X
k onto the estimated subspaces

Û and V̂ , i.e. PÛ M
k
PV̂ + PÛ ‘

k
PV̂ . If Û and V̂ are close to U and V , then PÛ M

k
PV̂ ¥ PU M

k
PV = M

k.
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Furthermore, since Û and V̂ are low-dimensional subspaces, PÛ ‘
k
PV̂ will be small (this argument needs to

be made carefully as Û and V̂ depend on ‘
k).

Lemma 3. Let M
1 œ Rm◊m be a matrix with column and row spaces U, V œ Rm◊r. Let ‘

1 œ Rm◊m be a
random matrix, and let Û , V̂ œ Rm◊r be random subspaces, where none of these variables are required to be
independent. If M̂
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4d(U, Û)2 + d(V, V̂ )2

2È
.

Proof of Lemma 3. We begin by making the following decomposition, where the first two inequalities rely
on the sub-multiplicative and sub-additive properties of the frobenius norm, and the first inequality also
relies on the fact that
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+ PÛ ‘

1
PV̂

..2
F

Æ
!..M

1(PV̂ ≠ PV )
..

F
+ 2
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..PÛ ‘
1
PV̂

..2
F

.

The last term is decomposed further in a similar way:
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We conclude the proof by taking expectations. ⌅

D.3. Final Steps

We are now ready to conclude the proof. Fix any slice k œ [n]. Lemma 3 first gives us:
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The first term is bounded as follows:
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The remaining terms are bounded by applying Lemma 1 directly. Replacing running constants with c, we
have
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Putting all of this together and rearranging terms, we have
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In the last step above, we consolidated terms by using the fact that K2, K4 and K6 are respectively bounded
by K

2, K
4 and K

6. Note that this entire analysis holds for any k œ [n], so
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This concludes the proofs of Theorems 1 and 2. Corollary 1 follows by returning to (17), and applying (22)
from Section G:
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E. Additional Synthetic Experiments

E.1. Additional Results for Section 6.1.2

Figure 7 depicts results from an extension of the experiment described in Section 6.1.2. This extension is
meant to show the behavior of the slice learning and convex algorithms when the number of slices n falls in
between the cases depicted in Figures 5a and 5b. We used the exact same experimental setup for three more
values of n: 2,

Ô
r, and r ≠ 1. Figure 7a shows that the slice learning algorithm starts to show improvement

even when n = 2, i.e. a single additional slice. Figures 7b and 7c reveal a progression as n increases until the
slice learning algorithm achieves the (r/m)2 rate.

(a) n = 2 (b) n =
Ô

r (c) n = r ≠ 1

Figure 7: Comparison of slice learning and convex approach for noisy slice recovery of low slice rank
tensors with varying numbers of slices. SMSE vs. (r/m)2 is plotted for each replication.

E.2. The E�ect of Unbalanced Noise

To test the e�ect of unbalanced noise, we randomly generated ground truth tensors with varying sizes and
low slice rank exactly as described in Section 6.1.2. Each tensor had n = m slices. We again added mean-zero
gaussian noise, but this time with varying standard deviations. In all cases, the total noise was kept constant,
i.e. the noise model ‘ satisfied

(18) E
Ë..‘

k
..2

F

È
= .01m

2
, k = 1, . . . , n.

For example, the experiments in Section 6.1.2 had all noise terms set with standard deviation 0.1, which
satisfies (18).

In our first experiment, the top half of each slice ‘
k had variance 0.2 and the bottom half had zero

variance, i.e.

E
Ë!

‘
k
ij

"2È
=

Y
]

[
.02 if i Æ m/2

0 if i > m/2
.

In Section 5.1, we defined an unbalance term ”, and here this corresponds to ”
2 = O(m2

n
2), which is the

highest scaling for ” when the variances are bounded. The results are summarized in Figure 8b, and compared
with Figure 8a, which is a reproduction of the corresponding balanced noise experiment from Section 6.1.2,
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they show that the slice learning algorithm still performs well, even though Theorem 2 no longer makes such
a guarantee.

For our second experiment, only the top two rows have noise, but this noise is allowed to grow unbounded:

E
Ë!

‘
k
ij

"2È
=

Y
]

[
.005m if i = 1, 2

0 if i Ø 3
.

This case corresponds to ”
2 = O(m3

n
2), and is summarized in Figure 8c. At this point, the slice learning

algorithm performs poorly when r/m is small.

(a) ” = 0 (b) ” = O(m2
n

2) (c) ” = O(m3
n

2)

Figure 8: Comparison of slice learning and convex approach for noisy slice recovery of low slice rank
tensors with varying levels of unbalanced noise. SMSE vs. (r/m)2 is plotted for each replication. Display
(a) is a reproduction of Figure 5c.

For another view into what is going on here, we fixed a particular tensor size and rank, and varied the
unbalance level further. We randomly generated tensors of size 30 ◊ 30 ◊ 30 with slice rank 5. For the added
noise, as before, the bottom rows had zero variance, and the variance of the top rows were set to satisfy (18),
so that the unbalance level can be varied by changing the number of these non-zero variance rows. For each
level of unbalance, we ran 15 replications. The results shown in Figure 9 reveal that the performance of both
algorithms worsens as the unbalance increases, and that the slice learning algorithm outperforms the convex
algorithm for lower levels.

E.3. The E�ect of Correlated Noise

The goal of our final set of synthetic experiments is to evaluate what happens when the independence
assumption is relaxed. Following the same experimental setup as in the previous section, we randomly
generated tensors of size 30 ◊ 30 ◊ 5 with slice rank 5. We will focus on the setting where the noise between
slices is correlated. To do so, each noise term was a zero-mean gaussian with standard deviation 0.1, but the
covariances between corresponding entries across slices were allowed to vary:

Cov(‘k
ij , ‘

¸
ij) = c, k ”= ¸,
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Figure 9: Comparison of slice learning and convex approach for tensors of size 30 ◊ 30 ◊ 30 with slice
rank 5 and varying levels of unbalanced noise. SMSE vs. ”

2 is plotted. Each point is the aggregate of 15
replications.

where c takes values between 0 and its maximum possible value of 0.01. Put another way, for each i, j, the
vector of corresponding noise terms (‘1

ij , . . . , ‘
n
ij) was an independently generated mean-zero multivariate

gaussian, with the above covariance structure.

(a) Di�erent Slices (b) Identical Slices

Figure 10: Comparison of slice learning and convex approach for tensors of size 30 ◊ 30 ◊ 5 with slice
rank 5 and varying levels correlated noise. SMSE vs. covariance is plotted for each replication. Each
point is the aggregate of 15 replications, with 95% error bars. Points in Figure (b) are slightly o�set
horizontally to show overlapping error bars more clearly.

The results in Figure 10a show that both algorithms are only slightly a�ected by increasing covariance;
note that at the most extreme case of c = .01, the noise terms across slices are identical! However, this does
not necessarily mean that correlated noise is always innocuous, at least without further assumptions beyond
slice rank. For example, for the experiment shown in Figure 10b, we used randomly generated tensors whose
slices are identical. These tensors still have low slice rank, but the e�ect of correlation on noise is much
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stronger. In particular, the extreme case c = .01 is now identical to having only a single slice of data.

F. Additional Results for Xiami Experiments

Tables 3 and 4 summarize the results of the experiments using data from Xiami.com, in terms of recovering
the Download and Listen slices. See Section 6.2 for a detailed description of the experiment.

Users Songs Sparsity Naive Matrix Slice
2,412 1,541 9.6 0.84 (11) 0.87 (7) 0.91 (12)
4,951 2,049 7.9 0.83 (14) 0.85 (9) 0.91 (12)

27,411 3,472 3.2 0.83 (11) 0.86 (8) 0.91 (14)
23,300 10,106 14.2 0.94 (18) 0.93 (13) 0.94 (18)
53,713 10,199 8.2 0.93 (10) 0.93 (7) 0.94 (20)

Table 3: Summary of experiments on Xiami data for recovering the Download slice. Each row corresponds
to an experiment on a subset of the data. Columns ‘Users’ and ‘Songs’ show the number of users and
songs in each experiment, and ‘Sparsity’ gives the average number of downloads per user in the data.
Results for the naive benchmark, the matrix-based benchmark, and the slice learning algorithm are
shown in the last three columns. The average AUC over 10 replications is reported, along with the rank
in parentheses.

Users Songs Sparsity Naive Matrix Slice
2,412 1,541 14.8 0.88 (6) 0.88 (7) 0.91 (11)
4,951 2,049 12.6 0.88 (7) 0.87 (11) 0.91 (11)

27,411 3,472 7.5 0.87 (6) 0.87 (3) 0.90 (9)
23,300 10,106 21.3 0.94 (7) 0.92 (8) 0.94 (15)
53,713 10,199 14.1 0.92 (5) 0.92 (12) 0.93 (7)

Table 4: Summary of experiments on Xiami data for recovering the Listen slice. Each row corresponds
to an experiment on a subset of the data. Columns ‘Users’ and ‘Songs’ show the number of users and
songs in each experiment, and ‘Sparsity’ gives the average number of listens per user in the data. Results
for the naive benchmark, the matrix-based benchmark, and the slice learning algorithm are shown in the
last three columns. The average AUC over 10 replications is reported, along with the rank in parentheses.

G. Commentary on Tensor Completion

To this point, our work has applied to the problem of noisy tensor recovery, a framework that addresses
settings such as the retail example and our experiment with music streaming data. As discussed in Section
1, there are settings and applications where the existing data instead can be represented as a partially
observed tensor, i.e. the tensor completion problem. To model the tensor completion setting mathematically,
let � be the set of indices (i, j, k) of the observed entries, so that our data consists of the set of values
{M

k
ij : (i, j, k) œ �}, where M œ Rm◊m◊n is the ground truth tensor; for this discussion, we are assuming

that the observed entries are observed without noise. Moreover, assume that � is generated randomly such
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that each entry is observed independently with probability p > 0. The goal then is to design an estimator M̂ ,
which is now a function of only the observed entries.

Theoretical guarantees in this area should address performance in terms of four parameters now: m, n, r

and p. In particular, the quantity of m
2
p is of interest as it is equal to the expected number of observed

entries per slice. Consider that a necessary condition for any algorithm to complete a tensor is

(19) m
2
p = �(r2 + mr/n).

This lower bound comes from the fact that having slice rank r allows for O(nr
2 + mr) degrees of freedom,

and that the quantity m
2
np is the expected total number of observed entries. Dividing through by n gives

the lower bound in terms of the number of observed entries per slice. Achieving this bound would mean that
(1) in the best case, the per-slice data requirement is r

2, which does not depend on the size of the slices,
and (2) as sources of side information are added, the per-slice data requirement decreases linearly until r

2.
In contrast, a matrix-based approach such as using a matrix completion algorithm on each slice separately
would reduce to completing n matrices of size m ◊ m and rank r. In that case, the best known guarantees
(e.g. Gross (2011)), which have matching lower bounds, are exact recovery with high probability given that

m
2
p = �(mr),

where we have omitted polylogarithmic factors. Another matrix-based approach of applying a matrix
completion algorithm on a single unfolding would not improve on this guarantee.

There has been much work in designing algorithm tailored to the tensor completion problem. The
strongest existing guarantee is by Yuan and Zhang (2015), who propose an algorithm that recovers M exactly,
with high probability, when

m
2
p = �(r2 + mr

2
/n + m

Ô
r/

Ô
n).

This result makes significant progress toward the lower bound (19), but unfortunately the proposed algorithm
is computationally intractable. Huang et al. (2015) analyze a tractable algorithm and show that a su�cient
condition for recovery is

(20) m
2
p = �(mr).

Now, when entries are observed uniformly at random, it is possible to map completion problems to
noisy recovery problems by dividing the observed entries by p and treating unobserved entries as zero. This
technique has been applied in the matrix completion setting (Achlioptas and McSherry (2007), Keshavan
et al. (2010), Chatterjee (2014)). Following the same arguments, we could use the slice learning algorithm for
tensor completion: we (1) divide each observed entry by the proportion of entries observed, i.e. |�|/m

2
n, (2)

treat all hidden entries as observations of the value zero, and (3) execute the slice learning algorithm as usual
on this modified tensor. In other words, we execute the slice learning algorithm on tensor (m2

n/|�|)M�,
where M� is the tensor defined as

(M�)k
ij =

Y
]

[
M

k
ij if (i, j, k) œ �

0 if (i, j, k) /œ �
.

The modified tensor (1/p)M� is a noisy observation of M . To see this, note that we can define the additive

46



noise term of the (i, j, k)th entry as

(21) ‘
k
ij ≥ Ber(p)

p
M

k
ij ≠ M

k
ij .

These noise terms are independent with mean zero, and (1/p)M� = M + ‘. It follows that M could be
estimated by applying our slice learning algorithm to (1/p)M�. Since we do now know p, we use the proportion
of observed entries as an estimate of p.

Since we can reformulate the completion problem as a noisy recovery problem, a natural question then is
what Theorems 1 and 2 tell us about the performance of the slice learning algorithm, where again performance
is measured in terms of p. To analyze the slice learning algorithm as in Theorems 1 and 2, assume that the
entries of M lie in [≠1, 1]. It follows directly from (21) that

(22) E[(‘k
ij)d] = (Mk

ij)d

3
(1 ≠ p)d

pd≠1 + (1 ≠ p)
4

Æ 1
pd≠1 ,

for even values of d. Now in the statements of Theorems 1 and 2, the guarantee is parameterized by K, where
it is assumed that E[(‘k

ij)6] Æ K
6. This is actually a compact version of a more specific guarantee we show

(see (17) in the Appendix) that is parameterized by the second, fourth, and sixth moments of the noise terms.
Combining (22) and that guarantee, we have the following result:

Corollary 1. Assume the entries of M lie in [≠1, 1]. Suppose � is randomly chosen such that each index is
included independently with probability p > 0. Let M̂ be the result of applying the slice learning algorithm to
(1/p)M�. Then there exists a constant c such that

SMSE(M̂) Æ c

5
r

2

m2p
+ r

2

“2
M mnp3 + r

2

“2
M m4n2p5 + r

2

“2
M m2np4 + r

2
”

2

“2
M m3n2p

6
.

Corollary 1 implies that we can expect to recover M using the slice learning algorithm as long as the
denominator of each term in the guarantee is much larger than the numerator. To make more sense of this
su�cient condition, let us assume that the noise is balanced (” = 0) and that “M scales as a constant, in
which case after some algebraic contortion, the condition can be expressed as

m
2
p = �(r2 + m

5/3
r

2/3
/n

1/3 + m
3/2

r
1/2

/n
1/4).

Unlike the guarantee (20) of Huang et al. (2015), this guarantee decreases with n and achieves the final r
2

value for su�ciently large n. On the other hand, the scaling with m is worse, and so is only an improvement
when n grows su�ciently faster than m. Finally, our algorithm is dominated by that of Yuan and Zhang
(2015), but is computationally e�cient. The guarantees we have described here are summarized in Table 5.

G.1. Experiment

We ran a set of synthetic experiments to test the performance of the slice learning algorithm in the tensor
completion setting. Our first experiment is an exact replication of one of the experiments from Gandy
et al. (2011): we randomly generated tensors of size 20 ◊ 30 ◊ 40 with Tucker rank (2, 2, 2), using the same
procedure described in §6.1.1, and observed each entry with probability 0.6. We benchmarked against the
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Method Per-Slice Observations

Lower Bound r
2 + mr/n

Matrix-Complete Slices mr

Matrix-Complete Unfolding mr

Huang et al. (2015) mr

Yuan and Zhang (2015) r
2 + mr

2
/n + mr

1/2
/n

1/2

Slice Learning r
2 + m

5/3
r

2/3
/n

1/3 + m
3/2

r
1/2

/n
1/4

Table 5: Comparison of guarantees for tensor completion algorithms, in terms of the number of per-slice
observations su�cient for completion. Logarithmic terms are omitted.

convex algorithm

(23) argmin
Y

3ÿ

i=1
⁄

..Y(i)
..

ú + ÎY� ≠ X�Î2
F ,

which we solved via the Douglas-Rachford splitting method described in Gandy et al. (2011), using their
recommended values for the step size and index of the proximal operator, and solving (23) multiple times
with increasing values of ⁄ until the solutions converged. This procedure was repeated for 60 replications,
and the results are summarized in Figure 11a, where we give the root mean squared error (RMSE, square
root of MSE) averaged over the 60 replications for both the slice learning algorithm and the convex algorithm
(23). Since Douglas-Rachford is an iterative method, we report the average RMSE at various points in the
procedure, i.e. various numbers of iterations. On the other hand, the slice learning algorithm consists of only
a single ‘iteration’, and so a single value is reported. We also performed a second experiment that is a larger
version of the first. We randomly generated tensors of size 200 ◊ 200 ◊ 200 with Tucker rank (10, 10, 10),
with the rest of the experiment remaining the same. The results are summarized in Figure 11b.

Method Iterations RMSE
Slice Learning 1 1.6◊10≠3

Convex 1 1.5◊10≠2

10 5.7◊10≠3

*24 1.2◊10≠3

100 8.2◊10≠6

(a) 20 ◊ 30 ◊ 40 tensors of Tucker rank (2, 2, 2)

Method Iterations RMSE
Slice Learning 1 3.9◊10≠4

Convex 1 9.7◊10≠3

10 4.8◊10≠3

*22 3.2◊10≠4

50 1.1◊10≠4

(b) 200 ◊ 200 ◊ 200 tensors of Tucker rank (10, 10, 10)

Figure 11: Results of synthetic completion experiments. Entries were observed with probability 0.6.
RMSE and iteration count are reported, averaged over 60 replications. Starred (*) rows correspond to
the iteration of the convex algorithm in which, for the first time, the average RMSE falls below that of
the slice learning algorithm.

The slice learning algorithm performs reasonably well, achieving RMSE on the order of 10≠3 to 10≠4. To
put this into perspective, the size of the elements of the randomly generated tensors is on the order of 10≠2,
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so this RMSE amounts to a relative error of about 1% to 10%. Ignoring computational costs, the convex
algorithm outperforms the slice learning algorithm, achieving a lower average RMSE in both experiments
after approximately 20 iterations. Moreover, we observe the RMSE continuing to decrease with each iteration,
and indeed with enough iterations the RMSE may go to zero (or machine precision), corresponding to exact
recovery of the original tensor. On the other hand, when factoring in computational costs, the slice learning
algorithm performs very well. Each Douglas-Rachford iteration requires singular value decompositions of all
three (dense) unfoldings of the tensor, which means each iteration is more computationally expensive than
the entire slice learning algorithm, which only requires SVDs of two (sparse) unfoldings. In concrete terms,
this meant that for our larger experiment, the slice learning algorithm ran in less than a minute, while the
convex approach took upwards of one hour to reach the same level of accuracy.

.
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