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Abstract. Product and content personalization is now ubiquitous in e-commerce. There are
typically not enough available transactional data for this task. As such, companies today
seek to use a variety of information on the interactions between a product and a customer to
drive personalization decisions. We formalize this problem as one of recovering a large-
scale matrix with side information in the form of additional matrices of conforming di-
mension. Viewing the matrix we seek to recover and the side information we have as slices
of a tensor, we consider the problem of slice recovery, which is to recover specific slices of
“simple” tensors from noisy observations of the entire tensor. We propose a definition of
simplicity that on the one hand elegantly generalizes a standard generative model for our
motivating problem and on the other hand subsumes low-rank tensors for a variety of
existing definitions of tensor rank. We provide an efficient algorithm for slice recovery that
is practical for massive data sets and provides a significant performance improvement over
state-of-the-art incumbent approaches to tensor recovery. Furthermore, we establish near-
optimal recovery guarantees that, in an important regime, represent an order improvement
over the best available results for this problem. Experiments on data from a music
streaming service demonstrate the performance and scalability of our algorithm.
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1. Introduction
Consider the problem of learning the propensity of
individual customers for different products. This is
an important challenge in e-commerce, as customer
preferences are a core input into a number of opera-
tional and marketing activities. For example, recom-
mender systems are pervasive throughout e-commerce
where they serve as a tool to drive sales and con-
sumption by decreasing search costs for users. These
systems rely on estimates of customer–product pro-
pensities to automatically suggest products to users
that they are likely to enjoy. User–item propensities are
also used to offer personalized experiences in more
general service settings. Search results and loyalty
programsmay all be personalized to a user. One-to-one
marketing, including banner advertisements and tar-
geted sales promotions, benefits from accurate esti-
mates of user–item propensities. The list goes on.

As an example of the task above, consider the
problem faced by a retailer estimating the likelihood
a specific customer might purchase a given product
using historical transaction data available across all
customers and products in the retailer’s offering. This
task is already quite challenging because of its massive
scale: Amazon.com has upwards of 108 active users

and products (Grey 2015, Statista 2016). In addition to
scale, however, this task represents a statistical chal-
lenge: the probability of a given customer purchasing
a given product is small, so that the observed matrix of
transactions has a very small number of nonzero en-
tries. For instance, in the case of Amazon, the average
active user makes less than a single transaction in a
month (Harris 2015). We will see that this is, in fact, the
key problem: meaningful recovery of the underlying
probabilities from their corresponding realizations is
hard when these probabilities are small.
Ultimately, the only remedy available in this situ-

ation is acquiring more data, perhaps beyond his-
torical transactions. In the retail setting, this is indeed
feasible: e-commerce businesses are able to capture
data from a variety of distinct types of observations at
the customer–product granularity. For example, be-
sides sales transactions, online retailers record users’
browse and search histories (capturing “browse” and
“search” interactions, respectively, between user–
product pairs), clickstream data (capturing a “click”
interaction), and responses to advertisements and pro-
motions (capturing a “promotion” interaction), just to
name a few. The ultimate task, of course, remains pre-
dicting the likelihood that a customer will purchase
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a given product. Although these “slices” of data encode
interactions between a customer and a product that are
distinct from a transaction, they may well inform the
likelihood of a transaction and ultimately help resolve
the challenge of limited data.

We refer to this as the problem of learning preferences
(e.g., the likelihood of a given customer purchasing
a given product in the retail example) with side infor-
mation (e.g., data beyond just historical transactions, as
alluded to above). Our first objective will be to formalize
this problem; there are many paths we can take here,
and we will ultimately propose viewing the problem at
hand as one of recovering a three-dimensional tensor
from its noisy observations.Wewill then seek to solve this
problem and will ultimately present an efficient, near-
optimal algorithm for the same that yields a dramatic
improvement over existing approaches to tensor recovery.

1.1. Representing Data as a Tensor
Taking a step back, the problem of estimating
customer–product purchase probabilities from in-
teraction data of a single type can be formulated as
a noisy matrix recovery problem: the goal is to estimate the
matrix whose rows correspond to customers, columns
correspond to products, and entries contain the pur-
chase probabilities. If our data consisted purely of
transactions, these transactions could be viewed as
a “noisy realization” of the underlying matrix which
we seek to recover. As we discuss in a subsequent
section, this formalization can be viewed as equivalent to
assigning latent feature vectors ui, vj to each customer i
and each product j, respectively, and assuming the
probability of a specific customer i purchasing product j
is a bilinear form in these latent vectors, f (ui, vj). As one
allows the dimension of the latent space to grow, the
expressive power of such a model grows as well, ulti-
mately becoming fully general. The problem of matrix
recovery can be viewed as one of learning the latent
feature vectors and the bilinear form f ( · , · ) from ob-
served data. Indeed, this formalization of the problem
has proved to be incredibly productive and central to the
current state of the art in the design of personalization
algorithms, as we discuss in the literature review.

Our goal here is to consider multiple types of in-
teractions (e.g., sales transactions along with other
customer–product interactions, such as browse and
search). In analogy to matrix recovery, we may
represent these data as a set of matrices, with each
matrix corresponding to a single type of interaction.
We model the various slices of data that we have as
the slices of a three-dimensional tensor (see Figure 1).
Tensors, which are the higher-dimensional analogues
of matrices, have been used in a broad array of appli-
cations to represent high-dimensional data. The un-
derlying generative model (that we will describe in
greater detail in the next section) will then, in analogy to

the matrix setting, continue to correspond to assigning
latent feature vectors ui, vj to each customer i and each
product j, respectively. However, the likelihood of each
interaction type k between a specific customer i and
product j will be described by a distinct bilinear form in
these latent vectors, fk(ui, vj). The problem of “recover-
ing” this tensor from its noisy observations is then
equivalent to learning these latent feature vectors along
with each of the bilinear forms associated with a spe-
cific type of interaction.
We may thus formalize the task we have laid out as

the problem of recovering a three-dimensional tensor
from its “noisy observations.” In fact, we will typically
be interested in recovering a single slice of the tensor
(for instance, the slice corresponding to the likelihood
of a transaction) using data available across all slices. To
clarify the observation model at hand, the observed
data, as a special case, can be seen as a single realization
of an underlying tensor of probabilities; that is, a given
entry of the observed tensor is a Bernoulli random
variable with mean equal to the corresponding entry in
the ground truth tensor. When the underlying ground
truth probabilities are small, the observed tensor will be
sparse (in the usual mathematical sense of the term).
This observation model is particularly relevant to the
retail example discussed above where the occurrence
(or nonoccurrence) of a transaction or other interac-
tions may be thought of as Bernoulli realizations with
specific, unknown probabilities. A similar generative
model is also relevant to our experiments with music
streaming data. This setting, which we will continue to
refer to as the problem of tensor recovery from noisy
observations, or tensor recovery for short, is the primary
focus of our algorithm and recovery guarantees.
On the other hand, a distinct but closely related

observation model is the setting where some small
subset of entries of the tensor is observed exactly, and
nothing is observed outside of this subset of entries.
One application of this setting is the oft-cited Netflix
problem: using a data set of user–movie ratings, the
task was to predict how users might have rated movies

Figure 1. (Color online) Customer–Product Interaction
Matrices Represented as Slices of a Tensor
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they had not watched. The data here are naturally
represented as a matrix, with some entries observed in
the form of ratings and the other entries unobserved. Of
course, we can again incorporate side information in
this setting, in the form of additional partially observed
matrices; this is typically referred to as the tensor
completion problem. In our retail application, this ob-
servation model would correspond to knowing the
exact probability of purchase on some subset of cus-
tomers and nothing outside that subset. Evidently, the
observation model is less relevant to the retail appli-
cation: we do not observe probabilities; we observe
transactions. Moreover, we observe whether or not
a given customer has purchased a given product for all
customers and products; transactions, albeit sparse, are
not hidden from the retailer. Nonetheless, we will
describe how our algorithm can be extended to this
observation model using a device originally proposed
by Achlioptas and McSherry (2007).

Before summarizing our approach and contribu-
tions, we point out that there is by now a fairly robust
literature on the problem of tensor recovery that one
might hope to fall back on at this stage. Themainstay of
this literature is a convex optimization approach that
seeks to find a tensor that is simultaneously “close” to
the observed data and “simple” in the sense that
a convex surrogate of the “tensor rank” is small. We
will formalize the notion of tensor rank in the next
section, but ultimately, this quantity can be thought of
as restricting the dimension of the latent space of
customer and product feature vectors, as well as the
family of bilinear functions fk( · , · ). Unfortunately, we
will see that the convex approach falls short of ex-
pectations here. This happens for two key reasons that
we will formalize in a subsequent section but explain in
brief here. First and foremost, in the tensor setting,
these convex optimization approaches are difficult to
scale to massive amounts of data and will typically call
for dense matrix operations at scales that are untenable.
This is unlike the matrix setting where the convex
approach can be shown equivalent to a simple spe-
cialized algorithm (singular value decomposition with
soft-thresholding) ideally suited for massive data sets.
More important, though, the statistical power of these
approaches appears to fall well short of what one
might hope for in the tensor setting. As we will show
in what follows, in our setting of three-dimensional
tensors, the error rates achieved using these ap-
proaches are akin to what one would get by simply
running a matrix recovery algorithm on each indi-
vidual slice of the tensor (ignoring all other slices!). In
addition, no guarantees are available on the error of an
individual slice, which is particularly relevant because
our original motivation is recovering a single slice (for
instance, the likelihood of a transaction) using data
from all slices.

1.2. Our Approach and Contributions
Our approach consists of a simple algorithm for learn-
ing the slices of a three-dimensional tensor; applied to
all slices, this also results in an algorithm for the re-
covery of entire tensors from their noisy observations.
Relative to the extant literature, we make the following
contributions.

1.2.1. Statistical Power and Near-Optimal Rates for Noisy
Tensor Recovery. Under a broad set of assumptions,
we establish that our approach admits near-optimal
guarantees on the rate of recovery for a broad class of
three-dimensional tensors from their noisy observa-
tions. We accomplish this by establishing upper bounds
on the estimation error incurred by using our approach
as well as minimax lower bounds applicable to any
approach. The guarantees we establish are stronger than
those available for existing convex approaches. We si-
multaneously place looser restrictions on the underlying
“ground truth” tensor and the nature of the noise than
those required for rigorous recovery via those convex
approaches.
Our analysis also admits guarantees on error rates

for individual slices that do not have a counterpart in
the extant tensor recovery literature. From a pragmatic
perspective, this is particularly important in that such
guarantees are relevant to our original motivation of
recovering a single, specific slice while utilizing data
across all slices.
Perhaps the most important aspect of our theoretical

guarantees is that they quantify the precise extent to
which side information can help with dealing with the
problem of sparse data. In fact, a special case of our re-
sults establishes a broad set of conditions under which
the recovery error on any given single slice (and by
implication, the entire tensor) decays linearly in the number
of slices. Colloquially, this is equivalent to establishing
how one may trade off sparsity in data of one type (say,
transactions) for data of a different type (say, search data).

1.2.2. Empirical Evaluation. We conduct an extensive
set of experiments that empirically demonstrate the
most important advantages of our approach. In the first
suite of experiments using synthetic data, we bench-
mark our recovery algorithm against a well-studied
algorithm from the family of convex approaches. We
observe that the recovery rate of our algorithm exactly
matches that predicted by our theoretical results, and
similarly, the recovery rate of the convex algorithm
matches the best-known theoretical guarantee for con-
vex approaches, which is weaker by an order of mag-
nitude. Moreover, these experiments confirm that our
approach is drastically more efficient from a computa-
tional standpoint.
In our second suite of experiments, we use real-

world data from Xiami.com, a major online music
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streaming service. Much like the sales transaction data
we have alluded to, these data are extremely sparse,
but our algorithm is able to leverage side information to
outperform two common benchmarks by a significant
margin. These experiments also demonstrate the scal-
ability of our approach in practice. In particular, they
are at a large enough scale that most existing tensor
recovery algorithms, including convex approaches, are
intractable. On the other hand, our algorithm is able to
leverage data sparsity to operate on these large-sized
tensors.

1.2.3. Scalability. In addition to the above, our ap-
proach is provably computationally efficient and,
more importantly, easy to scale to massive data sets.
Specifically, every step within our algorithm can be
implemented as a sparse matrix-vector operation and
can thus scale to gigantic amounts of data using off-the-
shelf computational tools. As a result, we find that our
algorithm is typically faster than a single iteration of
iterative “operator splitting” algorithms used by in-
cumbent approaches, and it is considerably simpler to
implement.

We will also show that, with a minor modification,
our approach can also apply to the tensor completion
setting. Here, the nature of the guarantee asks for the
number of observed entries needed for eventual re-
covery as the dimensions of the tensor scale. We will
see there that although our guarantee is not order
optimal (it is dominated by an alternative but com-
putationally intractable approach), it is still the case
that our approach can leverage side information.
Specifically, the number of observations needed per slice
decreases as more slices are added to our approach.

1.3. Related Work
Ourwork falls into various diverse streams of literature
relating to the nature of the data used, intended ap-
plications, and methodology. We describe these in the
following subsections.

1.3.1. Practical Applications. The goal of the present
paper is to use data to learn user–item propensities, which
are a fundamental input to many operational and mar-
keting activities. Perhaps the quintessential application is
recommendation. There has been a great amount of work
indesigning recommender systems; seeAnsari et al. (2000)
and the references in the nice survey by Adomavicius
and Tuzhilin (2005). Recommendations—and, more
generally, personalization—are used in all sorts of
e-commerce activities and come in many different
forms. For some examples in retail, see Linden et al.
(2003) for a description of the various ways that Ama-
zon.com recommends products to customers, including
targeted emails and shopping cart recommendations.

Outside of retail, Ghose et al. (2012) study hotel recom-
mendations in the form of personalized results in online
search engines. Chung et al. (2009) design an adaptive
playlist of recommended songs, which is now fairly
common in streaming media (e.g., Spotify’s “Discover
Weekly” playlist).
The general problem of learning users’ preferences

extends to operational activities as well. For example,
websites can drive usage, and therefore advertising
revenue, through recommendations: Ansari and Mela
(2003) study personalized emails, and Besbes et al.
(2015) study in-page recommendations to other pages.
Fleder and Hosanagar (2009) analyze the impact of
recommender systems on the overall demand for all
products, and Demirezen and Kumar (2016) look at
ways in which recommendations and inventory should
be considered jointly. Recommendations have also
been studied in the context of promotions (Garfinkel
et al. 2008) and the firm’s profit (Hosanagar et al. 2008).
Finally, Bodapati (2008) and Jacobs et al. (2016) seek
to predict future purchase probabilities; these esti-
mates can have important applications such as de-
mand estimation.
Our work presents a framework for analyzing

multiple, diverse data sources, specifically with user–
item interaction data. Technological advances have
allowed modern businesses to easily record and store
massive amounts of data; Naik et al. (2008) survey the
many sources of data and point out that the scale and
diversity of data collected are constantly expanding.
See Section A of the online appendix for a survey of
articles dealing with user–item interaction data.

1.3.2. Statistical Methodology. In terms of methodol-
ogy, our work broadly belongs to the class of collabo-
rativefiltering algorithms. Since theirfirst introduction by
Goldberg et al. (1992), collaborative filtering algorithms
have become a mainstay approach in recommender
systems. Our work fits within the matrix factorization
approaches to these problems (Koren et al. 2009).
A common criticism of collaborative filtering algo-

rithms is their inability to work with sparse data
(Ansari et al. 2000). Our approach combines various
sources of data to alleviate this sparsity. This fits within
a recent stream of research into collaborative filtering
algorithms that incorporate more data; see Shi et al.
(2014) for a survey of these approaches. One such
approach is matrix completion with side information,
for example, by Xu et al. (2013), Jain and Dhillon (2013),
and Chiang et al. (2015). In this line of work, “side
information” refers to user and item features such as
user demographics and product specifications. By
contrast, our approach centers on interactions between
users and items, but we will see that it is flexible
enough to incorporate user and item features as well.
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Another approach is collective matrix factorization
(Singh and Gordon 2008), which studies matrix re-
covery using multiple matrices across multiple groups.
In the setting of multiple matrices across two groups,
our approach will, in fact, apply to a more general
version of this problem and simultaneously allow us to
leverage the modeling advantages of tensors.

Tensors have received significant attention recently
in an attempt to generalize matrix recovery to higher
dimensions; for a nice survey of tensor decompositions
andmethods, see Kolda and Bader (2009). Tensors have
been applied in a wide range of areas—for example, 3D
image and video modeling (Liu et al. 2013), multi-
variate temporal data analysis (Bahadori et al. 2014),
and multitask learning (Romera-Paredes et al. 2013).
See Mørup (2011) for a survey of more applications.

We will provide a thorough review of the tensor
recovery literature to Section 3.1; for now; we briefly
state that the majority of theoretical work so far has
been on convex optimization formulations akin to
nuclear norm minimization for matrix recovery. This
approach was originally proposed by Liu et al. (2013)
and Gandy et al. (2011), and it has been analyzed ex-
tensively (see Tomioka et al. 2011, Mu et al. 2013,
Romera-Paredes and Pontil 2013, and Zheng and
Tomioka 2015). Finally, in parallel to the noisy re-
covery problem, algorithms and guarantees have been
shown for the tensor completion problem by Jain and
Oh (2014), Huang et al. (2015), and Yuan and Zhang
(2016). The goal there is typically to provide conditions
under which the challenging goal of exact recovery is
possible, and those papers prove results under in-
coherence conditions similar to those made for matrix
completion (see Candès and Tao 2010, Gross 2011, and
Recht 2011).

Before proceeding, we make the disclaimer that we
are focusing solely on three-dimensional tensors, so
although our algorithm and guarantee may compare
favorably against existing tensor recovery approaches,
those approaches are specified for higher-order tensors,
whereas ours is not. Alternatively, there is a vast array
of applications, including spatiotemporal analysis
(Bahadori et al. 2014), neuroimaging (Zhou et al. 2013),
and the applications we analyze in the present work,
that makes studying 3D tensors specifically important.

2. Model and Problem
One common problem that we have already alluded to
is predicting customers’ preferences for products from
sales transaction data. In beginning to formalize this
problem, let us label the customers i ! 1, . . . ,m1 and
products j ! 1, . . . ,m2. To reduce notation, we will set
m1 ! m2 ! m, but the entire analysis in what follows
easily generalizes to a different number of customers and
products. Say that the data we have are sales transactions
that occurred over some previous time period—say, the

previousmonth.We encode these data in anm×mmatrix
calledX,whose (i, j)th elementXij is a binary indicator that
equals 1 if customer i purchased product j in the last
month and 0 otherwise. To formulate a meaning-
ful estimation problem, let us imagine that Xij is a
Bernoulli random variable with mean Mij, and denote
by M the matrix of these probabilities. More generally,
we assume

Xij ! Mij + εij,

where εij is a mean-zero noise term, and the noise terms
are independent of each other but not necessarily iden-
tically distributed. To represent Bernoulli observations in
this framework, we can let εij ! Ber(Mij) −Mij. Our es-
timation problem is that of estimating M, having ob-
served X.
Making progress on this problem clearly requires

structural assumptions on M; estimating a completely
general such matrix will require a prohibitive amount
of data in a sense we will make precise shortly. One
fairly general generative model for M is as follows: let
us assume that every customer i is associated with
some unknown vector of latent features, ui ∈Rr, and
every product j is similarly associated with an un-
known latent vector vj ∈Rr. We may then consider
a generative model of the form

Mi,j ! f (ui, vj),

where f :Rr ×Rr →R is also unknown. If f ( · , · ) were
a bilinear form, so that f (ui, vj) ! uui Svj for some un-
known S, then we may write M as

M ! USVu,

where U ∈Rm×r has as its ith row the vector uui , and
similarly for V. Our task is now one of estimating
a general rank r matrix M having observed X; the
complexity of the underlying generative model is
governed by r. For instance, allowing r ! m permits
a fully general model but, as we have noted, one that
will be prohibitive to estimate from data. This gener-
ative model has been used extensively in operations
and marketing to model product purchases (Grover
and Srinivasan 1987), ratings (Ansari et al. 2000), and
click-throughs (Ansari and Mela 2003), along with
applications in myriad settings spanning information
retrieval (Berry et al. 1995) and latent semantic analysis
(Papadimitriou et al. 1998), computer vision problems
such as facial recognition (Sirovich and Kirby 1987) and
background subtraction (Oliver et al. 2000), sensor
network localization (So and Ye 2007), bioinformatics
(Troyanskaya et al. 2001), social network analysis
(Liben-Nowell and Kleinberg 2007), and web link anal-
ysis (Kleinberg 1999), just to name a few.
The above setup demonstrates the manner in which

the problem of predicting customers’ preferences for
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products using data of a single type (e.g., transactions)
can be formulated precisely as one of low-rank matrix
recovery, which in turn is an incredibly well-studied
problem. It is well known that the minimax mean
squared error of anymatrix estimator isΩ r/( m). That is,
for any estimator M̂( · ), we can construct a rank rmatrix
M for which

1
m2 E‖M̂(X) −M‖2F ! Ω r/m( ).

In fact, estimators that achieve this lower bound have
been constructed (e.g., Koltchinskii et al. 2011). In light
of these error rates, recovery is only meaningful in
a relative sense if ‖M‖2F is larger in size than this error
(i.e., if ‖M‖2F ! Ω(rm)). Now, if M encodes purchase
probabilities (i.e., the entries of M are in [0, 1]), then
‖M‖1 ≥ ‖M‖2F, so that for recovery to be meaningful, we
require ‖M‖1 ! Ω(rm). In other words, we require on
average r expected transactions per user to estimate a rank
r model. Put another way, the sparsity of observed
transactions limits the complexity of the model we can
estimate. This limitation is often observed in practice:
consider that in 2014, the online music streaming ser-
vice Spotify had 107 active users and songs (i.e.,m~107)
and had observed 1010 user–song pairs, such that a user
listened to a particular song (i.e., ‖M‖1~1010). The most
complex models Spotify estimated for use in its rec-
ommendation engine had rank ~103 (Bernhardsson
2014), which matches the error bound just described.
This error bound also makes clear the challenge faced
by, say, an online retailer where, as we have noted
previously, on average only a single transaction is
observed per user. It is this challenge that our work is
meant to address.

2.1. Multiple Data Types and Tensors
Now suppose the data we have come from observing
multiple types of customer–product interactions. We
label the different types of interactions k ! 1, . . . ,n, and
we denote the value generated by an interaction of type
k between customer i and product j as Xk

ij. As before,
these data are a noisy observation of some underlying
ground truth value denoted by Mk

ij that is never ob-
served; for example, Xk

ij might be a Bernoulli ran-
dom variable with mean Mk

ij. In general, we assume

Xk
ij ! Mk

ij + εkij,

where εkij is a mean-zero noise term, and the noise terms
are independent of each other but not necessarily
identically distributed. To model Xk

ij as a Bernoulli
random variable with mean Mk

ij, one simply takes
εkij ! Ber(Mk

ij) −Mk
ij. We let Mk and Xk denote the m×m

matrices whose (i, j)th elements are Mk
ij and Xk

ij, re-
spectively. Returning to our running example of

predicting sales using data on a variety of distinct in-
teractions, in our notation, X1 may now be the matrix
whose (i, j)th entry is 1 if and only if customer i pur-
chased product j, X2 could be the matrix whose (i, j)th
entry is 1 if and only if customer i browsed product j,
and so on. MatricesM1 and M2 would then encode the
probabilities of those events that we seek to estimate.
Further matrices X3, . . . ,Xn would encode data ob-
served from ratings, search, etc., taken as noisy ob-
servations of the corresponding matrices M3, . . . ,Mn.
It will be convenient to introduce some basic notation

for three-dimensional tensors. Let M∈Rm×m×n denote
the three-dimensional tensor obtained by stacking the
matricesM1, . . . ,Mn (see Figure 2).We call each of these
matrices slices of the tensor, and continuing with the
same notation, we denote the (i, j)th element of the kth

slice as Mk
ij. Without loss of generality, we will assume

that every entry of M lies in [−1, 1]; this can always be
satisfied by rescaling.
A common set of operations on tensors thatwewill use

frequently here is that of unfolding, which essentially
flattens the tensor into amatrix (see Figure 3). Themode 1
unfolding of M, denoted by M(1), is the m× nm matrix
whose columns are the columns ofM1, . . . ,Mn (the order
of the columnswill notmatter for us). Similarly, themode
2 unfolding, denoted byM(2), is them× nmmatrix whose
columns are the transposed rows of M1, . . . ,Mn.1

2.2. Generative Model and Slice Rank
Just as in matrix recovery, we cannot hope to recover
the tensor M without some assumption on its sim-
plicity. In analogy with the setting of a single in-
teraction (where we dealt with matrices), we now seek
to propose a natural generative model for M. To that
end, we assume that every customer i is associatedwith
some unknown vector of latent features, ui ∈Rr, and
every product j is similarly associated with an un-
known latent vector, vj ∈Rr. Wemay then consider that
for each type of interaction k ! 1, 2, . . .n, we have

Mk
i,j ! f k(ui, vj),

where f k:Rr ×Rr →R is also unknown. This model says
that the likelihood of an interaction between a specific
user and product depends on feature vectors specific to

Figure 2. Matrices M1, . . . ,Mn Represented as Slices of
a Tensor
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the user and product, respectively, through a function
that is specific to the interaction. Given such a model,
the hope is that data from any interaction can now
contribute to learning the underlying user and product
feature vectors, although the function determining
a specific interaction is pinned down using data from
just that interaction. It is this intuition that will even-
tually guide our recovery algorithms.

As before, if f k( · , · ) were a bilinear form, so that
f k(ui, vj) ! uui Skvj, then we may write each of the slices
of M as

Mk ! USkVu,

where U ∈Rm×r has as its ith row the vector uui , and
similarly for V. The key aspect of this model is that U
andV do not depend on k; that is, the latent features are
the same across matrices. This assumption relates the
various matrices Mk to each other and allows for the
potential of using other slices for learning. In particular,
in addition to X1, data from X2, . . . ,Xn can be used to
improve the rate of recovery on M1. Note that the
possibility for some elements of Sk to be equal to zero
means that different interactions do not need to involve
the same latent factors, but rather all interactions draw
from a small, shared pool of latent factors. As before,
the generality of this model is determined by the di-
mension of the latent space, r, a quantity that we will
formalize as the slice rank of the tensor M.

Definition 1. The slice rank of a tensor M∈Rm×m×n,
denoted as Slice(M), is the maximum of the ranks of its
mode 1 and mode 2 unfoldings; that is, Slice(M) !
max(rank(M(1)), rank(M(2))).

In the definition above, rank(M(1)) is the number of
latent customer features and rank(M(2)) is the number
of latent product features. Because these numbers may
not be equal (corresponding to having a different
number of customer and product features), the slice
rank is defined as the maximum of the two quantities.

In what follows, we will seek to recover tensors of
low slice rank from their noisy observations—a for-
malization of the estimation problem that motivates
this paper. Before doing so, we find it worthwhile to
note that there is a long history of using tensors as
a meaningful data structure to capture multivariate
data, and this literature has yielded other notions of

tensor rank. Specifically, the twomost common of these
notions are the canonical (or CP) rank and the Tucker
rank, which have both been used in applications as
diverse as psychometrics (Carroll and Chang 1970),
chemical analysis (Henrion 1994), facial recognition
(Vasilescu and Terzopoulos 2002), chatroom analysis
(Acar et al. 2005), and web search (Sun et al. 2005). As it
turns out, the requirement of a low slice rank is weaker
than requiring either low CP rank or low Tucker rank.
Specifically, denote by CP(r) the set of tensors
M∈Rm×m×n that have a CP rank at most r. Similarly,
denote by Tucker(r, r, l) the set of tensors M∈Rm×m×n

with a Tucker rank at most (r, r, l) (see Section B of the
online appendix for a formal definition of CP rank and
Tucker rank). We then have the following.

Proposition 1. The set of tensors M ∈Rm×m×n with a slice
rank at most r, Slice(r), contains CP(r) and Tucker(r, r, l):

#3(r)⊆ Slice(r), and Tucker(r, r, l)⊆ Slice(r).

The proof of this result can be found in Section B of the
online appendix. In summary, this result establishes
that our requirement of “simplicity” subsumes im-
portant existing notions of simplicity for tensors. More
importantly, as is evident from our presentation thus
far, the notion of low slice rank has an elegant inter-
pretation in our context as seeking out latent repre-
sentations for customers and products along with
functional forms that relate these latent representa-
tions to the likelihood of a specific interaction.

2.3. Our Problem
Our problem is to recover the tensor M from a noisy
observation of its entries. In particular, our observation
consists of the data tensor X ! M + ε, where the ele-
ments of the “noise” tensor ε are independent with
mean zero. We emphasize that, so far, we have not
restricted the elements of ε to be Gaussian or even
identically distributed, as is typically done.2

Our goal is to construct an estimator M̂(X) to min-
imize some loss function with respect to M. To reduce
notation, we will use M̂(X) and M̂ interchangeably. The
usual loss function that we will take here is the mean-
squared error (MSE):

MSE(M̂) ! E

[
∑n

k!1

1
nm2‖M̂

k −Mk‖2F
]
.

We will refer to the problem of constructing an esti-
mator to minimize MSE as tensor recovery. In addition,
as we have noted, in many cases we might only be
interested in recovering a single slice of the tensor
(having observed all ofX). For example, even with data
from many types of customer–product interactions,
we may be solely interested in predicting purchase
probabilities. In these settings, the MSE is not an ideal

Figure 3. Graphical Representation of the Mode 1 and
Mode 2 Unfoldings of M
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loss function, as it measures average recovery error
over all slices. Therefore, in addition to MSE, we will
also consider the slice mean-squared error (SMSE):

SMSE(M̂) ! max
1≤k≤n

E
1
m2‖M̂

k −Mk‖2F
[ ]

,

and refer to the problem of constructing an estimator to
minimize SMSE as slice recovery. SMSE is a more robust
loss function, as it measures the maximum recovery
error over all slices, and so a guarantee on the SMSE
applies to every single slice. Also, because SMSE is
always greater than or equal to MSE, any upper bound
for SMSE will apply to MSE—and therefore the tensor
recovery problem.

3. A Lower Bound and Incumbent
Approaches

In the previous section, we recalled a minimax lower
bound on the error rate one may hope to achieve under
any algorithm for the problem of matrix recovery.
Indeed, this bound motivated our problem of tensor
recovery, where, loosely stated, we hope to use data
from multiple types of customer–product interactions
to improve our estimate of the likelihood of a given
type of interaction. Our goal in this section will be to
understand the extent to which data on additional
types of interactions can help with the recovery of
a specific type of interaction. Thus motivated, we next
establish a lower bound on the error rate that one may
hope to achieve under any algorithm for our problem.

Proposition 2. For any estimator M̂, we can construct
a tensor M∈ Slice(r) with entries in [−1, 1] and a random
noise ε with independent, zero mean entries, such that X !
M + ε has entries in [−1, 1] almost surely, and

SMSE(M̂)≥MSE(M̂)≥C
r2

m2 +
r
nm

( )
,

where C is a universal constant.

The proof of Proposition 2 is presented in Section C
of the online appendix, and it relies on a carefully
constructed ensemble of problem instances. The proposi-
tion lets us draw several key conclusions with regard
to the power of side information.

1. The special case of matrix recovery: In the matrix
recovery setting—that is, n ! 1 so that M is a matrix
of rank r—we recover a minimax lower bound of
MSE(M̂) ! Ω(r/m). This bound is well known (e.g.,
Candès and Plan 2011), and a number of matrix re-
covery algorithms achieve this bound. Consequently,
the naı̈ve approach of using an optimal matrix recovery
algorithm separately on each slice achieves MSE ! O(r/m)
and SMSE ! O(r/m). Beating such an approach is pre-
cisely the motivation for our work here.

2. The potential benefit of side information: The impact
of side information is made precise by the dependence,
on n, of our lower bound on achievable error rate. The
minimax bound above suggests that additional side
information might permit up to a linear reduction in
recovery error up to a certain point, beyond which ad-
ditional side information cannot help. Specifically, the
lower bound is dominated by an error term that scales
like r/nm for n sufficiently small, and it can be no smaller
than r2/m2 irrespective of the amount of side information
n. How does side information alleviate the sparsity problem?
Recall that from our motivating example in the in-
troduction, the minimax optimal recovery rate of O(r/m)
achievable with data of a single type (n ! 1) implies that
we need to observe on the order of r purchases per user,
which is a problem because users make on average less
than a single purchase a month. In the setting above, we
could get by with on the order of just r/n purchases per
user as long aswe recover a total of r2 purchases across all
users and products. Put another way, a retailer that can
easily collect data on 102 types of interactions can hope to
estimate a much richer model with r ! 102.
In summary, the minimax lower bound established

above raises the specter of dramatically increasing our
ability to copewith sparse data, providedwe have access
to sufficient side information. Do existing algorithms
come close to achieving this lower bound?

3.1. Incumbent Approaches
The dominant approach to tensor recovery relies on
convex optimization. To motivate this approach by
example, consider the recovery of a low Tucker rank
tensor from noisy observation X. We can formulate this
problem as the following (hard) optimization problem:

min
Y

Y − X‖ ‖2F
s.t. rank(Y(i))≤ ri, i ! 1, 2, 3.

(1)

That is, we must choose a tensor Y that most closely
“matches” the observed data X from the set of tensors
with Tucker rank bounded by (r1, r2, r3). For certain noise
models such as, for example, independent and identically
distributed (i.i.d.) Gaussian noise, the solution to (1)
would correspond to the maximum likelihood estimator.
Because this is a difficult problem (as a result of the

rank constraints), the standard approach taken is to
come up with a convex surrogate for the tensor rank.
So, for example, one such variant is

min
Y

X − Y‖ ‖2F +
∑3

i!1
λi‖Y(i)‖∗, (2)

where the ranks are replaced by the nuclear norms of
the appropriate unfoldings, and in addition, the rank
constraints have also been dualized (in keeping with
how such relaxations are presented in the literature); the
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weights λi are chosen by the user and intuitively should
encode prior knowledge of rank. This convex algorithm
has been studied extensively (Gandy et al. 2011,
Tomioka et al. 2011, Liu et al. 2013, Signoretto et al.
2014). In the case where n ! 1, the mode 3 unfolding
would naturally be removed from the objective, in
which case the algorithm is precisely equivalent to the
de facto convex formulation for matrix recovery,
rendering the formulation a natural one. Tomioka et al.
(2011) show that if the noise tensor has i.i.d. Gaussian
entries with standard deviation σ, the estimator above
achieves

MSE(M̂) ! O(σ2(r/m + r/n)) (3)

if the Tucker rank of M is (r, r, r). Recall that any tensor
with a Tucker rank (r, r, r) has a slice rank at most r, so
this result applies to a subset of tensorswith a slice rank r.
There is good reason to believe that this guarantee is
tight. For example, Tomioka et al. (2011) also show a
very similar guarantee in a related setting where random
linear combinations of the entries ofM are observed, and
Mu et al. (2013) show that, in fact, that guarantee is tight.
Furthermore, in our experiments later on, we will em-
pirically observe that the recovery rate scales as (3).

Taken together, this is disappointing—it shows that
the convex approach above does not improve on re-
covering individual slices of the matrix via an optimal
matrix completion algorithm and leaves a wide chasm
between the minimax lower bound of Proposition 2
and the error rate achieved. Put simply, this approach
does not solve the data sparsity problem. The issue of why
existing convex approaches do not achieve optimality
is a very interesting question. The main reason to hope
that convex approaches might work in the tensor
setting is because of their success in matrix recovery
where the nuclear norm is easily shown as the tightest
convex relaxation of the rank function. The major
challenge in going frommatrices to tensors is that there
is not an obvious “optimal” convexification of (1) above.
Formulation (2) is one possible convexification, but it is
provably not a tight convexification. Other convex
problems have been suggested—for instance, in
Romera-Paredes and Pontil (2013), Mu et al. (2013),
and Tomioka and Suzuki (2013)—but none of these
proposals improves on the recovery guarantee above.

Outside of convex formulations, Suzuki (2015) re-
cently proposed a Bayesian estimator that matches the
lower bound in Proposition 2 for i.i.d. Gaussian noise
and tensors with low CP rank (as is evident from the
definition of CP rank, this is significantly more restrictive
than slice rank). Unfortunately, this procedure relies
on a Monte Carlo approach in high dimension, and
its computational efficiency is unknown (i.e., we no
longer have the computational efficiency guarantees
that come with the convex approach).

In summary,wemay conclude that employing existing
tensor recovery machinery for the problem at hand does
not yield a solution to the data sparsity problem. In fact,
using the de facto convex approaches for the problem
cannot be expected to yield any improvement over the
approach of individually recovering each slice of data.
Now, in contrast to taking the convex relaxation ap-
proach above, our algorithm works by directly (and
efficiently) constructing a feasible solution to the original
problem (1). The constructed solution is not neces-
sarily an optimal solution to (1), but our core theo-
retical result shows that it is minimax optimal for
noisy recovery.

4. An Algorithm for Slice Recovery
We will now present our algorithm for slice recovery
and tensor recovery, which we will see is of a funda-
mentally different nature than the convex approaches,
as just described. Recall from the setup that X is our
observed data tensor and M is the ground truth tensor
we are trying to recover. We assume M has slice rank r,
which implies the existence of a decomposition wherein
every slice Mk can be represented as Mk ! USkVu,
where U,V are m× r matrices encoding latent customer
and product features, and each Sk is an r× r matrix that
captures the specific bilinear form for each slice Mk.
Up to this point, it has been convenient to think of

each column ofU andV as encoding a specific, possibly
interpretable feature (e.g., customer demographics,
product specifications), but in fact, our algorithm is best
understood when U and V are viewed as latent feature
spaces. In particular, U and V each encode a linear
subspace of Rm, the subspaces spanned by their re-
spective columns. Note that because our model places
no restriction on the bilinear interaction terms Sk, the
terms U and V in the decomposition Mk ! USkVu are
only unique up to the subspaces they span; that is, we
could replace U and V with any set of features that
span the same feature space. For this reason, we will
refer to U and V as features and feature spaces inter-
changeably, and formathematical convenience, wewill
assume without loss of generality that the columns of
U and V are orthonormal.
The algorithm proceeds in two stages, both of which

we motivate from first principles.

Stage 1: Learning Subspaces. In the first stage, we use
data from every slice to estimate the latent feature spaces
U and V. Let us first focus on the procedure for learning
U. Our first step in this regard is to construct the mode 1
unfolding X(1), which, recall, is the m×nm matrix whose
columns are the columns of X1, . . . ,Xn (the order of the
columns does not matter). We then compute Û, our es-
timate of U, as the first r left-singular vectors of X(1).
More precisely, assuming that X(1) admits the singular
value decompositionX(1) ! U1Σ1Vu

1 , we set Û to be the
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columns of U1 corresponding to the r largest singular
values. We denote this entire procedure with the
shorthand

Û ! svds(X(1), r). (4)

Under very mild assumptions, it will turn out that Û is
a “good’ estimate of U. To see this, we can view X(1)
as a noisy observation of M(1), which is a wide matrix
with a row for each customer and a column for each
product–interaction type pair. The key point is that the
columns ofM(1) span the feature space U, so if we were
allowed to observe M(1), we could easily find U as the
space spanned by the columns ofM(1) (i.e., its “column
space”). Instead, we observe X(1), which, because of the
added noise, does not have column space U; in fact, its
columns are likely to span all of Rm. Still, under mild
assumptions on the nature of the noise, we can expect
that the columns of X(1) lie approximately in U and
therefore estimate Û as the orthonormal matrix that
minimizes the function f defined as

f (U1) ! min
R1∈Rr×mn

U1R1 − X(1)
'' ''

F.

For any r-dimensional subspaceU1, f (U1) measures how
closely X(1) can be approximated by a matrix with col-
umn space U1, and its minimizer Û is precisely (4). This
stage is exactly where we take advantage of having
multiple slices of data, as the accuracy of Û as an estimate
ofU is better themore sliceswe have, or thewiderM(1) is.
We will quantify this exactly in the next section.

To estimate V, we apply a similar procedure using
the mode 2 unfolding X(2), which, recall, is the m×nm
matrix whose columns are the transposed rows of
X1, . . . ,Xn. Just as in the previous discussion, X(2) is a
noisy observation of M(2), whose column space is V. It
follows that, under some assumptions on the noise, the
columns of X(2) lie approximately in V, and a natural
estimate of V is

V̂ ! svds(X(2), r).

Stage 2: Projection. The second stage works on each
slice separately. Having estimatedU andV as Û and V̂,
respectively, it remains to estimate the bilinear terms Sk
for each slice Mk. We do this by solving the following
optimization problem for each slice:

Ŝ
k ! argmin

S
‖ÛSV̂

u − Xk‖F. (5)

To motivate this, suppose that instead of Û and V̂, we
had access to U and V exactly. Then knowing that Mk

takes the form USkVu for some Sk, our estimate of Mk

should take this same form. Therefore, we would use
the closest approximation to Xk of this form, essentially

“projecting” Xk onto the feature spaces U and V. Be-
cause we have only Û and V̂, we use the closest ap-
proximation of the form ÛSkV̂

u
instead, as in (5).

The above is a least-squares problem and, as such,
admits a closed-form solution: assuming that Û and V̂
are orthonormal, the solution of (5) is Ŝ

k ! Û
u
XkV̂, and

so our final estimate of Mk can be written as

M̂
k ! ÛÛ

u
XkV̂V̂

u
.

One nice interpretation here is that ÛÛ
u

and V̂V̂
u
,

which we will denote by PÛ and PV̂ , respectively, are
projection operators: left-multiplying a matrix by PÛ
replaces each of its columns with the orthogonal pro-
jection onto the space Û, and similarly, right-multiplying
by PV̂ replaces rows by the orthogonal projection onto V̂.
The resulting matrix lies in the feature spaces Û and V̂.
The entire slice learning algorithm is outlined in

Algorithm 1. The algorithm and our forthcoming analysis
are easily extended to using different values of r when
forming Û and V̂. This may be advantageous when the
latent customer and product feature spaces of M are of
significantly different dimensions, but we use a single
value r here for ease of notation.

Algorithm 1 (Slice Learning)
Input: X, r

1. Û← svds(X(1), r)
2. V̂← svds(X(2), r)
3. M̂

k
←PÛX

kPV̂ , k ! 1, . . . ,n
Output: M̂

k
, k ! 1, . . . ,n

4.1. Practical Considerations
We conclude this section with a discussion of practical
implementation and computation issues.

4.1.1. Knowing r. The slice learning algorithm above
takes the slice rank r as input, but in some settings we
may not know r in advance. In particular, we do not
know the ranks of the two unfoldings M(1) and M(2) in
advance. This is a common challenge in low-rank
matrix recovery, although in that setting, the prob-
lem has proven to be relatively benign. Specifically,
there exists a wide array of rank estimation methods
that we may borrow from, including cross validation
(Wold 1978, Owen and Perry 2009), visual inspection of
plotted singular values (Cattell 1966), and Bayesian
methods (Hoff 2007).
Perhaps the simplest approach when r is not known

is a “universal” thresholding scheme where we pre-
serve only singular vectors corresponding to singular
values above a certain easily precalculated threshold.
This has been shown to work in the matrix recovery
setting (Chatterjee 2014, Gavish andDonoho 2014), and
we anticipate that such a scheme will work just as
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effectively here. In particular, X(1) is the sum of the
signal M(1) and the noise ε(1), so if the singular values
of ε(1) are all significantly lower than the r nonzero
singular values ofM(1), then by Weyl’s inequality, X(1)
will have r singular values that are much larger than
the rest.

To make this more precise, consider the following
argument, which also serves as an introduction to the
type of arguments used in the next section. Suppose
that the terms of ε(1) are i.i.d. with unit variance and
bounded fourth moment; we will assume a more
general noise model later. To fix the signal-to-noise
ratio, assume that the terms of M(1) are of constant
order, so ‖M(1)‖2F ! Θ(m2n). First, M(1) has rank r (for
some unknown r), so if the nonzero singular values of
M(1) are all within a constant order of each other, then
these singular values will be of Θ(‖M(1)‖F/

((
r

√
), or

Θ(m
(((((
n/r

√
). At the same time, by the Bai-Yin law (Yin

et al. 1988), the largest singular value of ε(1) does not
scale greater than O(

(((((
mn

√
). Therefore, a clear separa-

tion forms asymptotically between the nonzero sin-
gular values of M(1) and the singular values of ε(1). By
Weyl’s inequality, X(1) will have r singular values of
Θ(m

(((((
n/r

√
), and its remaining singular values are of

O(
(((((
mn

√
). It follows that choosing a threshold in this gap

and retaining the singular values greater than this
threshold will closely approximate using the correct
value of r. This result can be formalized as a theorem,
but we do not do so here.

4.1.2. Computation with Large Tensors. An important
consideration is the scale at which the slice learning
algorithm needs to operate—the nature of the appli-
cations necessitates that predictions be made rapidly,
as the data are constantly changing and up-to-date
output is required. Therefore, computational efficiency
is of paramount importance in practice.

The only computationally intensive step in the slice
learning algorithm is in Stage 1, which requires the
computation of two partial SVDs. Again, the largest
retailers have upwards of 108 unique customers and
products (m~108), and they can easily collect data on
hundreds of interactions (n~100), at the very least. For
dense matrices, this massive scale renders generic SVD
algorithms intractable. Fortunately, although the am-
bient dimensions of the input data are large, the data
are itself typically quite sparse. Data sparsity has so far
been treated as a disadvantage, because it limits the
complexity of the models we can learn, but it is a key
advantage from a computational standpoint. There exist
mature linear algebraic algorithms that compute the
top singular vectors while exploiting data sparsity—for
example, using Lanczos iterations as in the PROPACK
algorithm (Larsen 1998). Specifically, these algorithms
rely on a power method that repeatedly applies a

matrix-vector multiplication subroutine. Because the
matrix in question (the unfolding of the sparse tensor) is
sparse, this operation can be implemented with running
time linear in the number of nonzero elements of the
matrix. This is already drastically less computation than
convex approaches to this task, which by and large are
solved with iterative algorithms (Gandy et al. 2011) that
require performing dense SVDs multiple times.

4.1.3. Customer/Product Side Information. Our gen-
erative model includes a set of latent customer and
product featuresU and V, and Stage 1 of our algorithm
essentially works by estimating these features jointly
across all slices of data. We will see that the perfor-
mance of our algorithm boils down to how well U and
V can be estimated, and that going from a single slice
of data to many slices interpolates between standard
matrix recovery (with no prior knowledge of U or V)
and recovery given U and V exactly.
In many cases, we may have side information in the

form of explicit features about customers or products
that are believed to be relevant (e.g., customer de-
mographics, product specifications). This is the subject
of a line of work in matrix recovery (Xu et al. 2013, Soni
et al. 2016) that seeks to recover a single slice, assuming
that the feature spaces U and V are known exactly.
The approach we have laid out is flexible enough to

incorporate the same kind of customer and product
features without requiring the assumption of knowing
U and V exactly. Suppose that, in addition to the data
tensor X, we have ℓ customer features that we encode
in the m× ℓ matrix A. We can include this information
in our algorithm by expanding the estimated feature
space Û with these extra features; that is, after pro-
ducing the estimate Û in Stage 1 as usual, we can re-
place Ûwith the subspace spanned by the columns of Û
and A and then execute Stage 2 normally. The equiv-
alent procedure can be done with V̂ if we have product
features.

5. Recovery Guarantees for Slice Learning
The goal of this section is to provide a statistical re-
covery guarantee for our slice learning algorithm.
In particular, we are looking for a guarantee that
improves on the naı̈ve approach of ignoring side
information and recovering each slice separately. As
discussed in Section 3, that naı̈ve approach, which is
effectively a matrix recovery algorithm, can achieve
SMSE ! O(r/m).
So far, we havemade the assumption that the ground

truth tensor has low slice rank, which as we have seen,
restricts the complexity of the underlying generative
model and offers the possibility of improving on the
matrix recovery rate. However, beating this rate is
impossible without making further assumptions.
Specifically, consider the case whereM has n − 1 slices,
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all of whose entries are identically 0, and a single
nontrivial, low-rank slice, which we take without loss
of generality as the first slice. Furthermore, assume that
the noise tensor has independent unit variance
Gaussian entries on the first slice and is identically zero
on the remaining n − 1 slices. Although the ground
truth tensor has low slice rank, the problem of re-
covering the first slice is now literally no different from
the problem of matrix recovery on the first slice, be-
cause the remaining slices are superfluous.

To this end, we define a structural parameter for M
that we will eventually see controls the rate at which
learning across slices is possible. Letting σ2r (M(1)) and
σ2r (M(2)) denote the rth-largest singular values of M(1)
and M(2), respectively, we define the learning rate as
follows.

Definition 2. The learning rate of a tensor M∈Rm×m×n

with slice rank r, denoted by γM, is defined as

γM ! r
m2n

min σ2r (M(1)), σ2r (M(2))
( )

.

We will shortly see how γM plays the role of a rate of
learning. For now, we merely comment on the range
of values one might reasonably expect this quantity
to take. On the low end, observe that, by Marčenko
and Pastur (1967), if the noise tensor were i.i.d., the
(squared) singular values of the noise tensor unfoldings
ε(1) and ε(2) are O(mn). A minimal requirement is that
the singular values of M(1) and M(2) dominate those of
the noise unfoldings, which would, in turn, imply that
γM ! Ω(r/m), so the loosest requirement we can rea-
sonably place on γM is to require γM ! Ω(r/m).

At the other end of the spectrum, given that the
entries ofM are required to be bounded, we must have
that ‖M(1)‖2F ! O(m2n), so that σ2r (M(1)) ! O(m2n/r).
This, in turn, implies that γM ! O(1), and the strongest
requirement we can place is to require γM be a constant.
In fact, in terms of scaling, it is reasonable to treat γM as
constant: the condition ‖M(1)‖2F ! Θ(m2n) is satisfied for
all but trivial examples such as the one just described,
and then σ2r (M(1)) ! Θ(m2n/r) follows as long as the
largest and smallest nonzero singular values ofM(1) are
not significantly different; that is, a parameter akin to
the condition number is bounded.3

Before proceedingwith a statement of ourmain result,
we will place an assumption on the noise (our only
nontrivial assumption thus far). Specifically, we will
require the noise to be “balanced” in a certain sense.

Assumption 1 (Balanced Noise). Let v be the tensor whose
entries are the variances of the corresponding entries of ε.
Specifically, vki,j ! E[(εki, j)

2]. The noise ε is said to be balanced
if the row-sums of v(1) are all equal and the row-sums of v(2)
are all equal.

The assumption above is trivially satisfied in the case
of i.i.d. noise, and, in particular, the case of i.i.d.
Gaussian noise that is often studied in the matrix and
tensor recovery setting. Refinements of our result allow
for weaker versions of this assumption; we will see in
the next subsection that we can permit a certain amount
of discrepancy in the row sums of v(1) and v(2), and we
allow this to grow with m and n. We are now ready to
state our main result.

Theorem 1 (Balanced Noise). Assume that the entries of
M lie in [−1, 1]. If the entries of ε are independent, mean-
zero, and E[(εkij)

6]≤K6, and if, furthermore, ε is balanced,
then there exists a constant c(K) that depends only on K such
that for the slice learning algorithm,

MSE(M̂)≤ SMSE(M̂)≤ c(K)
r2

m2 +
r2

γ2
Mmn

[ ]
.

The proof of Theorem 1 can be found in Section D in the
online appendix. We next evaluate this result in light of
the minimax guarantee established in Proposition 2
and, more generally, our broader goal of slice recovery:

1. Learning from slices: As discussed earlier, at the
very least we expect γM ! Ω(r/m). Even in this setting,
we see that provided that n is sufficiently large,
Theorem 1 guarantees an SMSE (and, consequently,
an MSE as well) that is O(r2/m2). In particular, for n
sufficiently large, we obtain a recovery rate thatmeets the
leading term of the minimax guarantee in Proposition 2.
Of course, this is substantially better than the available
guarantee for the naı̈ve approach, which was O(r/m).

2. High learning rate: As γM grows, so too does our
ability to learn across slices. Specifically, for γM ! Θ(1),
Theorem1guaranteesMSE≤ SMSE ! O(r2/m2+ r2/mn).
This is within a factor of r off from the lower bound of
MSE ! Ω(r2/m2 + r/mn) in Proposition 2. Put a different
way, we achieve SMSE ! O(r2/m2) with only n ! Ω(m)
slices of side information.

3. Recovery rate improvement: The recovery rate in
Theorem 1 is for low slice rank tensors, which in-
cludes tensors with low Tucker rank and CP rank. We
emphasize that the rateMSE ! O(r2/m2 + r2/mn) greatly
improves on the best-known theoretical guarantees
for noisy recovery of low Tucker rank tensors and for
convex optimization approaches to recovering low CP
rank tensors.

5.1. Relaxing the Balanced Noise Assumption
Although the balanced noise assumption is already
a generalization of many frequently studied noise
models, it is worth considering how our algorithm
performs when this assumption does not hold. To do
so, wewill present amore general version of Theorem 1
that relaxes the balanced noise assumption and reflects
the recovery error caused by “unbalanced” noise.
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To proceed, we need to precisely quantify the con-
cept of unbalanced noise. Recall that if v is the tensor
whose entries are the variances of the corresponding
entries of ε (i.e., vkij ! E[(εkij)

2]), then ε is balanced if the
row-sums of v(1) are equal and the row-sums of v(2) are
equal. An equivalent way to state this assumption is
E[ε(1)εu(1)] ! ρ1Im and E[ε(2)εu(2)] ! ρ2Im for some con-
stants ρ1 and ρ2, where Im is the m×m identity matrix.
To see this, note that the off-diagonal elements of
E[ε(1)εu(1)] and E[ε(2)εu(2)] are always equal to zero when
the noise terms are independent, and the diagonal
elements are exactly the row-sums of v(1) and v(2), so the
balanced noise assumption states that E[ε(1)εu(1)] and
E[ε(2)εu(2)] are multiples of the identity matrix.

For general, possibly unbalanced noise, it turns out
that the appropriate quantities to measure the level of
“unbalance” in the noise are

minρ
1
m

E[ε(1)εu(1)] − ρIm
'''

'''
2

F
and

minρ
1
m

E[ε(2)εu(2)] − ρIm
'''

'''
2

F
.

These quantities measure how far E[ε(1)εu(1)] and
E[ε(2)εu(2)] are from amultiple of the identitymatrix. One
nice interpretation is that the quantities correspond to
population variances, one each for the row-sums of v(1)
and the row-sums of v(2). We denote the maximum of
these two quantities as δ2, and can now state our more
general result.

Theorem 2. Assume the entries of M lie in [−1, 1]. If the
entries of ε are independent, mean-zero, and E[(εkij)

6]≤K6,
then there exists a constant c(K) that depends only on K such
that for the slice learning algorithm,

SMSE(M̂)≤ c(K)
r2

m2 +
r2

γ2
Mmn

+ r2δ2

γ2
Mm3n2

[ ]
.

To interpret the guarantee in Theorem 2, consider the
range of values that δ2 might take. The lowest possible
value is δ2 ! 0, which corresponds to the balanced noise
setting, and in this case, we recover Theorem 1 exactly.
On the other hand, each row of v(1) and v(2) containsmn
elements, so their row-sums may scale as O(mn), and
thus in the worst case, δ2 ! O(m2n2). In this worst-case
setting, Theorem 2 does not improve on the guarantee
for the naı̈ve approach. However, the recovery rate
in Theorem 2 matches that in Theorem 1 as long as
δ2 ! O(m2n). Also, because δ2 measures the population
variances of the two sets of row-sums, it is highly robust
to settings where only a few row-sums are significantly
unbalanced. All of this suggests thatTheorem 1 holds even
if the balanced noise assumption is significantly relaxed.

To this point, our work has applied to the problem of
noisy tensor recovery, a framework that addresses

settings such as the retail example and our experiment
with music streaming data. As discussed in Section 1,
there are settings and applications where the existing
data instead can be represented as a partially observed
tensor (i.e., the tensor completion problem). The chal-
lenge here is to design algorithms that are optimal in
terms of the number of observed entries required for exact
recovery. Now, under the assumption that entries are
observed uniformly at random, it is possible to map
completion problems to noisy recovery problems using
a technique developed formatrix completion (Achlioptas
and McSherry 2007, Keshavan et al. 2010, Chatterjee
2014). We discuss this topic in Section G of the online
appendix, wherewe (a) use this same device to adapt the
slice learning algorithm to tensor completion, (b) state a
corollary to Theorem 2 that characterizes the requisite
number of observed entries, (c) compare this result to
existing tensor completion algorithms, and (d) show
results of synthetic tensor completion experiments.

6. Experiments
We performed two sets of experiments to evaluate the
slice learning algorithm, the first using randomly gen-
erated tensors and the second using a real-world dataset.
This section describes these experiments and their results
in detail, wherein the following points emerge:

1. The slice learning algorithm drastically out-
performs convex algorithms by an order of magnitude,
even though convex algorithms require drastically
greater computation. On tensors with low slice rank, the
slice learning algorithm outperforms a convex bench-
mark we propose that is in the spirit of incumbent
approaches; this is a “home court” setting, as the re-
covery guarantees from the previous section show that
our algorithm is expected to recover these tensors. More
surprisingly, on tensors with low Tucker rank, the slice
learning algorithm also outperforms an existing convex
benchmark designed specifically for low Tucker rank
tensors.

2. On real-world, sparse data, the slice learning al-
gorithm outperforms two common benchmark ap-
proaches. This suggests that real data, when represented
as a tensor, indeed exhibit the type of structure that the
slice learning algorithm is able to exploit.

3. By leveraging sparsity, the slice learning algo-
rithm can be used on large data sets, in regimes where
common operations such as taking the SVD of a dense
matrix are intractable.

6.1. Synthetic Recovery Experiments
We conducted a number of experiments on randomly
generated tensors to test the performance of the slice
learning algorithm, for learning individual slices and the
tensor as a whole. In all of our experiments, we compare
against a benchmark convex optimization approach.
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6.1.1. Noisy Recovery and Tucker Rank. For our first
experiment, we randomly generated m×m×m tensors
with Tucker rank (r, r, r), where in each replication, m
was drawn uniformly from the integers between 10
and 50, and r was then drawn uniformly from the
integers between 1 and m. In each replication, we
randomly drew orthonormal m× r matrices U, V, and
W, along with an r× r× r tensor S with entries drawn
from the standard normal distribution. The ground
truth tensor was then constructed in the canonical way
from U, V, W, and S (see Section B in the online ap-
pendix), and the observed data tensorX was constructed
by adding independent mean-zero Gaussian noise of
standard deviation 0.1 to each entry. This is nearly iden-
tical to the experimental setup in Tomioka et al. (2011).

We compared the slice learning algorithm against the
convex algorithm that minimizes (2) in Section 3.1.
Recall that this is one of the few well-studied algo-
rithms with a theoretical recovery guarantee (Tomioka
et al. 2011).We solved this using the Douglas–Rachford
splitting method, as described by Gandy et al. (2011).
Note that the slice learning algorithm requires an es-
timated rank as input, and in this experiment, the al-
gorithm was given the true rank r in each replication.
On the other hand, the convex objective (2) has
a parameter λ that encodes knowledge of the rank; to
level the playing field, in each iteration we solved (2)
for values of λ ranging from 2−2 to 25 and reported the
best performance among all of these.

We performed 100 replications. The results are
depicted in Figure 4, where each replication is repre-
sented by two points, one for each algorithm. Each
point represents the MSE versus the value (r/m)2 for
that particular replication. The reason we plot the MSE
against (r/m)2 is that Theorem 1 predicts that the MSE
of the slice learning algorithm should scale linearly
with this value, which appears to be the case in
Figure 4. On the other hand, the best theoretical results
for the convex algorithm state that the MSE scales
linearly with r/m (i.e., sublinear in (r/m)2); Figure 4
confirms that this is indeed the case. That is to say, the
slice learning algorithm outperforms the convex al-
gorithm in recovering tensors of low Tucker rank, even
though the convex algorithm is suited specifically for
tensors of low Tucker rank.

In terms of computation, the slice learning algorithm
is also superior. The first-order Douglas–Rachford
splitting method for solving (2) requires three SVDs in
each iteration. Compared with the two SVDs required
by the entire slice learning algorithm, this means each
iteration is slower than the entire slice learning algorithm,
and in our experiments, the whole algorithm was
consistently at least 10 times slower. Along these lines,
there is ongoing progress in improving the computa-
tional efficiency of convex optimization approaches, for
example, by Liu et al. (2014).

6.1.2. The Value of Side Information. We performed
a similar experiment to test the recovery of tensors—
particularly, recovery in terms of SMSE—with varying
numbers of slices. We randomly generated m×m×n
tensors of slice rank r where in each replication, m
was drawn randomly between 10 and 50; then r was
drawn randomly between 1 and m; and finally n was
set equal to either 1, r, or m. In each replication, we
randomly drew orthonormal m× r matrices U and V,
along with r× rmatrices S1, . . . ,Sn, with entries drawn
from the standard normal distribution, and we set the
slices of the ground truth tensor to be Mk ! USkVu.
Independent mean-zero Gaussian noise of standard
deviation 0.1 was then added as before.
We used a similar convex algorithm as a benchmark:

argmin
Y

∑2

i!1
λ Y(i)
'' ''

∗ + Y − X‖ ‖2F. (6)

This objective is almost identical to (2), except that it
does not include the nuclear norm of the mode 3
unfolding. This is catered to recovering low slice rank
tensors, as it imposes no penalty on the complexity be-
tween slices. We solved this with a similar Douglas–
Rachford splitting method that requires two singular
value decompositions in each iteration. Just as in (2), the
parameter λ encodes knowledge of rank, and so we
solve (6) for λ ranging from 2−2 to 25 and report the best
performance among all of these.
We performed 400 replications. In each replication,

we measured the SMSE of the slice learning algorithm
and the convex algorithm (6). The results for each of the
three cases (n ! 1, r,m) are depicted in three separate
plots in Figure 5. Figure 5(a) shows that with a single
slice, both algorithms have SMSE sublinear in (r/m)2;
this is to be expected as the exercise is equivalent to
matrix recovery where the best achievable rate is r/m
(see Proposition 2). Figure 5(c) shows that the

Figure 4. (Color online) Comparison of Slice Learning and
Convex Approach for Noisy Recovery of Low Tucker Rank
Tensors

Note. MSE vs. (r/m)2 is plotted for each replication.
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slice learning algorithm achieves the gold standard
performance of SMSE linear in (r/m)2 with n ! m slices,
whereas the convex algorithm is still sublinear. The
good performance of the slice learning algorithm is to
be expected because in Theorem 1 we were able to
show that n ! m slices are sufficient to achieve the (r/m)2
rate. The surprising result is that Figure 5(b) is almost
identical to Figure 5(c), implying that n ! r slices are
sufficient to achieve this same rate. This suggests that
there are settings where slice learning can greatly
outperform standard matrix learning, with only very
little side information.

6.2. Experiments on Real Data
In addition to synthetic experiments, we also per-
formed experiments using real-world data to address
a number of important challenges that occur in prac-
tice. In particular, these experiments differ greatly from
the previous synthetic experiments in that the data are
very large and sparse. The data are from Xiami.com,
a major online music streaming service where users
may listen to songs and share their own music. Within
the service, users can interact with songs in different
ways: they can “listen” to, “download,” and “collect”
any song offered by the service. The collect in-
teraction is especially important, as it is a strong
signal of a user’s affinity for a song, but it is per-
formed with the least frequency in our data. Our data
set4 is a sample of all three interaction types between
users and songs over a six-month period in 2015. For
the experiments, we represent these data as a three-
dimensional tensor X with three slices, one for each
type of interaction, with binary entries indicating
whether that particular user–song interaction oc-
curred during the six-month period. Just as in our
motivating retail example, we model this as Bernoulli
noise; that is, we assume that the data X are a Bernoulli

observation of some ground truth tensor M of proba-
bilities: Xk

ij~Ber(M
k
ij).

We compared the slice learning algorithm against
two benchmarks. The first benchmark is the naı̈ve
approach of using a matrix recovery algorithm sepa-
rately on each slice, which is still a typical approach to
collaborative filtering. The second benchmark is a more
sophisticated approach: form one of the unfoldings and
use a matrix recovery algorithm on the unfolding; we
will refer to this algorithm as the matrix approach. This
approach nicely exploits tensor structure and can be
performed at large scale; Mu et al. (2013) study such
algorithms and demonstrate theoretical guarantees for
high-dimensional tensors.
Both benchmarks require a matrix recovery algo-

rithm, and for our experiments, we recovered matrices
by replacing hidden entries with zeros and then cal-
culating a low-rank approximation of this modified
matrix (Achlioptas and McSherry 2007, Keshavan et al.
2010). This procedure requires roughly the same
computational budget as the slice learning algorithm.
Finally, because our experiments were quite large (see
Table 1), calculating SVDs using standard libraries
meant for dense matrices was not feasible. Instead, we
used the off-the-shelf software package PROPACK5

(Larsen 1998), which exploits data sparsity through the
iterative algorithms described in Section 4.1.

6.2.1. Experimental Setup. Because the data are binary,
we evaluated performance vis-á

̀
-vis a binary classifi-

cation task (i.e., the task of classifying entries as being
equal to 0 or 1) on half of the entries. Because each
entry of the tensor corresponds to whether a particular
user interacted with a particular song, we will refer to
the values 0 and 1 as “not occuring” and “occuring,”
respectively.

Figure 5. (Color online) Comparison of Slice Learning and the Convex Approach for Noisy Slice Recovery of Low Slice Rank
Tensors with Varying Numbers of Slices

Notes. SMSE vs. (r/m)2 is plotted for each replication. Panel (a): n = 1; panel (b): n = r; panel (c): n = m.
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Our algorithm and the two benchmark algorithms
return complete tensors with continuous values. To
convert these continuous values to classifications of
occurring and not occurring, we chose a fixed threshold
θ and classified any entry exceeding θ as occurring and
the remaining entries as not occurring. To evaluate an
algorithm’s performance, we can calculate two impor-
tant performance metrics: the true-positive rate (TPR)
and the false-positive rate (FPR). Of all the hidden en-
tries that occurred, the TPR is the proportion that
the algorithm correctly classified as occurring, and of
all the hidden entries that did not occur, the FPR is the
proportion that the algorithm incorrectly classified as
occurring.

A good classification has a high TPR and low FPR. This
might inform the choice of the threshold θ, but un-
fortunately, there is a trade-off: both the TPR and FPR are
nonincreasing in θ, so it is impossible to improve on both
metrics just by changing θ. In particular, by varying θ,
a given algorithm produces a set of values ranging from
all entries being classified as not occurring (TPR and FPR
are equal to 0) to all entries being classified as occurring
(TPR and FPR are equal to 1). To evaluate the perfor-
mance of an algorithm independent from the choice of θ,
we can plot each of these classifications in the receiver
operating characteristic (ROC) space and calculate the
area under the resulting curve (AUC), as in Figure 6. The
AUC is always in [0, 1], and a higher value generally
signifies greater accuracy; as a benchmark, the AUC of
a random classification is expected to be 0.5.

6.2.2. Summary of Results. The results of the experi-
ment, in terms of recovering the collect slice, are
summarized in Table 1. We performed experiments on
tensors of five different sizes, described in the first two
columns. These tensors were created by selecting
subsets of the densest rows and columns of the original
data set. The third column shows the sparsity of the
collect slice in each of the five tensors, measured in the
average number of collects per user. Note that the data

are extremely sparse—in the largest tensor, we observe
less than a single collect per user.
For each tensor, 10 replications were performed,

where each replication included a resampling of ob-
served entries, followed by performances of all three
algorithms with ranks ranging from 1 to 20. For each
algorithm and rank, the AUC was averaged over all 10
replications. The best average AUC of each algorithm is
reported in the last three columns of Table 1, and the
best ranks are given in parentheses.
In absolute terms, the slice learning algorithm per-

forms very well, with an AUC consistently above 0.87.
The algorithm also consistently outperforms both
benchmark approaches by a significant margin. For
example, in the largest experiment with approximately
50K users and 10K songs, the slice learning algorithm
has an average AUC of 0.95, whereas the naı̈ve and
matrix algorithms have AUCs of 0.82 and 0.84, re-
spectively. Part of this strong performance comes from
the fact that the slice learning algorithm is able to es-
timate more complex models, which is demonstrated
by the consistently higher rank values.
The equivalent tables for recovering the listen and

download slices can be found in Section F in the online
appendix. To summarize those results succinctly, the
slice learning algorithm again consistently outper-
forms both benchmarks across all experiments. The
margin of improvement is lower, but that is to be
expected, as those slices are less sparse than the collect
slice, and so the collect slice does not offer as much
side information.

7. Conclusion
This paper introduced a new approach to modeling and
learning with side information. Motivated by settings in
e-commerce, where data are sparse but multiple in-
teractions occur, we formulated the problem of recov-
ering slices of a three-dimensional tensor from a noisy

Table 1. Summary of Experiments on Xiami Data for
Recovering the Collect Slice

Users Songs Sparse Naı̈ve Matrix Slice

2,412 1,541 5.7 0.76 (4) 0.83 (7) 0.91 (14)
4,951 2,049 4.1 0.73 (7) 0.78 (12) 0.91 (15)
27,411 3,472 2.0 0.66 (9) 0.67 (19) 0.87 (20)
23,300 10,106 1.0 0.86 (1) 0.87 (1) 0.95 (18)
53,713 10,199 0.6 0.82 (3) 0.84 (1) 0.95 (13)

Notes. Each row corresponds to an experiment on a subset of the
data. Columns “Users” and “Songs” show the number of users and
songs in each experiment, respectively, and “Sparse” gives the average
number of collects per user in the data. Results for the naı̈ve benchmark,
the matrix-based benchmark, and the slice learning algorithm are
shown in the last three columns. The average AUC over 10 replications
is reported, along with the rank in parentheses.

Figure 6. (Color online) Sample ROC Curves for
Recovering the Collect Slice

Notes. These curves were generated from a single replication of the
experiment in the first row of Table 1. For each algorithm, TPR vs.
FPR is plotted, and the AUC is reported.
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observation of the tensor.We proposed the slice learning
algorithm, a computationally efficient algorithm that
scales to enormous size by leveraging sparsity. From
a theoretical standpoint, we showed that the algorithm
achieves the minimax lower bound for recovery with
sufficiently many slices; this guarantee is the best-
known guarantee for noisy recovery of tensors and
the first guarantee of its kind for recovery of specific
slices. Synthetic experiments further supported the fact
that this algorithm outperforms existing convex
methods in both efficiency and accuracy. Experiments
on real-world data from the music streaming service
Xiami.com demonstrated the scalability of the approach
and provided real empirical evidence that having side
information is advantageous and that our approach
utilizes side information effectively.

Our work points to a number of interesting, exciting
directions for future work.

1. Different forms of side information: Side information
may come in the form of data specific to the row space
or the column space. For example, retailers have de-
mographic information on their customers and basic
information about their products. As we discussed in
Section 4, the slice learning algorithm can incorporate
this kind of side information. A deeper analysis of this
procedure is an important next step.

2. Trimming: Our algorithm performs best under the
balanced noise assumption.We defined precisely how
to measure the level of unbalance and quantified the
penalty of unbalance. When the noise is known to be
significantly unbalanced, it may be possible to weight
the rows and columns of the tensor in such a way that
induces balanced noise. This weighted tensor can be
estimated and then unweighted to recover the orig-
inal tensor. Such “trimming” procedures need to be
analyzed.

3. Higher-dimensional tensors: There are many appli-
cations for tensors of dimension greater than 3. For ex-
ample, retailers might view their sales transactions over
time, producing a three-dimensional tensor where time is
the third dimension. Time-series data for multiple in-
teractions may then be viewed as a four-dimensional
tensor. There may be ways that the slice learning algo-
rithm can be generalized to higher dimensions.

Endnotes
1 For completeness, we can also define a third unfolding: for each row
and column index, we can take the corresponding entries across all
the slices to create a column vector in Rn; these are the columns of
the mode 3 unfolding, denoted as M(3), an n×m2 matrix.
2 In our analysis, we will place substantially weaker requirements on ε.
3The condition number of a matrix can be defined as the ratio of its
largest singular value to its smallest singular value. The ratio we
describe here is defined only for the nonzero singular values.
4 See https://tianchi.shuju.aliyun.com/, accessed December 20, 2016.
5 See http://sun.stanford.edu/~rmunk/PROPACK/, accessed De-
cember 20, 2016.
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