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a b s t r a c t

We consider the class of trees for which all vertices of degree at least 3 lie on a single in-
duced path of the tree. For such trees, a new superposition principle is proposed to generate
all possible orderedmultiplicity lists for the eigenvalues of symmetric (Hermitian)matrices
whose graph is such a tree. It is shown that no multiplicity lists other than these can occur
and that for two subclasses all such lists do occur. Important contrasts with trees outside
the class are given, and it is shown that several prior conjectures about multiplicity lists,
including the Degree Conjecture, follow from our superposition principle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected graph on n vertices G, we say that an n-by-n real symmetric matrix A = (aij) has graph G if for all
i ≠ j, there is an edge between vertices i and j if and only if aij ≠ 0. We are interested in the spectra of all n-by-n real
symmetric matrices whose graph is a given G, and in particular, in the eigenvalue multiplicities that occur. When a real
symmetric matrix A has been identified for some graph G, we will commonly refer to the eigenvalues of G or some subgraph
of G, by which we mean the eigenvalues of A or of the principle submatrix of A whose rows and columns correspond to
the vertices of the subgraph. For any real symmetric matrix, we refer to the ordered multiplicities as the list obtained by
arranging the distinct eigenvalues in increasing order and listing their multiplicities. Wemay also arrange the multiplicities
in non-increasing order, a list that we call the unordered multiplicities. The set of ordered (unordered) multiplicity lists of
real symmetric matrices whose graph is G is denoted Lo(G) (Lu(G)).

Our focus here will be upon trees, or connected graphs with n−1 edges, and upon orderedmultiplicity lists. (Since every
complex Hermitian matrix whose graph is a tree is diagonally unitarily similar to a real symmetric matrix with the same
graph, there is no loss of generality in considering only symmetric matrices in place of Hermitianmatrices.) Multiplicity lists
for certain classes of trees [8,9,13] and for trees on fewer than 12 vertices have been determined previously. Referring to
any vertex of degree 3 or more as high degree, we consider a very rich class of trees, the linear trees (all high degree vertices
lie on a path—see Definition 8), that includes some previously studied infinite classes of trees, as well as all but a few of the
trees on fewer than 12 vertices. For linear trees, a combinatorial technique (involving a superposition principle) to generate
all ordered multiplicity lists is proposed. The necessity of this proposal is proven in general and sufficiency is proven in
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two major cases: (a) when there are just two high degree vertices and (b) when the linear tree is depth 1. The latter uses a
new application of the implicit function theorem that leads to an independently interesting class of matrices as Jacobians.
The superposition principle generalizes that of [9] used to treat double generalized stars. There seems to be no simpler
way to describe all such multiplicity lists. Finally, the results given are used to verify special cases of some outstanding
conjectures.

2. Background

For convenience, we use the standard submatrix notation. Given an index set α ⊆ {1, . . . , n}, we denote the principle
submatrix of A lying in rows and columns {1, . . . , n} − α (respectively, α) by A(α) (respectively, A[α]). Additionally, A({i})
is abbreviated by A(i). If A is a matrix of graph G, we may use a subgraph of G to specify an index set. For example, A[G] is
simply the matrix A. For any real number λ, we use mA(λ) to denote the multiplicity of λ as an eigenvalue of the matrix A.

The classical Interlacing Theorem is very important to our discussion. We state it here and refer the reader to [4] for a
more thorough description.

Theorem 1 (Interlacing Theorem). Let A be an n-by-n Hermitian matrix with (real) eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

and suppose A(i) has eigenvalues

µ1 ≤ µ2 ≤ · · · ≤ µn−1

for some i ∈ {1, . . . , n}. Then the eigenvalues satisfy the following inequalities:

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn.

A result following immediately from these inequalities is that, for any λ and i = 1, . . . , n,
mA(λ) − 1 ≤ mA(i)(λ) ≤ mA(λ) + 1.

In the case of trees, we have a very useful theorem coming from previous work in [14,15]. We state it without proof in
the general form developed in [10].

Theorem 2. Let A be a Hermitian matrix whose graph is a tree T , and suppose that there exists a vertex v of T and a real number
λ such that λ is an eigenvalue of both A and A(v). Then
1. there is a vertex v′ of T such that mA(v′)(λ) = mA(λ) + 1;
2. if mA(λ) ≥ 2, then v′ may be chosen so that deg v′

≥ 3 and so that there are at least three components T1, T2, and T3 of T −v′

such that mA[Ti](λ) ≥ 1, i = 1, 2, 3;
3. if mA(λ) = 1, then v′ may be chosen so that deg v′

≥ 2 and so that there are two components T1 and T2 of T − v′ such that
mA[Ti](λ) = 1, i = 1, 2.

For any tree T , we define the path cover number of T to be the minimum number of induced paths of T that cover all
vertices without intersecting. We also define the diameter to be the maximum length of an induced path of T , where the
length of a path refers to the number of nodes in the path. Note that this definition of length differs from the standard
definition which defines the length of a path as the number of edges (one less than the number of nodes), but throughout
we will continue to use the modified definition of length to remain consistent with previous references (e.g. [7,9]).

To demonstrate the relationship between a graph’s structure and its multiplicity lists, we present the following two
theorems from [6,7], respectively:

Theorem 3. Given a tree T , the maximum multiplicity for any single eigenvalue in the multiplicity lists for T is equal to the path
cover number of T .

Theorem 4. Given a tree T , the minimum number of distinct eigenvalues among the real symmetric matrices with graph T is at
least the maximum number of nodes in an induced path of T .

Let l = (l1, . . . , la) be a partition of some integer N , i.e., each li is a positive integer and l1 + · · · + la = N . Two
concepts about partitions will be needed. First, we denote by l∗ = (l∗1, . . . , l

∗

b) the conjugate partition of l, so l∗j is the
number of i’s such that li ≥ j. Note that l∗ is a partition of N with l∗1 ≥ · · · ≥ l∗j . The second concept is majorization. Let
u = (u1, . . . , uc), u1 ≥ · · · ≥ uc , and v = (v1, . . . , vd), v1 ≥ · · · ≥ vd, be ordered partitions of M and N , respectively.
Suppose u1 + · · · + us ≤ v1 + · · · + vs for all s, where us or vs are interpreted as 0 when s is greater than c or d, respectively.
Then we say that v majorizes u if M = N , denoting it as u ≼ v. If M < N , we create a partition ue of N by appending N − M
1’s to u, and then we have ue ≼ v.

We define a generalized star as a tree with at most one vertex of high degree. For each generalized star, we call the high
degree vertex the central vertex, or let any vertex be the central vertex if there are none of high degree. The possible spectra
of matrices whose graph is a generalized star were fully characterized in [9]. An additional result for generalized stars that
we will use concerns the possible upwardmultiplicity lists. For a real symmetric matrix A with graph G, fix a vertex v. Then
λ is an upward eigenvalue of A at v if mA(v)(λ) = mA(λ) + 1, and the multiplicity of λ is called an upward multiplicityof A
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at v. We denote a multiplicity q that is upward by q̂. By a list of upward multiplicities for G at v, we mean an ordered list of
multiplicities for G with upward designation for each eigenvalue whose multiplicity increases with the removal of v. The
set of all (ordered) upward multiplicity lists of G at v is denoted L̂o(G), distinguished from the set of ordered multiplicity
lists Lo(G) without upward designations. We do not include v in the notation here because it is usually clear which vertex
is being considered. For example, when G is a generalized star, we will assume that the designated central vertex is the
removed vertex for any upward eigenvalue or upward multiplicity. The following result from [9] characterizes the lists of
upward multiplicities of generalized stars:

Theorem 5. Let T be a generalized star on n vertices with central vertex v of degree k and arm lengths l1 ≥ · · · ≥ lk(
k

i=1 li =

n − 1). Let λ1 < · · · < λr be any sequence of real numbers.
Then there exists a real symmetric matrix A whose graph is T with distinct eigenvalues λ1 < · · · < λr and list of upward

multiplicities q̂ = (q1, . . . , qr) if and only if q̂ satisfies the following conditions:
1.
r

i=1 qi = n;
2. if qi is an upward multiplicity in q̂, then 1 < i < r and neither qi−1 nor qi+1 is an upward multiplicity in q̂;
3. (qi1 + 1, . . . , qih + 1)e ≼ (l1, . . . , lk)∗, where qi1 ≥ · · · ≥ qih are the upward multiplicities of q̂.

A more specific problem that arises in this context is to describe not just the possible multiplicity lists for a given graph,
but which specific eigenvalues are realizable for each list, i.e., which numbers may be eigenvalues for a given multiplicity
list. While there are many types of these inverse eigenvalue problems (see [3], e.g.), we will use the following definition:

Definition 6. Given a tree T on n vertices and real numbers λ1, . . . , λn, the Inverse Eigenvalue Problem (IEP) is to construct
a real symmetric matrix whose graph is T with eigenvalues λ1, . . . , λn.

Theorem 5 says that solving the IEP for generalized stars is equivalent to characterizing their ordered multiplicity lists,
i.e., for any ordered multiplicity list of a generalized star, there is a real symmetric matrix with the given multiplicity list
whose graph is the generalized star, subject to any choice of the distinct eigenvalues. For example, consider a path, which is
a degenerate type of generalized star, so we can apply Theorem 5 to find its ordered multiplicity lists. Since there is no high
degree vertex, we may choose any vertex to be the central vertex. For any choice of central vertex, there are at most two
branches, so condition 3 guarantees that the onlymultiplicity list is the list of ones. In addition, Theorem 5 gives the classical
result that for any n distinct real numbers, there is a real symmetric matrix whose eigenvalues are the given numbers and
whose graph is a path on n vertices.

If T1 and T2 are generalized stars, then the graph consisting of T1 and T2 connected by an edge at their central vertices
is called a double generalized star, which we denote by D(T1, T2). The ordered multiplicity lists for double generalized stars
were described in [9]. We refer to this theorem as the Original Superposition Principle.

Theorem 7 (Original Superposition Principle). Let D(T1, T2) be a double generalized star, b̂ = (b1, . . . , bs1) ∈ L̂o(T1),
ĉ = (c1, . . . , cs2) ∈ L̂o(T2). Construct any b+

= (b+

1 , . . . , b+

s1+t1), c
+

= (c+

1 , . . . , c+

s2+t2) subject to the following conditions:
0. t1, t2 ∈ N0 and s1 + t1 = s2 + t2
1. b+ (resp. c+) is obtained from b̂ (resp. ĉ) by inserting t1 (resp. t2) 0’s;
2. b+

i and c+

i , cannot both be 0;
3. if b+

i > 0 and c+

i > 0, then at least one of b+

i or c+

i must be an upward multiplicity of b̂ or ĉ.

Then we have b+
+ c+

∈ Lo(D(T1, T2)). Moreover, a ∈ Lo(D(T1, T2)) if and only if there are b̂ ∈ L̂o(T1), ĉ ∈ L̂o(T2) such
that a = b+

+ c+.

3. Linear trees

Each double generalized star has at most two high degree vertices, and these vertices are connected by an edge. A natural
further generalization that we make is to allow for any number of high degree vertices and let them be connected by edges
or paths of any length, as long as all of the high degree vertices lie on a single induced path of the tree.

Definition 8. A tree is called k-linear if the set of high degree vertices is a subset of k vertices that lie on a single induced
path. Treating these k vertices as the central vertices of generalized stars, we may view any k-linear tree as a collection
of k generalized stars, which we call the components, and the edges or paths that connect their central vertices. Let
L(T1, s1, T2, s2, . . . , sk−1, Tk)denote the k-linear tree consisting of the generalized stars T1, . . . , Tk, with Ti and Ti+1 connected
by a path of si vertices, not including the central vertices of Ti and Ti+1, i = 1, . . . , k − 1. Any tree that is k-linear for some k
is called linear. A tree that is not linear is called nonlinear.

For example, a tree is 1-linear if and only if it is a generalized star. It is important to note that we do not require a k-linear
tree to have exactly k high degree vertices, but only that there are k vertices lying on a single induced path, and among them
is contained all of the high degree vertices. This means the components Ti are allowed to be single vertices. Also, an si may
be 0.

Note also that while the classification of a tree as linear or nonlinear is unambiguous, a linear tree and its components
might be classified in several ways. As a simple example, consider a path of four vertices. This can be called 4-linear, where
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Fig. 1. A nonlinear tree on 10 vertices.

the components are each a single vertex and the connecting paths have length 0. It is also 2-linear, with a single vertex
component and a star with a one vertex arm, and the components are connected by a path of length 1. There are even more
classifications just for this simple example, and in general the choice of which classification to use can be made based on
which is most convenient.

It should be emphasized that when classifying a linear tree, the components must be generalized stars, and they must be
connected at their central vertices. The paths that connect these components are considered independent of the components
and not as arms of the generalized stars.

When the number of high degree vertices is less than four, all of them must lie on a single induced path, so the set of
linear trees contains all trees with fewer than four high degree vertices. However, nonlinear trees occur among trees with
four or more high degree vertices. For example, Fig. 1 depicts a graph with four high degree vertices that is the smallest
(fewest vertices) example of a nonlinear tree. This graph has many important characteristics and will be discussed further
in Section 7.

For linear trees, we can further generalize the concept of superposition. To do so, it is helpful to consider the upward
eigenvalues with upward multiplicity zero. These numbers appear as eigenvalues after removal of a vertex but are not
eigenvalues of the original matrix. Now, fix a vertex v of a graph G. If we take a list of upward multiplicities for a real
symmetricmatrix Awith graphG and augment itwith upward zeromultiplicities representing numbers that are eigenvalues
of A(v) but not A, then we have a complete list of upward multiplicities at v. Note that a complete list of upward multiplicities
gives the ordered multiplicities of A and A(v), so we will sometimes refer to the eigenvalues of A and A(v) together.

We may now characterize the set of complete upward multiplicity lists of G, denoted L̂c(G), when G is a generalized
star and v is its designated center. This slight extension of Theorem 5 will be most useful in defining our new (linear)
superposition principle.

Theorem 9. Let T be a generalized star on n vertices with central vertex v of degree k and arm lengths l1 ≥ · · · ≥ lk(
k

i=1 li =

n − 1). Let λ1 < · · · < λr be any sequence of real numbers.
Then there exists a real symmetric matrix A whose graph is T with distinct eigenvalues λ1 < · · · < λr of A and A(v), and

complete list of upward multiplicities q̂ = (q1, . . . , qr) if and only if q̂ satisfies the following conditions:

1.
r

i=1 qi = n;

2.
 r−1

2
j=1 (q2j + 1) = n − 1;

3. qi is an upward multiplicity in q̂ if and only if i is even;
4. (qi1 + 1, . . . , qi r−1

2
+ 1) ≼ (l1, . . . , lk)∗, where qi1 ≥ · · · ≥ qi r−1

2
are the upward multiplicities of q̂.

Proof. The proof closely follows the proof of Theorem 5 in [9]. In fact, the proof of the sufficiency of the stated conditions is
similar to that for the proof of sufficiency for Theorem 5 in [9], so we omit it here. We now prove the necessity of the stated
conditions. Conditions in (1) and (4) are also in Theorem 5, and their necessity is not affected by upward zeros. Condition
(2) simply says that upon removal of the central vertex, the tree consisting of n − 1 vertices will have n − 1 eigenvalues.
Condition (3) is an extension of Condition (2) in Theorem 5with the observation from the interlacing theorem that between
any two non-upward ones, there must be an upward multiplicity. �

The following proposes a characterization of the ordered multiplicity lists for linear trees using a generalization of the
Original Superposition Principle. Of course, the Original Superposition Principle is a special case of this new superposition
principle.

Definition 10. (Linear Superposition Principle LSP) Let T1, . . . , Tk be generalized stars and s1, . . . , sk−1 nonnegative integers.
Given b̂i a complete upwardmultiplicity list for Ti, i = 1, . . . , k, and ĉj a list of sj non-upward ones, j = 1, . . . , k−1, construct
augmented lists b+

i , i = 1, . . . , k, and c+

j , j = 1, . . . , k − 1, subject to the following conditions:
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0. all b+

i ’s and c+

j ’s are the same length;

1. each b+

i and c+

j is obtained from its corresponding b̂i and ĉj by inserting non-upward 0’s;
2. for each l, the lth element of the augmented lists, denoted b+

i,l and c+

j,l , are not all non-upward zeros;
3. for each l, arranging the b+

i,l’s and c+

j,l ’s in the order b+

1,l, c
+

1,l, b
+

2,l, c
+

2,l, . . . , b
+

k−1,l, c
+

k−1,l, b
+

k,l, there is at least one upward
multiplicity between any two non-upward ones.

Then
k

i=1 b
+

i +
k−1

j=1 c+

j , after removing zeros, is a multiplicity list for L(T1, s1, T2, s2, . . . , sk−1, Tk) generated by the Linear
Superposition Principle (LSP).

For any linear tree, the LSP specifies conditions for multiplicity lists. We show that these conditions are necessary for an
orderedmultiplicity list of that tree (Theorem 14). Furthermore, we also show that the conditions are sufficient when k = 2
(Theorem 15) and for linear trees of depth 1 (Theorem 19).

4. Linear trees: necessity

In Sections 5 and 6, we show the sufficiency of the LSP conditions for two special classes of linear trees. This section
will focus on the necessity of the LSP conditions. We will sometimes refer to a connected subgraph as maximal, by which
we mean that no other vertex may be added to the subgraph while maintaining connectivity. The following facts about the
relative position of eigenvalues will be useful.

Lemma 11. Let T be a tree, and A a real symmetric matrix whose graph is T .

1. If λ1 and λ2, λ1 < λ2, are upward eigenvalues at some vertex v, then there is an eigenvalue λ of A such that λ1 < λ < λ2.
2. If λ is an upward eigenvalue at some vertex v, then it is not the smallest or largest eigenvalue of A.

Proof. Both statements were shown in [11], except for the case of upward zero multiplicities. The proof of each statement
follows identically when we allow for upward zeros.

1. If we remove v, the multiplicities of λ1 and λ2 increase, so by interlacing, there must be some eigenvalue between λ1 and
λ2 whose multiplicity will decrease.

2. If we remove v, the multiplicity of λ must increase, so by interlacing, there must be eigenvalues greater than and less
than λ whose multiplicity will decrease. �

Lemma 11 is used in proving the following two results which will be useful in proving the necessity of the LSP
conditions.

Lemma 12. Let L = L(T1, s1, T2, s2, . . . , sk−1, Tk) be a k-linear tree, and A a real symmetric matrix whose graph is L. If λ1 and
λ2, λ1 < λ2, are upward eigenvalues for some Ti, there is some eigenvalue λ of L, λ1 < λ < λ2, that is not upward in Ti and is an
eigenvalue of the maximal connected subtree containing Ti after all central vertices of the Tj’s for which λ is upward are removed.

Moreover, suppose we have an index set α ⊆ {1, . . . , k}, and λi1 and λi2 are upward for Ti, i ∈ α. If λ is the only eigenvalue
guaranteed by the previous statement for each element of α, then for any two elements of α, there is an index j between them
such that λ is upward for Tj.

Proof. We first suppose λ1 and λ2 are upward eigenvalues for some Ti. It will suffice to assume that there is no upward
eigenvalue of Ti between λ1 and λ2. If the first statement is false, then only two situations may occur. First, there may be no
eigenvalue of L between λ1 and λ2, but every upward eigenvalue of Ti is an upward eigenvalue of L, so this is not possible
by Lemma 11(1). Second, there may be eigenvalues of L between λ1 and λ2, but each such eigenvalue is not an eigenvalue
of the maximal connected subtree containing Ti after the central vertices of the Tj’s for which the eigenvalue is upward are
removed, i.e., the eigenvalues of L between λ1 and λ2 are upward, and their multiplicity in L comes from being an eigenvalue
of subtrees not containing Ti. This is also not possible because removal of the central vertex of Ti must result in an increase
inmultiplicity of λ1 and λ2. Because of interlacing, this would result in a decrease inmultiplicity of one of the eigenvalues in
between, but as we have just seen, removal of the central vertex of Ti does not affect these multiplicities. The first statement
is thus correct.

Now consider the second statement. It will again suffice to assume that there is no upward eigenvalue of Ti between λi1
and λi2, for each i ∈ α. If the second statement is false, then λ is the only eigenvalue guaranteed by the previous statement
for each i ∈ α, and there are two elements α1, α2 ∈ α such that λ is not upward for any Tj with j strictly between α1 and
α2. However, if we remove the central vertices of Tα1 and Tα2 , then the multiplicity of λ must decrease by 2 because of its
status as the only eigenvalue guaranteed by the previous statement, but just as in the previous discussion, this decrease in
multiplicity has to come from λ being an eigenvalue of multiplicity at least 2 for the maximal connected subtree containing
Tα1 and Tα2 after removal of the central vertices of the Tj’s for which λ is upward. It follows that λ must be upward for some
Ti in this maximal connected subtree, but we had already removed all central vertices of the Ti’s at which λ is upward, so
the second statement is correct. �
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Lemma 13. Let L = L(T1, s1, T2, s2, . . . , sk−1, Tk) be a k-linear tree, and A a real symmetric matrix whose graph is L. If λ1 is the
smallest upward eigenvalue of some Ti, there is some eigenvalue λ of L, λ < λ1, that is not upward in Ti and is an eigenvalue of
the maximal connected subtree containing Ti after all central vertices of the Tj’s for which λ is upward are removed.

Moreover, suppose we have an index set α ⊆ {1, . . . , k}, and λi is the smallest upward eigenvalue for Ti, i ∈ α. If λ is the
only eigenvalue guaranteed by the previous statement for each element of α, then for any two elements of α, there is an index j
between them such that λ is upward for Tj.

The corresponding statements for largest eigenvalues also hold.

Proof. The proof here uses the same ideas as in the proof of Lemma 12.
Suppose λ1 is the smallest upward eigenvalue of some Ti. If the first statement is false, then two situations may occur.

First, there may be no eigenvalue of L less than λ1, but this is ruled out by Lemma 11(2). Second, theremay be eigenvalues of
L less than λ1, but each such eigenvalue is not an eigenvalue of themaximal connected subtree containing Ti after the central
vertices of the Tj’s for which the eigenvalue is upward are removed. If we remove the central vertex of Ti, the multiplicity
of λ1 will increase in L, so by interlacing, the multiplicity of some eigenvalue or L less than λ1 must decrease. However,
by assumption, the multiplicity of the eigenvalues less than λ1 are not affected by removal of this vertex because they are
upward eigenvalues whose multiplicity in L is attributed to being an eigenvalue of subtrees not containing Ti. Therefore, the
first statement is correct.

Now suppose λi is the smallest upward eigenvalue for Ti, i ∈ α. If the second statement is false, then λ is the only
eigenvalue guaranteed by the previous statement for all i ∈ α, and there are two elements α1, α2 ∈ α such that λ is
not upward for any Tj with j strictly between α1 and α2. If we now remove the central vertices of Tα1 and Tα2 , then the
multiplicity of λ must decrease by 2 because of its status as the only eigenvalue guaranteed by the previous statement.
However, this means λ has multiplicity at least 2 in the maximal connected subtree containing Tα1 and Tα2 after removal of
the central vertices of the Tj’s for which λ is upward. Then λmust be upward for some Ti in this maximal connected subtree,
which contradicts our previous removal of all central vertices of the Ti’s at which λ is upward, so the second statement is
correct. �

Theorem 14. For any k-linear tree L = L(T1, s1, T2, s2, . . . , sk−1, Tk),Lo(L) is contained among thosemultiplicity lists generated
by the LSP for L.

Proof. Begin with an arbitrary orderedmultiplicity list a = (a1, a2, . . . , au) of L. We need to show that a can be constructed
from complete upward multiplicity lists of the Ti’s and lists of ones, following the LSP conditions.

Because a is an ordered multiplicity list of L, there must be a matrix A, whose distinct eigenvalues we denote as
λ1 < λ2 < · · · < λu, which has graph L and ordered multiplicity list a. Our method of proof will be to use properties
of this particular matrix A to select the required upward multiplicity lists of the Ti’s and combine them with lists of ones
according to the LSP conditions to construct a.

The LSP takes into account upward zeromultiplicities, so we begin by augmenting the list of eigenvalues λ1, . . . , λu with
any numbers that have upward zero multiplicity in any of the Ti’s, sorting and relabeling the list as λ1 < λ2 < · · · < λv .
The list a is also augmented with zeros where new eigenvalues were added, so that ai is still the multiplicity of λi.

It is convenient to view the LSP construction in table form, so let us now construct a table as below, whose rows will
correspond to b+

1 , c+

1 , b+

2 , c+

2 , . . . , b+

k−1, c
+

k−1, b
+

k , in that order, and whose columns will correspond to the distinct, ordered
eigenvalues. Our goal is for column i to sum to ai and each LSP condition to be met.

λ1 λ2 · · · · · · λv

b+

1
c+

1
b+

2
c+

2

...
c+

k−1
b+

k

sum a1 a2 · · · · · · av

In order to complete the proof, we must fill in this table while satisfying the following conditions:

1. (a) the row corresponding to b+

i , ignoring non-upward 0’s, is a complete upward multiplicity list for Ti;
(b) the row corresponding to c+

i contains si non-upward 1’s and v − si non-upward 0’s;
2. no column is made up entirely of non-upward 0’s;
3. the column corresponding to λi sums to ai;
4. in each column, any two non-upward ones are separated by at least one upward multiplicity.
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The conditions above are labeled to emphasize how completing the table while satisfying the conditions is sufficient to
complete the proof. To see this, note that conditions 1–3 above correspond exactly to the LSP conditions 1–3 in Definition 10.
In addition, LSP condition 0 is automatically satisfied since each row of the table is the same length, and condition 4 above
ensures that the multiplicity list a is indeed constructed.

We start filling in the table by completing the upwardmultiplicities in the b+

i rows: for each Ti and its corresponding row
b+

i , we complete the entries for all eigenvalues with upward multiplicity in Ti, filling these entries with the multiplicities
marked as upward. To complete these rowswhile satisfying condition 1a, we need to place non-upward 1’s alternating with
the upward entries, and fill the remaining entries with non-upward 0’s. It is not obvious that this is possible (upward entries
may be directly adjacent or at the ends, thus preventing the insertion of non-upward 1’s in between), but the first statements
of Lemmas 12 and 13 below guarantee that it can be done.

In fact, Lemmas 12 and 13 provide a method of placing the non-upward 1’s in the b+

i rows that ensures the successful
completion of the rest of the construction: in each row b+

i , the non-upward 1’s should be entered into the entries for
eigenvalues of L with the property of also being an eigenvalue of the maximal connected subtree containing Ti after the
removal of all central vertices of the Tj’s for which the eigenvalue is upward. It follows from the second statements of
Lemmas 12 and 13 that doing this prevents condition 4 from being violated.

At this point, the b+

i rows are complete and satisfy condition 1a, without violating condition 4. Note that each column
j currently sums to at most aj because Theorem 2 would otherwise be violated, so condition 3 is also not violated. We will
complete the table by filling in the columns with non-upward 1’s and non-upward 0’s in entries corresponding to the ci’s.
We proceed by completing the columns that currently have an upward multiplicity in some entry. For each such column j
and its corresponding eigenvalue λj, we remove the Ti’s for which λj is upward and observewhich of the remainingmaximal
connected subgraphs has λj as an eigenvalue. It follows from repeated use of Theorem 2 that the number of these maximal
connected subgraphs havingλj as an eigenvalue is equal to the number of non-upward 1’s in the column, sowe can complete
these columns while satisfying conditions 3 and 4.

What remains is to finish the columns that have no upward multiplicities. These columns must sum to 1 and therefore
consist of a single non-upward 1 and a number of non-upward 0’s. The only concern is that we must simultaneously satisfy
condition 1b, and it may be that in completing the previous columns, we placed more than si non-upward 1’s in the row
for c+

i . However, note that every entry made so far has been the result of an eigenvalue existing for some subgraph, and
because each graph has as many eigenvalues as vertices, no row c+

i too many non-upward 1’s. We can therefore finish the
columns and satisfy conditions 1b and 3. The final condition is condition 2, and this is satisfied by condition 3 and the fact
that any column summing to zero must contain an upward 0 multiplicity because of how we began the table (i.e. every
column corresponds to an eigenvalue of A or a number with upward zero multiplicity in any of the Ti’s). �

5. Linear trees: sufficiency for k = 2

We now prove sufficiency of the LSP for generating all multiplicity lists when k = 2. When k = 2, the LSP has a simpler
formwithout upward zero multiplicities that we will use here. Note the similarity of this form to the Original Superposition
Principle.

Theorem 15. Let L = L(T1, s, T2) be a 2-linear tree. Given b̂ = (b1, . . . , bs1) ∈ L̂o(T1), ĉ = (c1, . . . , cs2) ∈ L̂o(T2), and
d̂ = (1, . . . , 1) (list of s 1’s), construct any b+

= (b+

1 , . . . , b+

s1+t1), c
+

= (c+

1 , . . . , c+

s2+t2), and d+
= (d+

1 , . . . , d+

s+t3) subject to
the following conditions:

0. t1, t2, t3 ∈ N0 and s1 + t1 = s2 + t2 = s + t3,
1. b+(c+, d+) is obtained from b̂(ĉ, d̂) by inserting t1(t2, t3) 0’s;
2. b+

i , c
+

i , and d+

i cannot all be 0;
3. at most one of b+

i , c
+

i , and d+

i can be nonzero and not an upward multiplicity of b̂, ĉ, or d̂.

Then we have b+
+ c+

+ d+
∈ Lo(L).

Proof. Our goal is to show that any superposition of upwardmultiplicity lists constructed in accordancewith the constraints
set in Theorem 15 is an orderedmultiplicity list of some real symmetric matrix Awith graph L. In order to show this, we will
consider each possibility for the elements of a given column (b+

i , c+

i , d+

i ) and show that their sum b+

i + c+

i + d+

i = ai
is realizable in Lo(L(T1, s, T2)). This will show that any column sum constructed by Theorem 15 is part of an ordered
multiplicity list of L. Then, we will argue that it is possible to add all columns simultaneously in order to achieve a set
of column sums that are an ordered multiplicity list of L. There are five possible cases for the columns generated according
to the theorem:

1. b+

i and c+

i are upward and d+

i = 1;
2. b+

i and c+

i are upward and d+

i = 0;
3. one of b+

i and c+

i is upward and the column has exactly one non-upward one;
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4. one of b+

i and c+

i is upward and the rest of the column entries are 0;
5. one of b+

i , c
+

i , and d+

i is a non-upward one and the rest are 0.

For the discussion of these cases, let v1 (v2) denote the central vertex of the generalized star T1 (T2). Select s1 + t1 distinct
real numbers λ1 < · · · < λs1+t1 . We are able to ensure that the eigenvalues for columns of cases (1)–(4) match their
corresponding λi.

In case (1), let λi be an eigenvalue of the connecting path (with multiplicity 1) and of b+

i + 1 branches of T1 and c+

i + 1
branches of T2. Then by Theorem 2,

mA(λi) = b+

i + mA(T1)(λi) = b+

i + c+

i + mA(T1,T2)(λi) = b+

i + c+

i + 1 = ai.

In case (2), let λi be an eigenvalue of b+

i + 1 branches of T1 and c+

i + 1 branches of T2. By Theorem 2,

mA(λi) = b+

i + mA(T1)(λi) = b+

i + c+

i + mA(T1,T2)(λi) = b+

i + c+

i = ai.

In case (3), given that b+

i is upward, let λi be an eigenvalue of L − T1 with multiplicity 1 and of b+

i + 1 branches of T1. By
Theorem 2,

mA(λi) = b+

i + mA(T1)(λi) = b+

i + 1 = ai.

When c+

i is upward, the equivalent procedure is followed with T2.
In case (4), given that b+

i is upward, let λi be an eigenvalue of b+

i + 1 branches of T1. By Theorem 2,

mA(λi) = b+

i + mA(T1)(λi) = b+

i = ai.

When c+

i is upward, the equivalent procedure is followed with T2.
In case (5), no action is needed, as Lwill have some eigenvalue with multiplicity 1 = ai.
We have now shown that each column is individually realizable; however, it remains to be shown that all of the columns

can be realized simultaneously. Our procedure makes eigenvalue assignments to individual branches, the connecting path,
and the connecting path combined with T1 or T2. Since Theorem 5 says that solving the IEP is equivalent to characterizing
the ordered multiplicity lists for generalized stars, and each of the subtrees we are making assignments to is a generalized
star, the only potential problem with realizing all columns simultaneously is that we might overload a subtree, i.e., we
might make more assignments to a subtree than the number of vertices in the subtree. However, this problem does not
occur, and therefore b+

+ c+
+ d+ is an ordered multiplicity list for L. In fact, the branches are assigned only when

an eigenvalue is upward, and since these upward multiplicities come from actual upward multiplicity lists for T1 and
T2, there is no overloading. The path receives assignments for each column of case (1), but there are at most s of these
columns, so the path is not overloaded. Finally, the connecting path combined with T1 or T2 receives assignments from
columns of case (3), but for each column of case (3), there must be a vertex unaccounted for, so overloading still does not
occur. �

6. Linear trees: sufficiency for depth 1

We now consider linear trees of depth 1. A linear tree is depth 1 if all vertices lie on or are connected by an edge to some
induced path containing all high degree vertices (trees of this class were studied in [2], where they were called centipedes).
Note that this is equivalent to limiting the Ti’s to stars, i.e., generalized stars with all arms of length one. We will use the
implicit function theoremmethod described in [13] to prove the sufficiency of the LSP conditions for this class of linear trees.
We give a brief description of the method here and refer the reader to [13] for a more thorough exposition.

Our goal is to construct a matrix with a given graph and eigenvalues. The implicit function theorem allows us to take an
initial matrix, whose graph is a subgraph of our target graph and that satisfies a set of determinant conditions, and change
some of the entries of the matrix, called manual entries, so that the new matrix has the target graph while maintaining
the same determinant conditions. With certain choices of determinant conditions, we can guarantee that a matrix has the
exact eigenvalues we would like. However, the cost of having more conditions is that more implicit entries must be chosen.
These implicit entries cannot be off-diagonal zeros, which limits our choice of initial matrices and makes the Jacobian more
complicated. The following lemma from [13] will be instrumental in the difficult task of showing the nonsingularity of the
Jacobian:

Lemma 16. Let T be a tree on n vertices and F = (fk), fk(A) = det(A[Sk] − λkI), a vector of r determinant conditions, with
Sk ⊆ {1, . . . , n} an index subset and λk a real number, k = 1, . . . , r. Assume r implicit entries have been identified. Suppose that
a real symmetric matrix A(0), whose graph is a subgraph of T , is the direct sum of irreducible matrices A(0)

1 , . . . , A(0)
p . Let J(A(0))

be the Jacobian matrix of F with respect to the implicit entries evaluated at A(0), and suppose

1. every off-diagonal implicit entry in A(0) has a nonzero value;
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2. for each k = 1, . . . , r, fk(A
(0)
l ) = 0 for exactly one l ∈ {1, . . . , p};

3. for each l = 1, . . . , p, the columns of J(A(0)) associated with the implicit entries of A(0)
l are linearly independent.

Then J(A(0)) is nonsingular.

The previous lemma suggests that choosing an initial matrix that is highly reducible will make it easier to show that the
Jacobian is nonsingular. For our proof for depth 1 linear trees, we will choose an initial matrix that is reducible to the star
components and each single vertex of the connecting paths. The problemwill still exist of showing the nonsingularity of the
Jacobian in terms of each star component, but the next lemma is helpful for this.

Lemma 17. Consider an n-by-n matrix (n > 2) of the following form:

A =



n−1
i=1

(ai − x1)
n−1
i=1
i≠1

(ai − x1) · · ·

n−1
i=1

i≠n−1

(ai − x1)

...
...

...

n−1
i=1

(ai − xn)
n−1
i=1
i≠1

(ai − xn) · · ·

n−1
i=1

i≠n−1

(ai − xn)


.

The determinant of this matrix is the following:

det A =

 n−1
i,j=1
i<j

(ai − aj)


 n

i,j=1
i>j

(xi − xj)

 .

In particular, A is nonsingular if and only if x1, . . . , xn are distinct and a1, . . . , an−1 are distinct.

Proof. We begin by subtracting column 2 from columns 3 to n, which does not change the determinant. The matrix now
has the form

n−1
i=1

(ai − x1)
n−1
i=1
i≠1

(ai − x1) (a1 − a2)
n−1
i=1
i≠1,2

(ai − x1) · · · (a1 − an−1)

n−1
i=1

i≠1,n−1

(ai − x1)

...
...

...
...

n−1
i=1

(ai − xn)
n−1
i=1
i≠1

(ai − xn) (a1 − a2)
n−1
i=1
i≠1,2

(ai − xn) · · · (a1 − an−1)

n−1
i=1

i≠1,n−1

(ai − xn)


.

We repeat this process with each column after column 2. The resulting matrix, which still has the same determinant as A, is

n−1
i=1

(ai − x1)
n−1
i=2

(ai − x1) c2
n−1
i=3

(ai − x1) · · · cn−1

...
...

...
...

n−1
i=1

(ai − xn)
n−1
i=2

(ai − xn) c2
n−1
i=3

(ai − xn) · · · cn−1


,

where cj =

j−1
i=1

(ai − aj), j = 2, . . . , n − 1.

If cj = 0 for any j, then ai = aj for some i < j and one of the columns is zero, so the matrix has zero determinant and the
theorem is correct. Otherwise, we perform a final set of column manipulations. For convenience, we rewrite the matrix as

(−x1)n−1
+ f1(x1) (−x1)n−2

+ f2(x1) c2((−x1)n−3
+ f3(x1)) · · · cn−1

...
...

...
...

(−xn)n−1
+ f1(xn) (−xn)n−2

+ f2(xn) c2((−xn)n−3
+ f3(xn)) · · · cn−1

 ,
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where fi is a polynomial of degree at most n − (i + 1), i = 1, . . . , n − 1. We may now remove the fi’s without changing the
determinant: we start by using column n to remove the fn−1’s in column n − 1, and proceed similarly to the left, each time
using the columns to the right. This operation leaves the determinant unchanged, and we are left with

(−x1)n−1 (−x1)n−2 c2(−x1)n−3
· · · cn−1

...
...

...
...

(−xn)n−1 (−xn)n−2 c2(−xn)n−3
· · · cn−1

 .

The determinant of this matrix is equal to the determinant of the Vandermonde matrix with nodes −x1, . . . ,−xn
multiplied by the cj’s, i.e.,

det A =


n−1
j=2

cj

 n
i,j=1
i<j

((−xi) − (−xj))



=


n−1
j=2

j−1
i=1

(ai − aj)

 n
i,j=1
i<j

(xj − xi)



=

 n−1
i,j=1
i<j

(ai − aj)


 n

i,j=1
i>j

(xi − xj)

 . �

We can now show that the Jacobian at each star component is nonsingular.

Lemma 18. Let T be a star on n vertices, and suppose we have a matrix-valued function A(a1, a2, . . . , an), defined on n
real variables, whose range is the set of real symmetric matrices with graph T (or some subgraph of T ), complete upward
multiplicity list b̂ = (b1, . . . , bu), and distinct upward eigenvalues µ2, µ4, . . . , µu−1, and a matrix A(0) in the range of A with
graph T and non-upward eigenvalues λ1, λ3, . . . , λu. We may select u+1

2 variables of A so that the Jacobian of the function
F(A) = (det(A − λ1I), det(A − λ3I), . . . , det(A − λuI)) is nonsingular at A(0).

Proof. Without loss of generality, assume the function A takes the following form:

A =


a1 a2 · · · an
a2 D...

an

 ,

where D = diag(µ2, . . . , µ2, µ4, . . . , µ4, . . . , µu−1, . . . , µu−1), with each µj appearing b̂j times.
Let ik = 1 +

k−1
j=1 b̂2j, k = 1, . . . , u+1

2 . Then we construct the Jacobian with respect to the variables ai1 , . . . , ai u+1
2

. Note

that we have selected a1 and exactly one ai appearing in the rows and columns of each µj. Letting J denote the Jacobian, we
have

J =



u−1
2

j=1

b̂2j
k=1

(µ2j − λ1)
−2a1

µ2 − λ1

u−1
2

j=1

b̂2j
k=1

(µ2j − λ1) · · ·
−2a1

µu−1 − λ1

u−1
2

j=1

b̂2j
k=1

(µ2j − λ1)

u−1
2

j=1

b̂2j
k=1

(µ2j − λ3)
−2a1

µ2 − λ3

u−1
2

j=1

b̂2j
k=1

(µ2j − λ3) · · ·
−2a1

µu−1 − λ3

u−1
2

j=1

b̂2j
k=1

(µ2j − λ3)

...
...

...

u−1
2

j=1

b̂2j
k=1

(µ2j − λu)
−2a1

µ2 − λu

u−1
2

j=1

b̂2j
k=1

(µ2j − λu) · · ·
−2a1

µu−1 − λu

u−1
2

j=1

b̂2j
k=1

(µ2j − λu)


.
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We would like to show that J is nonsingular at A(0). Because A(0) has graph T , each a(0)
i is nonzero, so we can simplify this

matrix by multiplying columns by nonzero constants, which produces the following matrix:

J ′ =



u−1
2

j=1

(µ2j − λ1)

u−1
2

j=1
j≠1

(µ2j − λ1) · · ·

u−1
2

j=1
j≠ u−1

2

(µ2j − λ1)

u−1
2

j=1

(µ2j − λ3)

u−1
2

j=1
j≠1

(µ2j − λ3) · · ·

u−1
2

j=1
j≠ u−1

2

(µ2j − λ3)

...
...

...

u−1
2

j=1

(µ2j − λu)

u−1
2

j=1
j≠1

(µ2j − λu) · · ·

u−1
2

j=1
j≠ u−1

2

(µ2j − λu)



.

Sincethe µj’s and λi’s are distinct, J ′ is nonsingular by Lemma 17, so J is also nonsingular at A(0). �

Theorem 19. For any depth 1 k-linear tree L = L(T1, s1, T2, s2, . . . , sk−1, Tk), Lo(L) contains the set of all multiplicity lists
generated by the LSP for L.

Proof. Assume T1, . . . , Tk are stars. Our goal is to show that any combination of complete upwardmultiplicity lists and lists
of ones following the stated conditions is an ordered multiplicity list for L.

Our initial matrix A(0) will be the direct sum of kmatrices whose graphs are the Ti’s and
k−1

j=1 sj 1-by-1matrices that will
correspond to the connecting vertices. Let u be the length of the augmented lists, and select any real numbers λ1 < · · · < λu,
which will be the eigenvalues of our matrix. For each i = 1, . . . , k, select a matrix with complete upward multiplicity list
b̂i and eigenvalues corresponding to the λl’s based on how b̂i is spaced in b+

i ; these matrices will be the components of A(0)

corresponding to the Ti’s. Similarly, for each j = 1, . . . , k − 1, the sj 1-by-1 matrices corresponding to the connecting path
will be the λl’s such that the lth element of c+

j is one.
For each l = 1, . . . , u, we have a set of determinant conditions to ensure the correct multiplicity in the final matrix.

For each b+

i in which λl is upward, we place λl on b+

i + 1 of the branches of Ti, and for each non-upward one, we have
a determinant condition on the subtree containing that vertex after the upward vertices are removed. We need as many
implicit entries as we have determinant conditions, i.e., the number of non-upward ones. The 1-by-1 matrix components
will all be implicit entries, and the implicit entries in the Ti components will be chosen as in Lemma 18. Note that the
following properties now hold:

1. all off-diagonal implicit entries are nonzero;
2. each determinant condition is satisfied by exactly one component of A(0);
3. for each component ofA(0), the columnsof the Jacobian atA(0) associatedwith its implicit entries are linearly independent.

By Lemma16, the Jacobian atA(0) is nonsingular. The implicit function theoremnow shows that there is some real symmetric
matrix with graph L that satisfies all of the determinant and branch conditions, so this guaranteed matrix has the given
ordered multiplicity list and our chosen eigenvalues. �

For depth 1 linear trees, we have actually solved the IEP while proving sufficiency because the implicit function theorem
method allowed us to choose any real numbers to be the eigenvalues.

Corollary 20. Characterizing the ordered multiplicity lists for depth 1 linear trees is equivalent to the IEP for such trees.

It is important to note that the implicit function theorem framework could be used to complete the proof of sufficiency
when generalized stars are allowed. This extension would require proving the more general version of Lemma 18 for
generalized stars where the Jacobian has a more complicated form.

7. Applications

We present some examples demonstrating explicitly how to apply the LSP. We then apply the LSP to proving some
previously conjectured statements about multiplicity lists for (general) trees in the case of linear trees and conclude with a
discussion of nonlinear trees.
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Fig. 2. A 3-linear tree on 12 vertices.

7.1. Examples

Example 21. Consider the following depth 1 3-linear tree (see Fig. 2) and the complete upward multiplicity lists of each
component:

L̂c(T1) = {(1, 1̂, 1), (1, 0̂, 1, 0̂, 1)}

L̂c(T2) = {(1, 2̂, 1), (1, 1̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1)}

L̂c(T3) = {(1, 1̂, 1), (1, 0̂, 1, 0̂, 1)}.

It is important to note that the vertices connecting T1 to T2 and T2 to T3 can be viewed as generalized stars, and therefore
the entire tree treated as a 5-linear tree. However, it ismore convenient to treat them as connecting paths and thewhole tree
as 3-linear. While the LSP produces all of the ordered multiplicity lists, we will for the sake of space give only the complete
set of unordered lists for this linear tree. In listing the unordered multiplicity lists, we will use an abbreviated notation
that omits ones. Since the sum of the multiplicities in a list must equal the total number of vertices in the tree, this shorter
notation is unambiguous. For example, for this tree, 52 refers to the unordered list (5, 2, 1, 1, 1, 1, 1). Note that the list of all
ones is therefore omitted entirely.

Lu(L(T1, s1, T2, s2, T3)) = {6, 52, 5, 43, 422, 42, 4, 332, 33, 322, 32, 3, 22222, 2222, 222, 22, 2}.

To demonstrate actual constructions of ordered multiplicity lists using the LSP, we provide examples of possible construc-
tions for some of the more interesting cases. In each of the tables below, there are five rows and their superposition. Rows
1, 3, and 5 are augmented complete upward multiplicity lists of T1, T2, and T3, respectively, and rows 2 and 4 are augmented
lists of a single one, representing the one vertex paths connecting T1 to T2 and T2 to T3. Wewill use this construction notation
for all of the remaining examples and applications.

1 0 0 1̂ 0 0 1 0 1 0 1̂ 0 1 0 0 1 0 1̂ 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 0 2̂ 0 1 0 0 0 1 1̂ 1 0̂ 1 0 0 1 0̂ 1 1̂ 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 1̂ 1 0 0 1 0 0 1̂ 0 1 0 1 0 0 1̂ 0 1 0
1 1 1 6 1 1 1 1 1 1 5 1 2 1 1 1 1 4 1 3 1

0 1 0 1̂ 0 1 0 0 0 1 1̂ 0 0 1 0 1 0 1̂ 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1 0̂ 1 0̂ 1 0̂ 1 0 1 0̂ 1 1̂ 1 0 0 0 1 0̂ 1 1̂ 1 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1̂ 0 1 0 1 0 0 1̂ 1 0 0 1 0 0 0 0 1̂ 0 1
1 2 1 4 1 2 1 1 1 2 3 3 1 1 1 1 1 3 1 3 1 1

It is possible for different upward multiplicity lists of a given generalized star in a linear tree to contribute to the samemul-
tiplicity list. For example, using the list (1, 2̂, 1) from L̂c(T2) instead of (1, 0̂, 1, 1̂, 1) can still lead to the ordered list, (1, 1,
1, 3, 1, 3, 1, 1) as shown below.

0 1 0 1̂ 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 2̂ 1 0
0 0 0 0 1 0 0 0
1 0 0 1̂ 0 0 0 1
1 1 1 3 1 3 1 1
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Fig. 3. A 4-linear tree on 19 vertices.

Example 22. Here we present a more complicated example. Consider the 4-linear tree below and the complete upward
multiplicity lists of its 4 components (see Fig. 3):

L̂c(T1) = {(1, 2̂, 1, 2̂, 1), (1, 2̂, 1, 1̂, 1, 0̂, 1), (1, 2̂, 1, 0̂, 1, 1̂, 1), (1, 1̂, 1, 2̂, 1, 0̂, 1), (1, 1̂, 1, 0̂, 1, 2̂, 1)

(1, 0̂, 1, 2̂, 1, 1̂, 1), (1, 0̂, 1, 1̂, 1, 2̂, 1), (1, 2̂, 1, 0̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 2̂, 1, 0̂, 1, 0̂, 1),

(1, 0̂, 1, 0̂, 1, 2̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1, 2̂, 1), (1, 1̂, 1, 1̂, 1, 1̂, 1), (1, 1̂, 1, 0̂, 1, 0̂, 1, 1̂, 1),

(1, 1̂, 1, 0̂, 1, 1̂, 1, 0̂, 1), (1, 1̂, 1, 1̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1, 1̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1, 0̂, 1, 1̂, 1),

(1, 0̂, 1, 0̂, 1, 1̂, 1, 1̂, 1), (1, 1̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1, 0̂, 1, 0̂, 1, 0̂, 1),

(1, 0̂, 1, 0̂, 1, 1̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1, 1̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 1̂, 1),

(1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1)}

L̂c(T2) = {(1, 1̂, 1), (1, 0̂, 1, 0̂, 1)}

L̂c(T3) = {(1, 0̂, 1, 0̂, 1)}

L̂c(T4) = {(1, 2̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 2̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 2̂, 1), (1, 1̂, 1, 1̂, 1, 0̂, 1), (1, 1̂, 1, 0̂, 1, 1̂, 1),

(1, 0̂, 1, 1̂, 1, 1̂, 1), (1, 1̂, 1, 0̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 1̂, 1, 0̂, 1, 0̂, 1), (1, 0̂, 1, 0̂, 1, 1̂, 1, 0̂, 1),

(1, 0̂, 1, 0̂, 1, 0̂, 1, 1̂, 1), (1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1, 0̂, 1)}.

There is a subtle point about generalized stars with no high degree vertex that is highlighted by T2 and T3. While these
two components are both paths of length 3, we see that their complete upwardmultiplicity lists are different. This is because
they are connected to the linear tree at different vertices, so they have different central vertices.

We complete this example by showing how the LSPworkswith the structural properties of trees discussed in Theorems 3
and 4. Recall that the path cover number of a tree is equal to the maximummultiplicity over all multiplicity lists for the tree
(Theorem 3), and the diameter is a lower bound on the minimum number of distinct eigenvalues (Theorem 4). The path
cover number of this linear tree is 6, and the following construction shows one way to achieve this:

0 0 1 2̂ 1 2̂ 0 1 0 0
0 1 0 1̂ 0 1 0 0 0 0
0 0 0 1 0 0̂ 1 0̂ 1 0
1 0 0 2̂ 0 1 0̂ 1 0̂ 1

1 1 1 6 1 4 1 2 1 1

The diameter of this linear tree is 9, so all multiplicity lists must have at least 9 elements. The following multiplicity list has
9 elements, including only two 1’s:

0 1 2̂ 1 0 2̂ 1 0 0
0 0 1 1̂ 1 0 0 0 0
0 0 0 1 0̂ 1 0̂ 1 0
1 1̂ 0 0 1 0̂ 1 1̂ 1

1 2 3 3 2 3 2 2 1

Of course, the sufficiency of the LSP conditions has not been proven for this tree.
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Fig. 4. A linear tree discussed in [5].

Example 23. Our final example is the 13 vertex linear tree discussed in [5] and reproduced below with the same vertex
numbering (see Fig. 4).

Informally, the assignment process for a given multiplicity list and given tree involves identifying subtrees that will
have certain eigenvalues so that the whole tree will have the given multiplicity list (see [5] for a more formal discussion of
assignments). A valid assignment is a necessary condition for a multiplicity list to exist, but the linear tree above was used
in [5] to demonstrate that a valid assignment is not a sufficient condition. In fact, for the unordered multiplicity list (3, 3, 3,
1, 1, 1, 1), if we denote the three eigenvalues of multiplicity 3 as α, β , and γ , then the only valid assignment places these
eigenvalues in the subtrees containing the following sets of vertices:

α : {1}, {3}, {4, 5, 6, 7}, {9, 10}, {11, 12, 13}
β : {1, 2, 3}, {5, 6}, {7, 8, 9, 10}, {12}, {13}
γ : {1, 2, 3}, {5, 6}, {7}, {9, 10}, {11, 12, 13}.

Unfortunately, this assignment does not lead to a multiplicity list. The subtree containing the vertices {1, 2, 3} has α, β , and
γ as eigenvalues, and because α is an upward eigenvalue, α is not the smallest or largest eigenvalue. Similarly, the subtree
containing the vertices {11, 12, 13} has α, β , and γ as eigenvalues, but since β is an upward eigenvalue, β is not the smallest
or largest eigenvalue. Since these conditions cannot happen simultaneously, and this was the only valid assignment for the
multiplicity list (3, 3, 3, 1, 1, 1, 1), we conclude that (3, 3, 3, 1, 1, 1, 1) is not a multiplicity list.

The LSP is similar to the assignment process, as can be seen from the proof of Theorem 15, so we present this example
to illustrate how the LSP resolves these situations. Similar to the procedure used in proof of Theorem 14, we will work
backwards from the given assignment and try to create the invalid multiplicity list by superposition. We will treat the tree
as a 4-linear tree, where vertices 2, 4, 8, and 11 are the central vertices of the components T1, T2, T3, and T4 respectively, and
vertex 7 is a path connecting T2 to T3. Based on the assignment, the columns for α, β , and γ in the superposition would be
the following:

α β γ

1̂ 1 1
1 0̂ 0̂
0 0 1
0̂ 1 0̂
1 1̂ 1
3 3 3

However, the problem of ordering that kept the assignment from producing a valid multiplicity list appears identically in
this superposition. Rows 1 and 5 must come from complete upward multiplicity lists of T1 and T4, but since each upward
multiplicity must be between two non-upward multiplicities in any complete upward multiplicity list of a generalized star,
there is no arrangement of the three columns that gives valid complete upwardmultiplicity lists for T1 and T4 simultaneously.

7.2. Previous conjectures

We now consider a set of prior conjectures about multiplicity lists for trees in the special case of linear trees. We begin
with the Degree Conjecture, which claims that each tree with k high degree vertices of degrees d1, . . . , dk has a multiplicity
list whose only entries greater than 1 are d1 −1, . . . , dk −1. For further discussion on the Degree Conjecture, see [12] where
it is proved for diametric trees. We extend this now to any linear trees satisfying the sufficiency of the LSP conditions.

Corollary 24. The Degree Conjecture holds for linear trees satisfying the sufficiency of the LSP conditions.

Proof. Wewill treat T as a k-linear tree L(T1, s1, T2, s2, . . . , sk−1, Tk), where the center vertex of Ti has degree di whenviewed
as a vertex of T (as opposed to just Ti). For i = 2, . . . , k−1, Ti has di−2 branches, so (1, ˆdi − 3, 1, 0̂, 1, 0̂, 1, . . .) is a complete
upwardmultiplicity list for Ti by Theorem9. Similarly, for i = 1, k, Ti has di−1 branches, so Tihas (1, ˆdi − 2, 1, 0̂, 1, 0̂, 1, . . .)
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Fig. 5. A linear complete binary tree.

as a complete upward multiplicity list. We combine the first three elements of each of these lists as follows:

T1 1 ˆd1 − 2 1 0 0 0 0 0 0
T2 0 1 ˆd2 − 3 1 0 0 0 0 0
T3 0 0 1 ˆd3 − 3 1 0 0 0 0
... 0 0 0

. . .
. . .

. . . 0 0 0
Tk−2 0 0 0 0 1 ˆdk−2 − 3 1 0 0
Tk−1 0 0 0 0 0 1 ˆdk−1 − 3 1 0
Tk 0 0 0 0 0 0 1 ˆdk − 2 1

1 d1 − 1 d2 − 1 · · · · · · · · · dk−1 − 1 dk − 1 1

The remaining ones in themultiplicity lists of the Ti’s alongwith the lists of ones corresponding to the connecting pathsmay
be included with no overlap, leaving us with a multiplicity list for T containing d1 − 1, . . . , dk − 1 and ones. �

Two results follow immediately from the Degree Conjecture. The first is regarding a multiplicity list for complete binary
trees. Note that our definition of complete binary tree may differ from other sources. We use the following definition.

Definition 25. A tree is called complete binary if each vertex has degree one or three.

An example of a complete binary tree is the graph shown in Fig. 1. For this class of trees, there is a conjecture
proposed by Johnson, Leal-Duarte, and Saiago stating that any complete binary tree with k vertices of degree three has
(1, 2, 2, . . . , 2, 2, 1), i.e. the list consisting of k two’s and a one at each end, as an ordered multiplicity list. Using the LSP, it
is possible to prove this conjecture for complete binary trees that are also linear.

Corollary 26. Suppose T is a complete binary tree with k vertices of degree three, and all degree three vertices lie on a single
induced path. Then (1, 2, 2, . . . , 2, 2, 1), i.e. the list consisting of k two’s and a one at each end, is an ordered multiplicity list for
T .

Proof. While this follows directly from the Degree Conjecture, we offer an alternative proof using the LSP directly. Within
the class of complete binary treeswith kdegree three vertices, there is exactly one tree that is also k-linear.Wemay represent
this tree as in Fig. 5:

We can interpret this tree as a k-linear tree with k components on two vertices, 2 single vertex components, and
connecting paths of length zero. In this case, (1, 0̂, 1) is the only complete upward multiplicity list for the two vertex
components, and (1) is the only list for the single vertices. We augment each list to length k + 2 and combine them as
follows:

0 1 0 0 0 0 0
1 0̂ 1 0 0 0 0
0 1 0̂ 1 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 0 1 0̂ 1 0
0 0 0 0 1 0̂ 1
0 0 0 0 0 1 0

1 2 2 · · · 2 2 1

�

For a tree T , let U(T ) denote the minimum number of ones among the multiplicity lists of T . From [10], we know that
U(T ) ≥ 2. The second result to follow from the Degree Conjecture is an upper bound for U(T ). For any tree T , let D2(T ) be
the number of degree 2 vertices of T . Then we have

U(T ) ≤ 2 + D2(T ).

It was shown in [12] that this follows from the Degree Conjecture.

Corollary 27. For any linear tree T satisfying the sufficiency of the LSP conditions,

U(T ) ≤ 2 + D2(T ).
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7.3. Nonlinear trees

We conclude with a discussion of some of the differences in determining multiplicity lists of nonlinear trees compared
to linear trees. A fundamental difference occurs between linear and nonlinear trees that makes superposition difficult to use
for characterizing the multiplicity lists of nonlinear trees. For any high degree vertex of a linear tree, all other high degree
vertices are contained in at most two of its branches. This gives linear trees two important properties that superposition
makes use of: (a) any linear tree can be viewed as a collection of generalized stars connected at their central vertices and
(b) there is a natural ordering of these generalized star components. For nonlinear trees, there is no way to satisfy both
properties. For example, consider Fig. 1, previously mentioned to be the smallest example of a nonlinear tree. This tree has
four high degree vertices, and at one of the vertices, there is a high degree vertex in three branches. If we would like to
interpret the tree as four generalized stars connected by edges, there is no obvious ordering. On the other hand, if we divide
it into components with a natural ordering, we no longer have just generalized star components connected at their central
vertices.

Fig. 1 achieves the ordered multiplicity list (1, 2, 4, 2, 1) by assigning each of the three branches of the central vertex
with the same three eigenvalues, one of which having an upward multiplicity. Thus, by removing the central vertices of
the three branches we must see some eigenvalue a total of six times, and thus if we also have this eigenvalue on the central
vertex of the nonlinear tree, then itsmultiplicitymust be 7−3 = 4. The two other eigenvalues from the induced 3-pathswill
be seen three times upon removing the central vertex of the tree, insuring that we have two eigenvalues of multiplicity two.
Let us attempt to produce this list while trying to follow the LSP. We might end up with the following as the non-upward
eigenvalues from the 3-path must be the same.

1 1̂ 1
1 1̂ 1
1 1̂ 1
0 1 0

3 4 3

However, this is not a possiblemultiplicity list for any tree as interlacing requires that the first and last eigenvalue be distinct.
Now let us attempt to force the list (1, 2, 4, 2, 1) to occur.

1 0 1̂ 0 1
0 1 1̂ 1 0
0 1 1̂ 1 0
0 0 1 0 0

1 2 4 2 1

While this does seem to achieve the list (1, 2, 4, 2, 1) there are two problems with the above superposition. First, the non-
upward eigenvalues of the 3-paths are the same in all three cases, yet the summation shows a difference for one of the
eigenvalues. Second, the sum adds two non-upward ones without an upward vertex between them. This addition without
upward multiplicity is not allowed in the LSP, and thus this example raises the question if it is necessary in the nonlinear
case. These issues lead to the necessity to devise some new manner to understand multiplicity lists for nonlinear trees.

To generalize the superposition concept to nonlinear trees, there seems to be two possibilities. First, interpret any
nonlinear tree as a collection of generalized stars connected at their central vertices, but create a more elaborate structure
for combining multiplicity lists. Second, allow for components other than generalized stars.

Another difficulty with nonlinear trees concerns the inverse eigenvalue problem. We showed in Section 6 that for any
ordered multiplicity list of a depth 1 linear tree, the numerical values of the eigenvalues are arbitrary, subject to order.
Unfortunately, the property does not generally hold for nonlinear trees, as shown in [1]. For example, for Fig. 1 (a similar
argument was first presented in [1]), the ordered multiplicity list (1, 2, 4, 2, 1) does not allow all choices of eigenvalues.
In fact, denoting the eigenvalues of a real symmetric matrix A whose graph is that of Fig. 1 with ordered multiplicity list
(1, 2, 4, 2, 1) by λ1, . . . , λ5, we must have A[i] = λ3 for i = 1, 2, 4, 5, 7, 8, 10, and the submatrices A[1, 2, 3], A[4, 5, 6],
and A[7, 8, 9] each have eigenvalues λ2, λ3, λ4. The trace of each of these submatrices is therefore λ2 + λ3 + λ4, and the
trace of A is 3(λ2+λ3+λ4)+λ3. The trace of A can also be expressed as the sum of its eigenvalues: λ1+2λ2+4λ3+2λ4+λ5.
Setting equal the two expressions for the trace of A gives the following numerical restriction on the eigenvalues:

λ2 + λ4 = λ1 + λ5.

Because of this difficulty with even the smallest nonlinear tree, it may be that the likely relationship between the inverse
eigenvalue problem and the ordered multiplicity lists is unique to the linear trees.
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